【校级联考】江苏省扬州市高邮市2021届九年级(上)期末数学试题
- 格式:docx
- 大小:974.20 KB
- 文档页数:29
江苏省扬州市2021版九年级上学期期末数学试卷B卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)若x是3和6的比例中项,则x的值为()A .B . -C . ±D . ±2. (2分)(2016·集美模拟) 如图,P为⊙O外一点,PA切⊙O于点A,且OP=5,PA=4,则sin∠APO等于()A .B .C .D .3. (2分)(2018·河南模拟) 某居民小区开展节约用电活动,对该小区100户家庭的节电量情况进行了统计,4月份与3月份相比,节电情况如下表:节电量(千瓦时)20304050户数10403020则4月份这100户节电量的平均数、中位数、众数分别是()A . 35、35、30B . 25、30、20C . 36、35、30D . 36、30、304. (2分)(2017·红桥模拟) 如图,点E(x1 , y1),F(x2 , y2)在抛物线y=ax2+bx+c上,且在该抛物线对称轴的同侧(点E在点F的左侧),过点E、F分别作x轴的垂线,分别交x轴于点B、D,交直线y=2ax+b 于点A、C.设S为四边形ABDC的面积.则下列关系正确的是()A . S=y2+y1B . S=y2+2y1C . S=y2﹣y1D . S=y2﹣2y15. (2分)从﹣3,﹣1,0,2四个数中任选两个,则这两个数的乘积为负数的概率为()A .B .C .D .6. (2分)下列命题中,正确命题的个数为()(1)三点确定一个圆(2)平分弦的直径垂直于这条弦(3)等弧对等弦(4)直径是圆的对称轴A . 1B . 2C . 3D . 47. (2分)如图是二次函数y=ax2+bx+c(a≠0)的图象,下列结论正确的个数是()①顶点是(﹣1,4)②方程ax2+bx+c=0的解是x1=﹣3,x2=1③4a+2b+c>0④不等式ax2+bx+c>0的解为﹣2<x<0.A . 1B . 2C . 3D . 48. (2分)下列关于抛物线的描述不正确的是()A . 对称轴是直线x=B . 函数y的最大值是C . 与y轴交点是(0,1)D . 当x= 时,y=0二、填空题 (共10题;共10分)9. (1分) (2016九上·九台期中) 一元二次方程x2=3x的解是:________.10. (1分)若△ABC∽△A′B′C′,相似比为1:3,则△ABC与△A′B′C′的面积之比为________11. (1分)甲、乙两同学参加跳远训练,在相同条件下各跳了6次,统计两人的成绩得:平均数=,方差S2甲>S2乙,则成绩较稳定的是________ .(填甲或乙)12. (1分)(2018·泸县模拟) 如图是一个可以自由转动的正六边形转盘,其中三个正三角形涂有阴影.转动指针,指针落在有阴影的区域内的概率为________.13. (1分)(2012·朝阳) 如图,△ABC三个顶点都在5×5的网格(每个小正方形的边长均为1个单位长度)的格点上,将△ABC绕点C顺时针旋转到△A′B′C的位置,且A′、B′仍落在格点上,则线段AC扫过的扇形所围成的圆锥体的底面半径是________单位长度.14. (1分)(2017·兴化模拟) 如图所示,以锐角△ABC的边AB为直径作⊙O,交AC,BC于E、D两点,若AC=14,CD=4,7sinC=3tanB,则BD=________.15. (1分) (2017九上·柳江期中) 已知方程5x2+kx﹣10=0的一个根是﹣5,则它的另一个根是________.16. (1分)(2018·重庆模拟) 如图所示,在斜坡的顶部有一铁塔AB,B是CD的中点,CD是水平的,在阳光的照射下,塔影DE留在坡面上.已知铁塔底座宽CD=12米,塔影长DE=18米,小明和小华的身高都是1.6米,同一时刻,小明站在点E处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2米和1米,那么塔高AB为________米。
