有限元分析(桁架结构)

  • 格式:doc
  • 大小:590.50 KB
  • 文档页数:11

下载文档原格式

  / 11
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有限元上机分析报告

学院:机械工程

专业及班级:机械设计及其自动化08级7班姓名:王浩煜

学号:20082798

题目编号: 2

1.题目概况

1.1 结构组成和基本数据

结构:该结构为一个六根杆组成的桁架结构,其中四根杆组成了直径为800cm的正方形,其他两根杆的两节点为四边形的四个角。

材料:该六根杆截面面积均为100cm2,材料均为Q235,弹性模量为200GPa,对于直径或厚度大于100mm的截面其强度设计值为190Mpa。

载荷:结构的左上和左下角被铰接固定,限制了其在平面内x和y方向的位移,右上角受到大小为2000KN的集中载荷。

结构的整体状况如下图所示:

1.2 分析任务

该分析的任务是对该结构的静强度进行校核分析以验算该结构否满足强度要求。

2.模型建立

2.1 物理模型简化及其分析

由于该结构为桁架结构,故认为每根杆件只会沿着轴线进行拉压,而不会发

生弯曲和扭转等变形。结构中每根杆为铰接连接,有集中载荷作用于最上方的杆和最右方杆的铰接点。

2.2单元选择及其分析

由于该结构的杆可以认为是只受拉压的杆件,故可以使用LINK180单元,该单元是有着广泛工程应用的杆单元,它可以用来模拟桁架、缆索、连杆、弹簧等等。这种三维杆单元是杆轴方向的拉压单元,每个节点具有三个自由度:沿节点坐标系X、Y、Z方向的平动。就像铰接结构一样,不承受弯矩。输入的数据有:两个节点、横截面面积(AREA)、单位长度的质量(ADDMAS)及材料属性。输出有:单元节点位移、节点的应力应变等等。由此可见,LINK180单元适用于该结构的分析。

3.3 模型建立及网格划分

(1)启动Ansys软件,选择Preferences→Structural,即将其他非结构菜单过滤掉。

(2)选择单元类型:选择Preprocessor→Element Type→Add/Edit/Delete→Add,在出现的对话框中选择Link→3d finit stn 180,即LINK180,点击“OK”

(3)选择实常数:选择Preprocessor→Real Constants→Add/Edit/Delete→Add,在出现的对话框中的Cross-sectional area中输入100,点击“OK”。

(4)材料定义:Preprocessor→Material Props→Material Models→Structural→Linear→Elastic→Isotropic,出现以下窗口,在EX即弹性模量处输入2e7,点击“OK”。

(5)建立线模型:Preprocessor→Modeling→Create→Keypoints→In active CS,由于坐标值在不输入情况下默认为0,故直接点击“Apply”则出现坐标为(0,0)的1点,再在X项输入800,则出现坐标为(80,0)的2点,依次得到坐标为(0,80)和(80,80)的3点和4点最后选择“OK”。最后可在绘图区域看到4个点。

选择Preprocessor→Modeling→Create→Lines→Straight Line,选择点两点做一条线,完成后图形如下所示:

(6)划分网格:选择Preprocessor→Meshing→Mesh Attributes→Picked Lines,选择桁架结构的六根杆点击“OK”。出现下图所示对话框,Real Constant Set Number 为1为要求的,故不需修改,直接点击“OK”。

选择Preprocessor→Meshing→MeshTool,在Size Control中的global中点击“Set”进行单元设置,出现下图所示对话框,在No.of element divisions中填入1,即每个杆为一个单元。点击“OK”。

选择Preprocessor→Meshing→MeshTool→Mesh,在弹出的对话框中,选择“Pick All”,即将所有杆进行单元划分。

此时选择List→Elements→Nodes+Attributes,即可列出单元,如下图:

(7)施加载荷:

施加约束:选择Solution→Defined Loads→Apply→Structural→Displacement

→On Nodes,选择节点1和2,在弹出的对话框中选择ALL DOF,点击“OK”。

施加力:选择Solution→Defined Loads→Apply→Structural→Force/Moment →On Nodes,输入数据,如下图所示:

荷载施加完成后的图如下所示:

3.计算分析

3.1求解

选择Solution→Solve→Current LS进行求解,求解过程很快结束:

选择PlotCtrls→Style→Size And Shape,出现以下对话框,在Display Of Element Shape Based On Real Constant Descriptions后面的复选框中点击,则“Off”变为“On”,此时显示为实体模型。

再选择General Postproc→Plot Results→Deformed Shape,在弹出的对话框中选择“Def+undef edge”,点击“OK”,此时则可显示出桁架结构变化前后的位置,如下图:

选择General Postproc→List results→Nodal Solution,在弹出的对话框中选择dispacement vector sum,列出的节点位移如下(单位为cm):

按照书上例题所计算的公式,将载荷、长度、弹性模量以及面积带入得到的结果为:节点1和2的位移为0,节点3的位移为(0.448,-1.712)cm,节点4的位移为(-0.352,-1.352)cm,此结果与例题计算结果相符,说明了该计算是正确的。

选择General Postproc→Plot Results→Countour Plot→Nodal Solu,在弹出的对话框中选择Nodal Solution→DOF Solution→Displacement vector sum,即出现桁架杆件的总位移矢量图,最大位移出现在施加载荷的附近,为22.09cm,如下: