半导体物理笔记第四章
- 格式:doc
- 大小:254.56 KB
- 文档页数:7
高等半导体物理课程内容(前置课程:量子力学,固体物理)第一章能带理论,半导体中的电子态第二章半导体中的电输运性质第三章半导体中的光学性质第四章超晶格,量子阱前言:半导体理论和器件发展史1926 Bloch 定理1931 Wilson 固体能带论(里程碑)1948 Bardeen, Brattain and Shokley 发明晶体管,带来了现代电子技术的革命,同时也促进了半导体物理研究的蓬勃发展。
从那以后的几十年间,无论在半导体物理研究方面,还是半导体器件应用方面都有了飞速的发展。
1954半导体有效质量理论的提出,这是半导体理论的一个重大发展,它定量地描述了半导体导带和价带边附近细致的能带结构,给出了研究浅能级、激子、磁能级等的理论方法,促进了当时的回旋共振、磁光吸收、自由载流子吸收、激子吸收等实验研究。
1958 集成电路问世1959 赝势概念的提出,使得固体能带的计算大为简化。
利用价电子态与原子核心态正交的性质,用一个赝势代替真实的原子势,得到了一个固体中价电子态满足的方程。
用赝势方法得到了几乎所有半导体的比较精确的能带结构。
1962 半导体激光器发明1968 硅MOS器件发明及大规模集成电路实现产业化大生产1970 * 超晶格概念提出,Esaki (江歧), Tsu (朱兆祥)* 超高真空表面能谱分析技术相继出现,开始了对半导体表面、界面物理的研究1971 第一个超晶格Al x Ga1-x As/GaAs 制备,标志着半导体材料的发展开始进入人工设计的新时代。
1980 德国的V on Klitzing发现了整数量子Hall 效应——标准电阻1982 崔崎等人在电子迁移率极高的Al x Ga1-x As/GaAs异质结中发现了分数量子Hall 效应1984 Miller等人观察到量子阱中激子吸收峰能量随电场强度变化发生红移的量子限制斯塔克效应,以及由激子吸收系数或折射率变化引起的激子光学非线性效应,为设计新一代光双稳器件提供了重要的依据。
第四章习题及答案1. 300K 时,Ge 的本征电阻率为47Ωcm ,如电子和空穴迁移率分别为3900cm 2/( V.S)和1900cm 2/( V.S)。
试求Ge 的载流子浓度。
解:在本征情况下,i n p n ==,由)(/p n i p n u u q n pqu nqu +=+==111σρ知 3131910292190039001060214711--⨯=+⨯⨯⨯=+=cm u u q n p n i .)(.)(ρ 2. 试计算本征Si 在室温时的电导率,设电子和空穴迁移率分别为1350cm 2/( V.S)和500cm 2/( V.S)。
当掺入百万分之一的As 后,设杂质全部电离,试计算其电导率。
比本征Si 的电导率增大了多少倍? 解:300K 时,)/(),/(S V cm u S V cm u p n ⋅=⋅=225001350,查表3-2或图3-7可知,室温下Si 的本征载流子浓度约为3101001-⨯=cm n i .。
本征情况下,cm S +.u u q n pqu nqu -p n i p n /.)()(6191010035001350106021101-⨯=⨯⨯⨯⨯=+=+=σ金钢石结构一个原胞内的等效原子个数为84216818=+⨯+⨯个,查看附录B 知Si 的晶格常数为0.543102nm ,则其原子密度为322371051054310208--⨯=⨯cm ).(。
掺入百万分之一的As,杂质的浓度为3162210510000001105-⨯=⨯⨯=cm N D ,杂质全部电离后,i D n N >>,这种情况下,查图4-14(a )可知其多子的迁移率为800 cm 2/( V.S)cm S .qu N -n D /.''468001060211051916=⨯⨯⨯⨯=≈σ比本征情况下增大了66101210346⨯=⨯=-..'σσ倍 3. 电阻率为10Ω.m 的p 型Si 样品,试计算室温时多数载流子和少数载流子浓度。
半导体物理知识点半导体物理知识点1.前两章:1、半导体、导体、绝缘体的能带的定性区别2、常见三族元素:B(硼)、Al、Ga(镓)、In(铟)、TI(铊)。