2020-2021学年扬州市九年级上学期期末数学试卷一、选择题(本大题共8小题,共24.0分)1.若关于x的一元二次方程(k−1)x2+4x+1=0有实数根,则k的取值范围是()A. k<5B. k≥5,且k≠1C. k≤5,且k≠1D. k>52.下面的函数是二次函数的是()A. y=3x+1B. y=x2+2xC. y=x2D. y=2x2−2x−13.下列命题是真命题的是()A. 顶点在圆上的角叫圆周角B. 三点确定一个圆C. 圆的切线垂直于半径D. 三角形的内心到三角形三边的距离相等4.9.小丽在测楼高时,先测出楼房落在地面上的影长为15米,然后在处树立一根高2米的标杆,测得标杆的影长为3米,则楼高为A. 10米B. 12米C. 15米D. 22.5米5.若ad=bc,则下列不成立的是()A. ab =cd(b≠0,d≠0) B. a−cb−d=ab(b≠0,b≠d)C. a+bb =c+dd(b≠0,d≠0) D. a+1b+1=c+1d+1(b≠−1,d≠−1)6.已知抛物线y=x2−x−1与x轴的一个交点为(m,0),则代数式m2−m−2013的值是()A. −2012B. −2013C. 2012D. 20137.抛物线向左平移7个单位长度,再向下平移3个单位长度后,所得抛物线的表达式为A. B.C. D.8.关于函数y=ax2(a≠0)的图象,下列叙述正确的是()A. a的值越大,开口越大B. a的值越小,开口越小C. a的绝对值越大,开口越小D. a的绝对值越小,开口越小二、填空题(本大题共10小题,共30.0分)9.x=0是关于x的方程(k−1)x2+6x+k2−k=0的根,则k的值是______ .10.已知,点O为数轴原点,数轴上的A,B两点分别对应−3,3,以AB为底边作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为______.11.如图,AB是⊙O的直径,点C在⊙O上,连接AC、BC,CD平分∠ACB交⊙O于点D,若⊙O的半径是4,则AD⏜的长度是______.12.在半径为2cm的⊙O中,用刻度尺(单位:cm)测得弦AB的长如图所示,则劣弧AB⏜的长为______cm.13.一个圆锥侧面展开图的扇形的弧长为12π的扇形,则这个圆锥底面圆的半径为______ .14.如图,在扇形AOB中,∠AOB=45°,点C是AB⏜的中点,点D,E分别为半径OA,OB上的动点,若OB=2,则△CDE周长的最小值为______ .15.如图,⊙O是△ABC的外接圆,若∠AOB=100°,则∠ACB的度数是______.16.在1:25000000的图上,量得福州到北京的距离为6cm,则福州到北京的实际距离为______km.17.在同一时刻,身高1.6米的小强在阳光下的影长为0.8米,若一根电线杆的影长为2米,则电线杆为______米.18.在△ABC中,,,,另一个与它相似的△的最短边长为45cm,则△的周长为________.三、解答题(本大题共10小题,共80.0分)19.方方和圆圆玩游戏,在如图所示的四个图形中,方方先随机摸出一张,圆圆在剩下的图形中再随机摸出一张.(1)方方第一次就摸到中心对称图形的概率是多少?(2)如果两人摸到的图形同为中心对称图形或同为轴对称图形,则圆圆胜,否则方方胜,则谁获胜的概率更高?通过列表或画树状图计算说明.20.请完成以下问题:(1)如图1,CD⏜=BD⏜,弦AC与半径OD平行,求证:AB是⊙O的直径;(2)如图2,AB是⊙O的直径,弦AC与半径OD平行.已知圆的半径为r,AC=y,CD=x,求y与x的函数关系式.21. 某中学开展以“我最喜爱的职业”为主题的调查活动,围绕“在演员、教师、医生、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了______名学生;(2)补全条形统计图;(3)若该中学共有3200名学生,请你估计全校最喜爱律师职业的学生有多少名?22. 如图,△ABC在方格中,方格纸中的每个小方格都是边长为1个单位的正方形,三个顶点的坐标分别是A(−2,1),B(−3,−2),C(1,−2),先将△ABC向上平移3个单位长度,再向右平移2个单位长度,得到A1B1C1.