运动学例题_
- 格式:ppt
- 大小:414.50 KB
- 文档页数:11
质点运动学典型例题1. 一质点做抛体运动(忽略空气阻力),如图一所示。
求:质点在运动过程中(1)dtdV 是否变化? (2)dtV d 是否变化? (3)法向加速度是否变化?(4)轨道何处曲率半径最大?其数值为多少?解:(1)如图一,如果把dtdV 理解为切向加速度,即τa dt dV =,则由图二(a )所示,ατcos g a =,显然τa 先减小后增大。
(2)g dtV d = (3)αsin g a n =(4)质点在任一点的曲率半径φρcos 22g V a V n ==,质点在运动过程中,式中的速度V,夹角φ均为变量。
故质点在起点和终点处的速度最大(0V V =)。
φ最大,φcos 最小,所以在该处的曲率半径最大。
上抛石块的位移和路程一石块以V=4.9m/s 的初速度向上抛出,经过2S 后,石块的位移y ∆________,路程S______.解:如图一,设定石块上抛的初始点为原点,竖直向上为正方向。
则其运动方程为2021gt t V y -= 2S 内的位移为m y 8.928.92129.42-=⨯⨯-⨯=,负号表明所求位移的方向为竖直向下,即物体在2S 内改变了运动方向。
先求物体到达最高点的时刻,即00=-=gt V dt dy ,S g V t 5.08.99.40=== 则总路程m L L L 25.12)5.1(8.921)5.0(8.9212221=⨯⨯+⨯⨯=+= 求解某一位置的速度质点沿x 轴正向运动,其加速度随位置变化的关系为2331x a +=,如果在x=0处,其速度为s m V /50=,那么,在x=3m 处的速度为多少? 解:因为2331x V dx dV dt dx dx dV dt dV a +====s m V x x V x x V V dx x VdV V V /9)25333(2)23(2322)331(2320332023020=++=++=+=-+=⎰⎰宇宙速度众所周知,人造地球卫星和人造行星是人类认识宇宙的重大发展.但怎样才能把物体抛向天空,使之成为人造卫星或人造行星呢:)这取决于抛体的初速度。
直线运动规律及追及问题一 、 例题例题1.一物体做匀变速直线运动,某时刻速度大小为4m/s ,1s 后速度的大小变为10m/s ,在这1s 内该物体的 ( )A.位移的大小可能小于4mB.位移的大小可能大于10mC.加速度的大小可能小于4m/sD.加速度的大小可能大于10m/s析:同向时2201/6/1410s m s m t v v a t =-=-=m m t v v s t 712104201=⋅+=⋅+=反向时2202/14/1410s m s m t v v a t -=--=-=m m t v v s t 312104202-=⋅-=⋅+=式中负号表示方向跟规定正方向相反 答案:A 、D例题2:两木块自左向右运动,现用高速摄影机在同一底片上多次曝光,记录下木快每次曝光时的位置,如图所示,连续两次曝光的时间间隔是相等的,由图可知 ( )A 在时刻t 2以及时刻t 5两木块速度相同B 在时刻t1两木块速度相同C 在时刻t 3和时刻t 4之间某瞬间两木块速度相同D 在时刻t 4和时刻t 5之间某瞬间两木块速度相同解析:首先由图看出:上边那个物体相邻相等时间内的位移之差为恒量,可以判定其做匀变速直线运动;下边那个物体很明显地是做匀速直线运动。
由于t 2及t 3时刻两物体位置相同,说明这段时间内它们的位移相等,因此其中间时刻的即时速度相等,这个中间时刻显然在t 3、t 4之间答案:C例题3 一跳水运动员从离水面10m 高的平台上跃起,举双臂直立身体离开台面,此时中心位于从手到脚全长的中点,跃起后重心升高0.45m 达到最高点,落水时身体竖直,手先入水(在此过程中运动员水平方向的运动忽略不计)从离开跳台到手触水面,他可用于完成空中动作的时间是多少?