注意随着原子序数的增大,还原性增大,得到的电子稳固,便能提供更多的空穴。
所以同样条件时原子序数大的提供空穴更多一点、费米能级更低一点常见五族元素:N、P、As(砷)、Sb(锑)、Bi(铋)3、有效质量,m(ij)=hbar^2/(E对ki和kj的混合偏导)4、硅的导带等能面,6个椭球,是k空间中[001]及其对称方向上的6个能量最低点,mt是沿垂直轴方向的质量,ml是沿轴方向的质量。
锗的导带等能面,8个椭球没事k空间中[111]及其对称方向上的8个能量最低点。
砷化镓是直接带隙半导体,但在[111]方向上有一个卫星能谷。
此能谷可以造成负微分电阻效应。
2.第三章载流子统计规律:1、普适公式ni^2 = n*pni^2 = (NcNv)^0.5*exp(-Eg/(k0T))n = Nc*exp((Ef-Ec)/(k0T))p = Nv*exp((Ev-Ef)/(k0T))Nv Nc与 T^1.5成正比2、掺杂时。
注意施主上的电子浓度符合修正的费米分布,但是其它的都不是了,注意Ef前的符号!nd = Nd/(1+1/gd*exp((Ed-Ef)/(k0T)) gd = 2 施主上的电子浓度nd+ = Nd/(1+gd*exp((Ef-Ed)/(k0T)) 电离施主的浓度na = Na/(1+1/ga*exp((Ef-Ea)/(k0T)) ga = 4 受主上的空穴浓度na- = Na/(1+ga*exp((Ea-Ef)/(k0T)) 电离受主浓度3、掺杂时,电离情况。
电中性条件: n + na- = p + nd+N型的电中性条件: n + = p + nd+(1)低温弱电离区:记住是忽略本征激发。
由n = nd+推导,先得费米能级,再代入得电子浓度。
第一章半导体的能带理论共价键:硅锗原子之间组合靠的是共价键结合,他们的晶格结构与碳原子组成的金刚石类似。
四原子分别处于正四面体的顶角,任意顶角上的原子和中心原子各贡献一个价电子为两原子共有,共有的电子在两原子之间形成较大的电子云密度,通过他们对原子实的引力把两个原子结合在一起。
闪锌矿型结构:类似于金刚石的结构但是是由两种原子构成的,一个中心原子周围有4个不同种类的原子。
因为原子呈现电正性或者电负性,有离子键的成分。
纤锌矿结构:离子性结合占优的话,就形成该结构。
不具有四方对称性,取而代之是六方对称性。
共有化运动:原子的电子分列不同能级,也即是电子壳层。
当原子互相接近形成晶体时,电子壳层互相交叠,电子可以转移到相邻原子上去,可以在整个晶体中移动,这种运动叫做电子的共有化运动。
能带:电子的能级在受到其他原子影响之后,就会出现分裂现象,这种分裂后产生n个很近的能级叫做能带。
禁带:分裂的每一个能带称为允带,允带之间则称为禁带。
单电子近似:晶体中某一个电子是在周期性排列且固定不动的原子核的势场,以及其他大量电子的平均势场中运动,势场是周期性变化的,周期于晶格周期相同。
电子在周期性势场中的运动特点和自由电子的运动十分相似。
导体、半导体、绝缘体的能带:导体是通过上层的不满带导电的。
对于半导体和绝缘体,从上到下分别是空带、禁带、价带(满带),在外电场作用下并不导电,但是当外界条件(加热光照)发生变化时,满带中的少量电子可能被激发到空带当中,这些电子可以参与导电,同时满带变成部分占满,满带也会起导电作用。
这种导电作用等效于把这些空的量子状态看作带正电荷的准粒子的导电作用,常称这些空的量子状态为空穴。
绝缘体的禁带宽度很大,激发点很困难,而半导体相对容易,在常温下就有电子被激发到导带。
有效质量:在描述电子运动规律的方程中出现的是电子的有效质量mn*,而不是电子的惯性质量m0。
这是因为其中f并非全部外力,其实电子还收到原子和其他电子的作用,此时用有效质量进行计算可以简化问题,f和加速度挂钩,而内部势场作用用有效质量概括。
半导体重点总结(1-7章)绪论1. 制作pn 结的基本步骤。
(重点,要求能够画图和看图标出步骤)第一章. 固体晶体结构1. 半导体基本上可以分为两类:位于元素周期表IV 元素半导体材料和化合物半导体材料。
大部分化合物半导体材料是III 族和V 族化合形成的。
2. 元素半导体,如:Si 、Ge ; 双元素化合物半导体,如:GaAs (III 族和V 族元素化合而成)、InP 、ZnS 。