(1)在图中画出△A1B1C1;(2)点A1,B1,C1的坐标分别为______ ,______ ,______ ;(3)若y轴有一点P,使△PBC与△ABC面积相等,求出P点的坐标.23. 用配方法解方程:ax2+bx+c=0(a≠0),并由此推出根与系数的关系.24. 如图,某无人机爱好者在一小区外放飞无人机,当无人机飞行到一定高度D点处时,无人机测得操控者A的俯角为75°,测得小区楼房BC顶端点C处的俯角为45°.已知操控者A和小区楼房BC之间的距离为45米,小区楼房BC的高度为15√3米.(1)求此时无人机的高度;(2)在(1)条件下,若无人机保持现有高度沿平行于AB的方向,并以5米/秒的速度继续向前匀速飞行.问:经过多少秒时,无人机刚好离开了操控者的视线?(假定点A,B,C,D都在同一平面内.参考数据:tan75°=2+√3,tan15°=2−√3.计算结果保留根号)25. 已知正方形ABCD的边长为8,一个以点A为顶点的45°角绕点A旋转,角的两边分别与边BC、DC的延长线交于点E、F,连接EF.设CE=a,CF=b.(1)如图①,当a=8时,b的值为______.(2)如图②,当∠EAF被对角线AC平分时,求a、b的值;(3)请写出∠EAF绕点A旋转的过程中a,b满足的关系式,并说明理由.26. 如图1,抛物线y=x2+(m+1)x−(m+2)(其中m为大于−1的常数)交坐标轴于A、B、C三点.(1)当m=1时,①直接写出A、B、C的坐标A______、B______、C______;②点D在抛物线上,且满足∠DAO=∠BCO,试求D点坐标;(2)如图2,点M在抛物线上且位于x轴下方,直线AM、BM分别交y轴于P、Q两点,MN⊥y轴于N.若OP OC =54,试求ONOQ的值.27. 某专营店销售一种“特产”,其成本价是20元/千克,根据以往的销售情况(如图所示),销售量y(千克/天)与售价x(元/千克)的成一次函数关系.(1)试求出y与x的函数关系式;(2)利用(1)的结论,求每千克售价为多少元时,每天可以获得最大的销售利润.28. 阅读下列材料:如图,二次函数y=−x2+2(y≥0)的图象与x、y轴分别交于点A、B、C.设点P(x,y)为该图象上的任意一点,连接OP,怎样求OP的长度取值范围呢?回顾:∵y=x2−4x+5=x2−4x+4−4+5=(x−2)2+1,∴y的最小值为1;举一反三:∵y=x4−4x2+5=x4−4x2+4−4+5=(x2−2)2+1,∴y的最小值为1;请参照上述方法,完成下列问题:(1)求函数y=x4−8x2+20的最小值;(2)求函数y=x4+2x2+3的最小值;(3)探究“阅读材料”中OP长度的取值范围.参考答案及解析1.答案:C解析:本题考查了根的判别式以及一元二次方程的定义,根据根的判别式以及二次项系数非零得出关于ķ的关系式,根据一元二次方程的定义以及根的判别式可获得关于ķ的关系式,解之即可。
江苏省扬州市九年级上学期期末数学试卷 (解析版)一、选择题1.如图,已知点D 在ABC ∆的BC 边上,若CAD B ∠=∠,且:1:2CD AC =,则:CD BD =( )A .1:2B .2:3C .1:4D .1:32.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到红灯的概率是( )A .13B .512C .12D .13.已知二次函数y =ax 2+bx +c 的图像如图所示,则下列结论正确的个数有( ) ①c >0;②b 2-4ac <0;③ a -b +c >0;④当x >-1时,y 随x 的增大而减小.A .4个B .3个C .2个D .1个4.如图,点I 是△ABC 的内心,∠BIC =130°,则∠BAC =( )A .60°B .65°C .70°D .80°5.在Rt ABC ∆中,90C ∠=︒,3AC =,=1BC ,则sin A 的值为( )A 10B 310C .13D 106.