(g 取10m/s 2结果保留两位数字)解析:根据题意计算时,可以把运动员的全部质量集中在重心的一个质点,且忽略其水平方向的运动,因此运动员做的是竖直上抛运动,由gvh 220=可求出刚离开台面时的速度t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 1 t 2 t 3 t 4 t 5 t 6 t 7s m gh v /320==,由题意知整个过程运动员的位移为-10m (以向上为正方向),由2021at t v s +=得: -10=3t -5t 2解得:t ≈1.7s思考:把整个过程分为上升阶段和下降阶段来解,可以吗? 例题 4.如图所示,有若干相同的小钢球,从斜面上的某一位置每隔0.1s 释放一颗,在连续释放若干颗钢球后对斜面上正在滚动的若干小球摄下照片如图,测得AB=15cm ,BC=20cm ,试求:(1) 拍照时B 球的速度;(2) A 球上面还有几颗正在滚动的钢球 解析:拍摄得到的小球的照片中,A 、B 、C 、D …各小球的位置,正是首先释放的某球每隔0.1s 所在的位置.这样就把本题转换成一个物体在斜面上做初速度为零的匀加速运动的问题了。
[例1] 在倾角为的斜面上的P点, 以水平速度向斜面下方抛出一个物体, 落在斜面上的Q 点, 证明落在Q点物体速度。
解析:设物体由抛出点P运动到斜面上的Q点的位移是, 所用时间为, 则由“分解位移法”可得, 竖直方向上的位移为;水平方向上的位移为。
又根据运动学的规律可得竖直方向上,水平方向上,所以Q点的速度[例2] 如图3所示, 在坡度一定的斜面顶点以大小相同的速度同时水平向左与水平向右抛出两个小球A和B, 两侧斜坡的倾角分别为和, 小球均落在坡面上, 若不计空气阻力, 则A和B两小球的运动时间之比为多少?图3解析: 和都是物体落在斜面上后, 位移与水平方向的夹角, 则运用分解位移的方法可以得到所以有同理则[例3] 如图6所示, 在倾角为的斜面上以速度水平抛出一小球, 该斜面足够长, 则从抛出开始计时, 经过多长时间小球离开斜面的距离的达到最大, 最大距离为多少?图6解析: 将平抛运动分解为沿斜面向下和垂直斜面向上的分运动, 虽然分运动比较复杂一些, 但易将物体离斜面距离达到最大的物理本质凸显出来。
取沿斜面向下为 轴的正方向, 垂直斜面向上为 轴的正方向, 如图6所示, 在 轴上, 小球做初速度为 、加速度为 的匀变速直线运动, 所以有①②当 时, 小球在 轴上运动到最高点, 即小球离开斜面的距离达到最大。
由①式可得小球离开斜面的最大距离当 时, 小球在 轴上运动到最高点, 它所用的时间就是小球从抛出运动到离开斜面最大距离的时间。
由②式可得小球运动的时间为例4: 在平直轨道上以 的加速度匀加速行驶的火车上, 相继下落两个物体下落的高度都是2.45m. 间隔时间为1s. 两物体落地点的间隔是2.6m, 则当第一个物体下落时火车的速度是多大? (g 取 )分析: 如图所示. 第一个物体下落以 的速度作平抛运动, 水平位移 , 火车加速到下落第二个物体时, 已行驶距离 . 第二个物体以 的速度作平抛运动水平位移 . 两物体落地点的间隔是2.6m.解: 由位置关系得物体平抛运动的时间 20.7ht s g'=00021002000.710.252()(0.5)0.7s v t v s v t at v s v at t v '===+=+'=+⋅=+⨯由以上三式可得201sin 22sin 2/L gt L t gv m sαα===例5: 光滑斜面倾角为 , 长为L, 上端一小球沿斜面水平方向以速度 抛出(如图所示), 小球滑到底端时, 水平方向位移多大?解:小球运动是合运动, 小球在水平方向作匀速直线运动, 有0s v t = ①沿斜面向下是做初速度为零的匀加速直线运动, 有212L at =② 根据牛顿第二定律列方程sin mg ma θ= ③由①, ②, ③式解得例6: 某一物体以一定的初速度水平抛出, 在某 内其速度方向与水平方向成 变成 , 则此物体初速度大小是________ , 此物体在 内下落的高度是________ ( 取 )选题目的: 考查平抛物体的运动知识的灵活运用.解析:作出速度矢量图如图所示, 其中 . 分别是 及 时刻的瞬时速度.在这两个时刻, 物体在竖直方向的速度大小分别为 及 , 由矢量图可知:037gt v tg =︒ 0(1)53g t v tg +=︒由以上两式解得017.1/v m s = 97t s =物体在这1s 内下落的高度2211(1)22y g t gt ∆=+- 221919(1)()2727g g =+-17.9m =(1) 例7如图, 跳台滑雪运动员经过一段加速滑行后从O 点水平飞出, 经过3.0s 落到斜坡上的A 点. 