类似的也有三元素化合物半导体。
3. 固体类型:(a )无定形(b )多晶(c )单晶 图见P6 多晶:由两个以上的同种或异种单晶组成的结晶物质。
多晶没有单晶所特有的各向异性特征 准晶体: 有长程的取向序,沿取向序的对称轴方向有准周期性,但无长程周期性。
似晶非晶。
4. 原胞和晶胞:原胞是可以通过重复形成晶格的最小晶胞。
晶胞就是可以复制出整个晶体 的小部分晶体。
5. (a )简立方 1 个原子(b )体心立方 2 个原子(c )面心立方 4 个原子计算方法:顶点的一个原子同时被8个晶胞共享,因此对于所求晶胞而言只占有了该原子的1/8;边上、面心和体心原子分别同时被4,2,1个晶胞共享,对于所求晶胞而言分别占有了该原子的1/4,1/2,1/2.如此计算。
例如(c )图中8*1/8+6*1/2=1+3=4. 6. 晶格常数:所取的立方体晶胞的边长。
单位为A ,1A=10^-8cm. 7. 原子体密度:原子个数/体积。
比如上图(c )假设晶格常数为5A 。
求原子体密度。
8.密勒指数(取面与x,y,z 平面截距的倒数):密勒指数描述晶面的方向,任何平行平面都有相同的密勒指数。
9. 特定原子面密度:原子数/截面面积。
计算方法:计算原子面密度时求原子个数的方法与求体密度时的方法类似,但是应当根据面的原子共用情况来计算。
其中有一种较为简便的算法:计算该面截下该原子的截面的角度除处以360,即为该面实际占有该原子的比例。
举例1:计算下图(a )中所显示面所拥有的原子个数和原子面密度:该面截取了顶角四个原子和体心一个原子,顶角每个原子与面的截面角度为90度,90/360=1/4,体心原子与面的截面角度为360度,360/360=1,所以原子总数,1+1+1/4*4=2()223384 3.210510cm ρ-==⨯⨯个原子/举例2:第一次作业中有一道小题是计算硅晶体在晶面(1,1,1)的面密度,晶格常数为a ,如下图可以知道如图所示的等边三角形的边长为√2*a,三个角顶点截面角度为60度,所以该面实际占据这个三个点的比率都为1/6,三个面心点截面角度为180度,所以该面实际占据这个三个点的比率都为1/2.所以该面拥有原子数为3*1/6+3*1/2=1/2+3/2=2.等边三角形面积为√3/2*a^2,所以可以算出面密度为4/(√3a^2).10. 晶向:与晶面垂直的矢量(在非简立方体晶格中不一定成立)。
半导体物理知识点总结一、半导体物理知识大纲核心知识单元A:半导体电子状态与能级(课程基础——掌握物理概念与物理过程、是后面知识的基础)→半导体中的电子状态(第1章)→半导体中的杂质和缺陷能级(第2章)核心知识单元B:半导体载流子统计分布与输运(课程重点——掌握物理概念、掌握物理过程的分析方法、相关参数的计算方法)→半导体中载流子的统计分布(第3章)→半导体的导电性(第4章)→非平衡载流子(第5章)核心知识单元C:半导体的基本效应(物理效应与应用——掌握各种半导体物理效应、分析其产生的物理机理、掌握具体的应用)→半导体光学性质(第10章)→半导体热电性质(第11章)→半导体磁和压阻效应(第12章)二、半导体物理知识点和考点总结第一章半导体中的电子状态本章各节内容提要:本章主要讨论半导体中电子的运动状态。
主要介绍了半导体的几种常见晶体结构,半导体中能带的形成,半导体中电子的状态和能带特点,在讲解半导体中电子的运动时,引入了有效质量的概念。
阐述本征半导体的导电机构,引入了空穴散射的概念。
最后,介绍了Si、Ge和GaAs的能带结构。
在1.1节,半导体的几种常见晶体结构及结合性质。
(重点掌握)在1.2节,为了深入理解能带的形成,介绍了电子的共有化运动。
介绍半导体中电子的状态和能带特点,并对导体、半导体和绝缘体的能带进行比较,在此基础上引入本征激发的概念。
(重点掌握)在1.3节,引入有效质量的概念。
讨论半导体中电子的平均速度和加速度。
(重点掌握)在1.4节,阐述本征半导体的导电机构,由此引入了空穴散射的概念,得到空穴的特点。
(重点掌握)在1.5节,介绍回旋共振测试有效质量的原理和方法。
(理解即可)在1.6节,介绍Si、Ge的能带结构。