如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,点M 是AB 上的一点,点N 是CB上的一点,43=BM CN ,当∠CAN 与△CMB 中的一个角相等时,则BM 的值为( )A .3或4B .83或4C .83或6D .4或67.如图,在由边长为1的小正方形组成的网格中,点A ,B ,C ,D 都在格点上,点E 在AB 的延长线上,以A 为圆心,AE 为半径画弧,交AD 的延长线于点F ,且弧EF 经过点C ,则扇形AEF 的面积为( )A .58πB .58πC .54π D .54π 8.在平面直角坐标系中,将抛物线y =2(x ﹣1)2+1先向左平移2个单位,再向上平移3个单位,则平移后抛物线的表达式是( )A .y =2(x+1)2+4B .y =2(x ﹣1)2+4C .y =2(x+2)2+4D .y =2(x ﹣3)2+4 9.下列函数中属于二次函数的是( )A .y =12xB .y =2x 2-1C .y =23x +D .y =x 2+1x+1 10.如图,抛物线2144y x =-与x 轴交于A 、B 两点,点P 在一次函数6y x =-+的图像上,Q 是线段PA 的中点,连结OQ ,则线段OQ 的最小值是( )A .22B .1C .2D .211.一元二次方程230x x k -+=的一个根为2x =,则k 的值为( )A .1B .2C .3D .412.学校“校园之声”广播站要选拔一名英语主持人,小莹参加选拔的各项成绩如下: 姓名读 听 写 小莹 92 80 90若把读、听、写的成绩按5:3:2的比例计入个人的总分,则小莹的个人总分为( ) A .86B .87C .88D .89 13.如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于D ,且∠D =40°,则∠PCA 等于( )A .50°B .60°C .65°D .75° 14.已知函数2y x bx c =-++的部分图像如图所示,若0y >,则的取值范围是( )A .41x -<<B .21x -<<C .31x -<<D .31x x <->或 15.已知抛物线与二次函数23y x =-的图像相同,开口方向相同,且顶点坐标为(1,3)-,它对应的函数表达式为( )A .23(1)3y x =--+B .23(1)3y x =-+C .23(1)3y x =+-D .23(1)3y x =-++ 二、填空题16.若m 是方程2x 2﹣3x =1的一个根,则6m 2﹣9m 的值为_____.17.若△ABC ∽△A′B′C′,∠A =50°,∠C =110°,则∠B′的度数为_____.18.如图,△ABC 中,D 、E 分别在AB 、AC 上,DE ∥BC ,AD :AB=1:3,则△ADE 与△ABC 的面积之比为______.19.已知小明身高1.8m ,在某一时刻测得他站立在阳光下的影长为0.6m .若当他把手臂竖直举起时,测得影长为0.78m ,则小明举起的手臂超出头顶______m .20.O 的半径为4,圆心O 到直线l 的距离为2,则直线l 与O 的位置关系是______.21.若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是____________.22.若圆锥的底面半径为3cm ,高为4cm ,则它的侧面展开图的面积为_____cm 2.23.如图,AB 是⊙O 的直径,点C 是⊙O 上的一点,若BC=6,AB=10,OD ⊥BC 于点D ,则OD 的长为______.24.在Rt ABC ∆中,90C ∠=︒,12AC =,9BC =,圆P 在ABC ∆内自由移动.若P 的半径为1,则圆心P 在ABC ∆内所能到达的区域的面积为______.25.若点C 是线段AB 的黄金分割点且AC >BC ,则AC =_____AB (用含无理数式子表示).26.长度等于62的弦所对的圆心角是90°,则该圆半径为_____.27.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径2r cm =,扇形的圆心角120θ=,则该圆锥的母线长l 为___cm .28.