已知O 点是斜坡的起点, 斜坡与水平面的夹角θ=37°, 运动员的质量m=50kg. 不计空气阻力. (取sin37°=0.60, cos37°=0.80;g 取10m/s2)求: (1)A 点与O 点的距离L ;(2)运动员离开O 点时的速度大小;从O 点水平飞出后, 人做平抛运动, 根据水平方向上的匀速直线运动, 竖直方向上的自由落体运动可以求得A 点与O 点的距离L ; (2)运动员离开O 点时的速度就是平抛初速度的大小, 根据水平方向上匀速直线运动可以求得;设A 点与O 点的距离为L, 运动员在竖直方向做自由落体运动, 则有: Lsin37°=0.5gt2L=gt22sin37°=75m(2)设运动员离开O点的速度为v0, 运动员在水平方向做匀速直线运动,即: Lcos37°=v0t解得: v0=20m/s答: (1)A点与O点的距离是75m;(2)运动员离开O点时的速度大小是20m/s.1: 在倾角为的斜面上的P点, 以水平速度向斜面下方抛出一个物体, 落在斜面上的Q点, 证明落在Q点物体速度。
第一章质点运动学例1、质点沿x轴正向运动,加速度a=-kv,k为常数。
设从原点出发时速度为v0,求运动方程x=x(t)与速度—位移关系v=v(x)。
例2、已知斜抛运动的抛射角为θ,初速度为v0。
求其轨迹方程。
例3、如图,小船在绳子的匀速v0牵引下运动,已知h。
求θ位置时船的速度与加速度大小。
(两种方法)例4、有一轮以匀角速ω旋转,一质点自轮心沿水平轮轴以匀速v0向轮边移动。
求质点的轨迹方程,以及t时刻质点的速度和加速度大小。
*例5、一只狼沿着半径为R的圆形岛边缘按逆时针方向匀速跑动,当狼经过某点时,一只猎犬以相同的速率从岛中心出发追逐狼。
设追逐过程中犬、狼、岛中心始终在一直线上,求猎犬的轨迹和追上狼时的位置。
*例6、(上海高考题改编)下图为平静海面上拖船A、B拖着驳船C运动的示意图。
已知A、B的速度分别沿缆绳CA、CB方向,且A、B、C不共线。
以下说法正确的是()(多选)(A)C的速度大小可能介于A、B的速度大小之间(B)C的速度一定不小于A、B的速度(C)C的速度方向可能在CA、CB的夹角之外(D)C的速度方向一定在CA、CB的夹角之内**例7、已知点P0(l,0)处有一小船,以长为l的线,拉着小船从原点向上走,小船沿着绳运动,PQ为P点切线,Q点恒在y轴上。
(1)以图中θ为参数,求P点的轨迹方程。
(曳物线)(2)若Q 点以匀速u 向上运动,求θ位置处P 点的加速度。
练习题1、一质点沿x 轴运动,其速度—时间关系为⎪⎭⎫ ⎝⎛+=t t v 6sin 23ππ,式中各量均取国际单位。
已知当t =0时质点在x =-2m 处。
求:(1)2s 时质点的位置;(2)0s 至2s 质点的位移;(3)0s 和2s 两时刻质点的加速度。
2、一质点以初速度v 0=5i 开始离开原点,其运动加速度为a =-i -j 。
求:(1)质点到达x 坐标最大值时的速度;(2)上述时刻质点的位置。
3、如图所示,长为l 的棒的一端A 靠在墙上,另一端B 搁在地面上,A 端以恒定速率u 向下运动。
第一章 运动的描述 匀变速直线运动的研究 第1讲 加速度和速度的关系(a=Δv/t )1.(单选)对于质点的运动,下列说法中正确的是( )【答案】BA .质点运动的加速度为零,则速度为零,速度变化也为零B .质点速度变化率越大,则加速度越大C .质点某时刻的加速度不为零,则该时刻的速度也不为零D .质点运动的加速度越大,它的速度变化越大 2、(单选)关于物体的运动,下列说法不可能的是( ).答案 BA .加速度在减小,速度在增大B .加速度方向始终改变而速度不变C .加速度和速度大小都在变化,加速度最大时速度最小,速度最大时加速度最小D .加速度方向不变而速度方向变化3.(多选)沿一条直线运动的物体,当物体的加速度逐渐减小时,下列说法正确的是( ).答案 BD A .物体运动的速度一定增大 B .物体运动的速度可能减小 C .物体运动的速度的变化量一定减少 D .物体运动的路程一定增大 4.