(掌握能带结构特征)在1.7节,介绍Ⅲ-Ⅴ族化合物的能带结构,主要了解GaAs的能带结构。
(掌握能带结构特征)本章重难点:重点:1、半导体硅、锗的晶体结构(金刚石型结构)及其特点;三五族化合物半导体的闪锌矿型结构及其特点。
半导体物理知识点及重点习题总结Document number:NOCG-YUNOO-BUYTT-UU986-1986UT基本概念题:第一章半导体电子状态半导体通常是指导电能力介于导体和绝缘体之间的材料,其导带在绝对零度时全空,价带全满,禁带宽度较绝缘体的小许多。
能带晶体中,电子的能量是不连续的,在某些能量区间能级分布是准连续的,在某些区间没有能及分布。
这些区间在能级图中表现为带状,称之为能带。
能带论是半导体物理的理论基础,试简要说明能带论所采用的理论方法。
答:能带论在以下两个重要近似基础上,给出晶体的势场分布,进而给出电子的薛定鄂方程。
通过该方程和周期性边界条件最终给出E-k关系,从而系统地建立起该理论。
单电子近似:将晶体中其它电子对某一电子的库仑作用按几率分布平均地加以考虑,这样就可把求解晶体中电子波函数的复杂的多体问题简化为单体问题。
绝热近似:近似认为晶格系统与电子系统之间没有能量交换,而将实际存在的这种交换当作微扰来处理。
克龙尼克—潘纳模型解释能带现象的理论方法答案:克龙尼克—潘纳模型是为分析晶体中电子运动状态和E-k关系而提出的一利用该势场模型就可给出一维晶体中电子所遵守的薛定谔方程的具体表达式,进而确定波函数并给出E-k关系。
由此得到的能量分布在k空间上是周期函数,而且某些能量区间能级是准连续的(被称为允带),另一些区间没有电子能级(被称为禁带)。
从而利用量子力学的方法解释了能带现象,因此该模型具有重要的物理意义。
导带与价带有效质量有效质量是在描述晶体中载流子运动时引进的物理量。
它概括了周期性势场对载流子运动的影响,从而使外场力与加速度的关系具有牛顿定律的形式。
其大小由晶体自身的E-k 关系决定。
本征半导体既无杂质有无缺陷的理想半导体材料。
空穴空穴是为处理价带电子导电问题而引进的概念。
设想价带中的每个空电子状态带有一个正的基本电荷,并赋予其与电子符号相反、大小相等的有效质量,这样就引进了一个假想的粒子,称其为空穴。
基本概念题:第一章半导体电子状态1.1 半导体通常是指导电能力介于导体和绝缘体之间的材料,其导带在绝对零度时全空,价带全满,禁带宽度较绝缘体的小许多。
1.2能带晶体中,电子的能量是不连续的,在某些能量区间能级分布是准连续的,在某些区间没有能及分布。
这些区间在能级图中表现为带状,称之为能带。
1.2能带论是半导体物理的理论基础,试简要说明能带论所采用的理论方法。
答:能带论在以下两个重要近似基础上,给出晶体的势场分布,进而给出电子的薛定鄂方程。
通过该方程和周期性边界条件最终给出E-k关系,从而系统地建立起该理论。
单电子近似:将晶体中其它电子对某一电子的库仑作用按几率分布平均地加以考虑,这样就可把求解晶体中电子波函数的复杂的多体问题简化为单体问题。
绝热近似:近似认为晶格系统与电子系统之间没有能量交换,而将实际存在的这种交换当作微扰来处理。
1.2克龙尼克—潘纳模型解释能带现象的理论方法答案:克龙尼克—潘纳模型是为分析晶体中电子运动状态和E-k关系而提出的一维晶体的势场分布模型,如下图所示利用该势场模型就可给出一维晶体中电子所遵守的薛定谔方程的具体表达式,进而确定波函数并给出E-k关系。
由此得到的能量分布在k空间上是周期函数,而且某些能量区间能级是准连续的(被称为允带),另一些区间没有电子能级(被称为禁带)。
从而利用量子力学的方法解释了能带现象,因此该模型具有重要的物理意义。
1.2导带与价带1.3有效质量有效质量是在描述晶体中载流子运动时引进的物理量。
它概括了周期性势场对载流子运动的影响,从而使外场力与加速度的关系具有牛顿定律的形式。
其大小由晶体自身的E-k关系决定。
1.4本征半导体既无杂质有无缺陷的理想半导体材料。
1.4空穴空穴是为处理价带电子导电问题而引进的概念。
设想价带中的每个空电子状态带有一个正的基本电荷,并赋予其与电子符号相反、大小相等的有效质量,这样就引进了一个假想的粒子,称其为空穴。
它引起的假想电流正好等于价带中的电子电流。