在平面直角坐标系中,抛物线2y x 的图象如图所示.已知A 点坐标为()1,1,过点A 作1AA x ∕∕轴交抛物线于点1A ,过点1A 作12A A OA ∕∕交抛物线于点2A ,过点2A 作23A A x ∕∕轴交抛物线于点3A ,过点3A 作34A A OA ∕∕交抛物线于点4A ……,依次进行下去,则点2019A 的坐标为_____.29.若圆弧所在圆的半径为12,所对的圆心角为60°,则这条弧的长为_____.30.已知二次函数y =ax 2+bx +c (a >0)图象的对称轴为直线x =1,且经过点(﹣1,y 1),(2,y 2),则y 1_____y 2.(填“>”“<”或“=”)三、解答题31.如图,BD 是⊙O 的直径.弦AC 垂直平分OD ,垂足为E .(1)求∠DAC 的度数;(2)若AC =6,求BE 的长.32.(问题发现)如图1,半圆O 的直径AB =10,点P 是半圆O 上的一个动点,则△PAB 的面积最大值是 ;(问题探究)如图2所示,AB 、AC 、BC 是某新区的三条规划路,其中AB =6km ,AC =3km ,∠BAC =60°,BC 所对的圆心角为60°.新区管委会想在BC 路边建物资总站点P ,在AB 、AC 路边分别建物资分站点E 、F ,即分别在BC 、线段AB 和AC 上选取点P 、E 、F .由于总站工作人员每天要将物资在各物资站点间按P →E →F →P 的路径进行运输,因此,要在各物资站点之间规划道路PE 、EF 和FP .显然,为了快捷环保和节约成本,就要使线段PE 、EF 、FP 之和最短(各物资站点与所在道路之间的距离、路宽均忽略不计).可求得△PEF 周长的最小值为 km ;(拓展应用)如图3是某街心花园的一角,在扇形OAB 中,∠AOB =90°,OA =12米,在围墙OA 和OB 上分别有两个入口C 和D ,且AC =4米,D 是OB 的中点,出口E 在AB上.现准备沿CE 、DE 从入口到出口铺设两条景观小路,在四边形CODE 内种花,在剩余区域种草.①出口E 设在距直线OB 多远处可以使四边形CODE 的面积最大?最大面积是多少?(小路宽度不计)②已知铺设小路CE 所用的普通石材每米的造价是200元,铺设小路DE 所用的景观石材每米的造价是400元.请问:在AB 上是否存在点E ,使铺设小路CE 和DE 的总造价最低?若存在,求出最低总造价和出口E 距直线OB 的距离;若不存在,请说明理由.33.某公司研发了一款成本为50元的新型玩具,投放市场进行试销售.其销售单价不低于成本,按照物价部门规定,销售利润率不高于90%,市场调研发现,在一段时间内,每天销售数量y (个)与销售单价x (元)符合一次函数关系,如图所示:(1)根据图象,直接写出y 与x 的函数关系式;(2)该公司要想每天获得3000元的销售利润,销售单价应定为多少元(3)销售单价为多少元时,每天获得的利润最大,最大利润是多少元?34.如图,在平面直角坐标系中,ABC ∆的顶点坐标分别为A (6,4),B (4,0),C (2,0).(1)在y 轴左侧,以O 为位似中心,画出111A B C ∆,使它与ABC ∆的相似比为1:2; (2)根据(1)的作图,111tan A B C ∠= .35.如图,已知一次函数3y x =-+分别交x 、y 轴于A 、B 两点,抛物线2y x bx c =-++经过A 、B 两点,与x 轴的另一交点为C .(1)求b 、c 的值及点C 的坐标;(2)动点P 从点O 出发,以每秒1个单位长度的速度向点A 运动,过P 作x 轴的垂线交抛物线于点D ,交线段AB 于点E .设运动时间为(0)t t >秒.①当t 为何值时,线段DE 长度最大,最大值是多少?(如图1)②过点D 作DF AB ⊥,垂足为F ,连结BD ,若BOC 与BDF 相似,求t 的值(如图2)四、压轴题36.如图,在平面直角坐标系中,直线1l:162y x=-+分别与x轴、y轴交于点B、C,且与直线2l:12y x=交于点A.