(多选)根据给出的速度和加速度的正负,对下列运动性质的判断正确的是( ).答案 CD A .v 0>0,a <0,物体做加速运动 B .v 0<0,a <0,物体做减速运动 C .v 0<0,a >0,物体做减速运动 D .v 0>0,a >0,物体做加速运动5.(单选)关于速度、速度的变化量、加速度,下列说法正确的是( ).答案 BA .物体运动时,速度的变化量越大,它的加速度一定越大B .速度很大的物体,其加速度可能为零C .某时刻物体的速度为零,其加速度不可能很大D .加速度很大时,运动物体的速度一定很快变大 6.(单选)一个质点做方向不变的直线运动,加速度的方向始终与速度的方向相同,但加速度大小逐渐减小为零,则在此过程中( ).答案 BA .速度逐渐减小,当加速度减小到零时,速度达到最小值B .速度逐渐增大,当加速度减小到零时,速度达到最大值C .位移逐渐增大,当加速度减小到零时,位移将不再增大D .位移逐渐减小,当加速度减小到零时,位移达到最小值7.(单选)甲、乙两个物体在同一直线上沿正方向运动,a 甲=4 m/s 2,a 乙=-4 m/s 2,那么对甲、乙两物体判断正确的是( ).答案 BA .甲的加速度大于乙的加速度B .甲做加速直线运动,乙做减速直线运动C .甲的速度比乙的速度变化快D .甲、乙在相等时间内速度变化可能相等8. (单选)如图所示,小球以v 1=3 m/s 的速度水平向右运动,碰一墙壁经Δt =0.01 s 后以v 2=2 m/s 的速度沿同一直线反向弹回,小球在这0.01 s 内的平均加速度是( )答案:CA .100 m/s 2,方向向右B .100 m/s 2,方向向左C .500 m/s 2,方向向左D .500 m/s 2,方向向右 9.(多选)物体做匀变速直线运动,某时刻速度的大小为4m/s ,1s 后速度大小变为10m/s ,关于该物体在这1s 内的加速度大小下列说法中正确的是( )A .加速度的大小可能是14m/s 2B .加速度的大小可能是8m/s 2C .加速度的大小可能是4m/s 2D .加速度的大小可能是6m/s 2【答案】AD10、为了测定气垫导轨上滑块的加速度,滑块上安装了宽度为3.0 cm 的遮光板,如图所示,滑块在牵引力作用下先后匀加速通过两个光电门,配套的数字毫秒计记录了遮光板通过第一个光电门的时间为Δt 1=0.30 s ,通过第二个光电门的时间为Δt 2=0.10 s ,遮光板从开始遮住第一个光电门到开始遮住第二个光电门的时间为Δt =3.0 s .试估算: (1)滑块的加速度多大?(2)两个光电门之间的距离是多少?解析 v 1=L Δt 1=0.10 m/s v 2=L Δt 2=0.30 m/s a =v 2-v 1Δt ≈0.067 m/s 2. (2) x =v 1+v 22Δt =0.6 m.第二讲:匀变速直线运动规律的应用基本规律(1)三个基本公式①v =v 0+at . ②x =v 0t +12at 2. ③v 2-v 20=2ax(2)两个重要推论 ①平均速度公式:v =v t 2=v 0+v 2= s t .中间位置速度v s 2=√v12+v222.②任意两个连续相等的时间间隔T 内的位移之差为一恒量,即Δx =aT 2.(3).初速度为零的匀变速直线运动的四个推论(1)1T 末、2T 末、3T 末……瞬时速度的比为:v 1∶v 2∶v 3∶…∶v n =1∶2∶3∶…∶n(2)1T 内、2T 内、3T 内……位移的比为:x 1∶x 2∶x 3∶…∶x n =12∶22∶32∶…∶n 2(3)第一个T 内、第二个T 内、第三个T 内……位移的比为:x Ⅰ∶x Ⅱ∶x Ⅲ∶…∶x n =1∶3∶5∶…∶(2n -1).(4)从静止开始通过连续相等的位移所用时间的比为:t 1∶t 2∶t 3∶…∶t n =1∶(2-1)∶(3-2)∶…. 1.(单选)一物体从静止开始做匀加速直线运动,测得它在第n 秒内的位移为s ,则物体的加速度为( )A .B .C .D . 【答案】A2.(单选)做匀加速沿直线运动的质点在第一个3s 内的平均速度比它在第一个5s 内的平均速度小3m/s ,则质点的加速度大小为( )A .1 m/s 2B .2 m/s 2C .3 m/s 2D .4 m/s 2【答案】C 7.