共价键: 由同种晶体组成的元素半导体 ,其原子间无负电性差,它们通过共用一对自旋相反而配对的价电子结合在一起共价键的特点:饱和性、方向性。
电子共有化运动:由于相邻原子的“相似”电子壳层发生交叠,电子不再局限在某一个原子上而在整个晶体中的相似壳层间运动,引起相应的共有化运动。
定性理论(物理概念):晶体中原子之间的相互作用,使能级分裂形成能带。
定量理论(量子力学计算):电子在周期场中运动,其能量不连续形成能带。
能带 包括允带和禁带。
允带:允许电子能量存在的能量范围。
禁带:不允许电子存在的能量范围。
允带 又分为空带、满带、导带、价带。
空带:不被电子占据的允带。
满带:允带中的能量状态(能级)均被电子占据。
导带:电子未占满的允带(有部分电子。
)价带:被价电子占据的允带(低温下通常被价电子占满)。
共价键理论主要有三点:晶体的化学键是共价键,如 Si ,Ge 。
共价键上的电子处于束缚态,不能参与导电。
处于束缚态的价电子从外界得到能量,有可能挣脱束缚成为自由电子,参与导电。
能带理论与共价键理论的对应关系 能带理论 共价键理论 价带中电子 共价键上的电子导带中电子 挣脱共价键的电子(变为自由电子) 禁带宽度 键上电子挣脱键束缚所需的能量 定量理论 定性理论本征激发:共价键上的电子激发成为准自由电子,亦即价带电子吸收能量被激发到导带成为导带电子的过程,称为本征激发。
有效质量 自由电子只受外力作用;半导体中的电子不仅受到外力的作用,同时还受半导体 内部势场的作用 意义:有效质量概括了半导体内部势场的作用,使得研究半导体中电子的运动规律时更为简便(有效质量可由试验测定)空穴:将价带电子的导电作用等效为正电荷的准粒子的导电作用*nf a m施主杂质(n 型杂质):杂质电离后能够施放电子而产生自由电子并形成正电中心的杂质 施主能级:施主电子被施主杂质束缚时的能量对应的能级称为施主能级。
对于电离能小的施主杂质的施主能级位于禁带中导带底以下较小的距离。
半导体物理绪 论 一、什么是半导体导体 半导体 绝缘体电导率ρ <310- 9310~10- 910> cm ∙Ω此外,半导体还有以下重要特性1、 温度可以显著改变半导体导电能力例如:纯硅(Si ) 若温度从 30C 变为C 20时,ρ增大一倍2、 微量杂质含量可以显著改变半导体导电能力例如:若有100万硅掺入1个杂质(P . Be )此时纯度99.9999% ,室温(C 27 300K )时,电阻率由214000Ω降至0.2Ω3、 光照可以明显改变半导体的导电能力例如:淀积在绝缘体基片上(衬底)上的硫化镉(CdS )薄膜,无光照时电阻(暗电阻)约为几十欧姆,光照时电阻约为几十千欧姆。
另外,磁场、电场等外界因素也可显著改变半导体的导电能力。
综上:● 半导体是一类性质可受光、热、磁、电,微量杂质等作用而改变其性质的材料。
二、课程内容本课程主要解决外界光、热、磁、电,微量杂质等因素如何影响半导体性质的微观机制。
预备知识——化学键的性质及其相应的具体结构晶体:常用半导体材料Si Ge GaAs 等都是晶体固体非晶体:非晶硅(太阳能电池主要材料)晶体的基本性质:固定外形、固定熔点、更重要的是组成晶体的原子(离子)在较大范围里(610-m )按一定方式规则排列——称为长程有序。
单晶:主要分子、原子、离子延一种规则摆列贯穿始终。
多晶:由子晶粒杂乱无章的排列而成。
非晶体:没有固定外形、固定熔点、内部结构不存在长程有序,仅在较小范围(几个原子距)存在结构有序——短程有序。
§1 化学键和晶体结构1、 原子的负电性化学键的形成取决于原子对其核外电子的束缚力强弱。
电离能:失去一个价电子所需的能量。
亲和能:最外层得到一个价电子成为负离子释放的能量。
(ⅡA 族和氧除外) 原子负电性=(亲和能+电离能)18.0⨯ (Li 定义为1)● 负电性反映了两个原子之间键合时最外层得失电子的难易程度。
● 价电子向负电性大的原子转移ⅠA 到ⅦA ,负电性增大,非金属性增强同族元素从上到下,负电性减弱,金属性增强2、 化学键的类型和晶体结构的规律性ⅰ)离子晶体:(NaCl)由正负离子静电引力形成的结合力叫离子键,由离子键结合成的晶体叫离子晶体(极性警惕) ●离子晶体的结构特点:任何一个离子的最近邻必是带相反电荷的离子。