(1)分别求出点A、B、C的坐标;(2)若D是线段OA上的点,且COD△的面积为12,求直线CD的函数表达式;(3)在(2)的条件下,设P是射线CD上的点,在平面内里否存在点Q,使以O、C、P、Q为顶点的四边形是菱形?若存在,直接写出点Q的坐标;若不存在,请说明理由.37.如图,在矩形ABCD中,AB=20cm,BC=4cm,点p从A开始折线A——B——C——D以4cm/秒的速度移动,点Q从C开始沿CD边以1cm/秒的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达D时,另一点也随之停止运动,设运动的时间t(秒)(1)t 为何值时,四边形APQD 为矩形.(2)如图(2),如果⊙P 和⊙Q 的半径都是2cm ,那么t 为何值时,⊙P 和⊙Q 外切?38.如图①,O 经过等边ABC 的顶点A ,C (圆心O 在ABC 内),分别与AB ,CB 的延长线交于点D ,E ,连结DE ,BF EC ⊥交AE 于点F .(1)求证:BD BE =.(2)当:3:2AF EF =,6AC =,求AE 的长.(3)当:3:2AF EF =,AC a =时,如图②,连结OF ,OB ,求OFB △的面积(用含a 的代数式表示).39.如图,在Rt △AOB 中,∠AOB =90°,tan B =34,OB =8. (1)求OA 、AB 的长; (2)点Q 从点O 出发,沿着OA 方向以1个单位长度/秒的速度匀速运动,同时动点P 从点A 出发,沿着AB 方向也以1个单位长度秒的速度匀速运动,设运动时间为t 秒(0<t ≤5)以P 为圆心,PA 长为半径的⊙P 与AB 、OA 的另一个交点分别为C 、D ,连结CD ,QC .①当t 为何值时,点Q 与点D 重合?②若⊙P 与线段QC 只有一个公共点,求t 的取值范围.40.已知,如图Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,点P为AC的中点,Q从点A运动到B,点Q运动到点B停止,连接PQ,取PQ的中点O,连接OC,OB.(1)若△ABC∽△APQ,求BQ的长;(2)在整个运动过程中,点O的运动路径长_____;(3)以O为圆心,OQ长为半径作⊙O,当⊙O与AB相切时,求△COB的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据两角对应相等证明△CAD∽△CBA,由对应边成比例得出线段之间的倍数关系即可求解.【详解】解:∵∠CAD=∠B,∠C=∠C,∴△CAD∽△CBA,∴12 CD CACA CB,∴CA=2CD,CB=2CA,∴CB=4CD,∴BD=3CD,∴13 CDBD.故选:D.【点睛】本题考查相似三角形的判定与性质,得出线段之间的关系是解答此题的关键.2.C解析:C【解析】【分析】根据随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,据此用红灯亮的时间除以以上三种灯亮的总时间,即可得出答案.【详解】解:∵每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,∴红灯的概率是:301 302552=++.故答案为:C.【点睛】本题考查的知识点是简单事件的概率问题,熟记概率公式是解题的关键.3.C解析:C【解析】【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据抛物线与x轴交点及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断.【详解】解:由图象可知,a<0,c>0,故①正确;抛物线与x轴有两个交点,则b²-4ac>0,故②错误;∵当x=-1时,y>0,即a-b+c>0,故③正确;由图象可知,图象开口向下,对称轴x>-1,在对称轴右侧, y随x的增大而减小,而在对称轴左侧和-1之间,是y随x的增大而减小,故④错误.故选:C.