(单选)一个物体从某一高度做自由落体运动,已知它第1s 内的位移为它最后1s 内位移的一半,g 取10m/s 2,则它开始下落时距地面的高度为( )A . 5 mB . 11.25 mC . 20 mD . 31.25 m 【答案】B 3.(多选)一小球从静止开始做匀加速直线运动,在第15s 内的位移比第14s 内的位移多0.2m ,则下列说法正确的是()A . 小球加速度为0.2m/s 2B . 小球前15s 内的平均速度为1.5m/sC . 小球第14s 的初速度为2.8m/sD . 第15s 内的平均速度为0.2m/s 【答案】AB4.(单选)如图是哈尔滨西客站D502次列车首次发车,标志着世界首条高寒区高速铁路哈大高铁正式开通运营.哈大高铁运营里程921公里,设计时速350公里.D502次列车到达大连北站时做匀减速直线运动,开始刹车后第5 s 内的位移是57.5 m ,第10 s 内的位移是32.5 m ,则下列说法正确的有( ).答案 D A .在研究列车从哈尔滨到大连所用时间时不能把列车看成质点 B .时速350公里是指平均速度,921公里是指位移C .列车做匀减速运动时的加速度大小为6.25 m/s 2D .列车在开始减速时的速度为80 m/s5.一辆公共汽车进站后开始刹车,做匀减速直线运动.开始刹车后的第1s 内和第2s 内位移大小依次为9m 和7m .求:(1)刹车后汽车的加速度大小. (2)汽车在刹车后6s 内的位移.解答: 解:设汽车的初速度为v 0,加速度为a .则第1s 内位移为:x 1=代入数据,得:9=v 0+ 第2s 内的位移为:x 2=v 0t 2+﹣x 1, 代入数据得:7= 解得:a=﹣2m/s 2,v 0=10m/s汽车刹车到停止所需时间为:t==则汽车刹车后6s 内位移等于5s 内的位移,所以有:==25m 故答案为:2,256.质点做匀减速直线运动,在第1 s 内位移为6 m ,停止运动前的最后1 s 内位移为2 m ,求: (1)在整个减速运动过程中质点的位移大小; (2)整个减速过程共用的时间。
dVb 2V o t b 2V o y求解风吹气球时气球的运动情况气球以速率V 。
从地面上升,由于风的影响,气球的水平速度按中b 是正的常量,y 是从地面算起的高度, 气球的运动学方程;气球水平飘移的距离与高度的 关系; 气球沿轨道运动的切向加速度 和轨道的曲率与高度的关系。
bV o t 2x故气球的运动学方程为:r bVo t 2i V o tj2⑵由(1)和(2)式消去t ,得到气球的轨道方程,即气球的水平飘移距离与高度 的关系b 2 2V o y.(3)气球的运动速率VV : V : b 2V o 2t 2 V o 2 , b 2y 2 V 。
2气球的切向加速度解:(1)取平面直角坐标系 x0y , 一,令t=0时气球位于坐标原点 面),如图 (地Pl已知 V yV o ,V x by.V o t.图—(1) 而dx u而 by dt bV 0t, dx bV 0tdt,对上式积分,xdxoto bV o tdt,得到V x by 增大,其x 轴取水平向右的方向。
试计算:bV o 2■b 2y 2 V o 2亡(b 2y 2 V °2)3/2a?bV o 2小船船头恒指向某固定点的过河情况一条笔直的河流宽度为 d ,河水以恒定速度 u 流动,小船从河岸的 A 点出发,为了到 达对岸的O 点,相对于河水以恒定的速率V (V>u )运动,不论小船驶向何处,它的运动小船的运动轨迹。
若 O 点刚好在A 点的对面(即 AO d ),结果又如何?而由a n .a2a2和a22 2 a xa ydV x 2dV y 2b 2V o 2,可得由a nV 2,求得方向总是指向O 点,如图一,已知 AO r 0, AOP 0,试求:解:选定极坐标系,原点为0点,极轴为0P 。
在任一时刻t ,小船的位置为(r,),tg [2 ]V/utg - 2这就是用极坐标表示的小船的轨迹方程。
若0点刚好在A 点的对面,贝U r 0 d, 0 代入,得求解小环对地的运动情况一细杆绕端点 O 在平面内匀角速旋转,角速度为,杆上一小环(可看作质点)相对杆作匀速运动,速度为 u.设t 0时小环位于杆的端点 O,求:小环的运动轨迹及小环在任意时刻的速度和加速度。