【点睛】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a 共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.4.D解析:D【解析】【分析】根据三角形的内接圆得到∠ABC=2∠IBC ,∠ACB=2∠ICB ,根据三角形的内角和定理求出∠IBC+∠ICB ,求出∠ACB+∠ABC 的度数即可;【详解】解:∵点I 是△ABC 的内心,∴∠ABC =2∠IBC ,∠ACB =2∠ICB ,∵∠BIC =130°,∴∠IBC +∠ICB =180°﹣∠CIB =50°,∴∠ABC +∠ACB =2×50°=100°,∴∠BAC =180°﹣(∠ACB +∠ABC )=80°.故选D .【点睛】本题主要考查了三角形的内心,掌握三角形的内心的性质是解题的关键.5.A解析:A【解析】【分析】先根据勾股定理求出斜边的长,再根据正弦的定义解答即可.【详解】解:在Rt ABC ∆中,∵90C ∠=︒,3AC =,=1BC ,∴AB =∴sinBC A AB ===. 故选:A.【点睛】本题考查了勾股定理和正弦的定义,属于基本题型,熟练掌握基本知识是解题关键. 6.D解析:D【解析】【分析】分两种情形:当CAN B ∠=∠时,CAN CBA ∆∆∽,设3CN k =,4BM k =,可得CN AC AC CB=,解出k 值即可;当CAN MCB ∠=∠时,过点M 作MH CB ⊥,可得CAN BAC ∆∆∽,得出125MH k =,165BH k =,则1685CH k =-,证明ACN CHM ∆∆∽,得出方程求解即可.【详解】解:在Rt△ABC 中,∠ACB =90°,AC =6,BC =8,∴CMB CAB CAN ∠>∠>∠,AB=10,CAN CAB ∴∠≠∠,设3CN k =,4BM k =, ①当CAN B ∠=∠时,可得CAN CBA ∆∆∽, ∴CN AC AC CB=, ∴3668k =, 32k ∴=, 6BM ∴=. ②当CAN MCB ∠=∠时,如图2中,过点M 作MH CB ⊥,可得BMH BAC ∆∆∽,∴BM MH BH BA AC BC==, ∴41068k MH BH ==, 125MH k ∴=,165BH k =, 1685CH k ∴=-, MCB CAN ∠=∠,90CHM ACN ∠=∠=︒,ACN CHM ∴∆∆∽,∴CN MH AC CH=, ∴123516685k k k =-, 1k ∴=,4BM ∴=.综上所述,4BM =或6.故选:D .【点睛】本题考相似三角形的判定和性质,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造相似三角形解决问题.7.B 解析:B【解析】【分析】连接AC ,根据网格的特点求出r=AC 的长度,再得到扇形的圆心角度数,根据扇形面积公式即可求解.【详解】连接AC ,则r=AC=22251=+扇形的圆心角度数为∠BAD=45°,∴扇形AEF 的面积=()2455360π⨯⨯=58π 故选B.【点睛】此题主要考查扇形面积求解,解题的关键是熟知勾股定理及扇形面积公式.8.A解析:A【解析】【分析】只需确定原抛物线解析式的顶点坐标平移后的对应点坐标即可.【详解】解:原抛物线y =2(x ﹣1)2+1的顶点为(1,1),先向左平移2个单位,再向上平移3个单位,新顶点为(﹣1,4).即所得抛物线的顶点坐标是(﹣1,4).所以,平移后抛物线的表达式是y =2(x+1)2+4,故选:A .【点睛】本题主要考查了二次函数图像的平移,抛物线的解析式为顶点式时,求出顶点平移后的对应点坐标,可得平移后抛物线的解析式,熟练掌握二次函数图像的平移规律是解题的关键. 9.B解析:B【解析】【分析】根据反比例函数的定义,二次函数的定义,一次函数的定义对各选项分析判断后利用排除法求解.【详解】解:A. y =12x 是正比例函数,不符合题意; B. y =2x 2-1是二次函数,符合题意;C. yD. y =x 2+1x+1不是二次函数,不符合题意. 故选:B .【点睛】 本题考查了二次函数的定义,解题关键是掌握一次函数、二次函数、反比例函数的定义.10.A解析:A【解析】【分析】先求得A 、B 两点的坐标,设()6P m m -,,根据之间的距离公式列出2PB 关于m 的函数关系式,求得其最小值,即可求得答案.【详解】令0y =,则21404x -=, 解得:4x =±,∴A 、B 两点的坐标分别为:()()4040A B -,、,, 设点P 的坐标为()6m m -,, ∴()()2222246220522(5)2PB m m m m m =-+-=-+=-+,∵20>,∴当5m =时,2PB 有最小值为:2,即PB ,∵A 、B 为抛物线的对称点,对称轴为y 轴,∴O 为线段AB 中点,且Q 为AP 中点,∴122OQ PB ==. 故选:A .【点睛】本题考查了二次函数与一次函数的综合问题,涉及到的知识有:两点之间的距离公式,三角形中位线的性质,二次函数的最值问题,利用两点之间的距离公式求得2PB 的最小值是解题的关键.11.B解析:B【解析】【分析】将x=2代入方程即可求得k 的值,从而得到正确选项.【详解】解:∵一元二次方程x 2-3x+k=0的一个根为x=2,∴22-3×2+k=0,解得,k=2,故选:B .【点睛】本题考查一元二次方程的解,解题的关键是明确一元二次方程的解一定使得原方程成立.12.C解析:C【解析】【分析】利用加权平均数按照比例进一步计算出个人总分即可.【详解】根据题意得:92580390288532⨯+⨯+⨯=++(分), ∴小莹的个人总分为88分;故选:C .【点睛】本题主要考查了加权平均数的求取,熟练掌握相关公式是解题关键.13.C解析:C【解析】【分析】根据切线的性质,由PD 切⊙O 于点C 得到∠OCD =90°,再利互余计算出∠DOC =50°,由∠A =∠ACO ,∠COD =∠A +∠ACO ,所以1252A COD ∠=∠=︒,然后根据三角形外角性质计算∠PCA 的度数.【详解】解:∵PD 切⊙O 于点C ,∴OC ⊥CD ,∴∠OCD =90°,∵∠D =40°,∴∠DOC =90°﹣40°=50°,∵OA =OC ,∴∠A =∠ACO ,∵∠COD =∠A +∠ACO ,∴1252A COD ∠=∠=︒, ∴∠PCA =∠A +∠D =25°+40°=65°.故选C .【点睛】本题考查了切线的性质、等腰三角形的性质、直角三角形的性质、三角形外角性质等知识;熟练掌握切线的性质与三角形外角性质是解题的关键.14.C解析:C【解析】【分析】根据抛物线的对称性确定抛物线与x 轴的另一个交点为(−3,0),然后观察函数图象,找出抛物线在x 轴上方的部分所对应的自变量的范围即可.【详解】∵y =ax 2+bx +c 的对称轴为直线x =−1,与x 轴的一个交点为(1,0),∴抛物线与x 轴的另一个交点为(−3,0),∴当−3<x <1时,y >0.故选:C .【点睛】此题主要考查二次函数的图像与性质,解题的关键是根据函数对称轴找到抛物线与x 轴的交点.15.D解析:D【解析】【分析】先根据抛物线与二次函数23y x =-的图像相同,开口方向相同,确定出二次项系数a 的值,然后再通过顶点坐标即可得出抛物线的表达式.【详解】∵抛物线与二次函数23y x =-的图像相同,开口方向相同, 3a ∴=-∵顶点坐标为(1,3)-∴抛物线的表达式为23(1)3y x =-++故选:D .【点睛】本题主要考查抛物线的顶点式,掌握二次函数表达式中的顶点式是解题的关键. 二、填空题16.3【分析】把m代入方程2x2﹣3x=1,得到2m2-3m=1,再把6m2-9m变形为3(2m2-3m),然后利用整体代入的方法计算.【详解】解:∵m是方程2x2﹣3x=1的一个根,解析:3【解析】【分析】把m代入方程2x2﹣3x=1,得到2m2-3m=1,再把6m2-9m变形为3(2m2-3m),然后利用整体代入的方法计算.【详解】解:∵m是方程2x2﹣3x=1的一个根,∴2m2﹣3m=1,∴6m2﹣9m=3(2m2﹣3m)=3×1=3.故答案为3.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.17.20°【解析】【分析】先根据三角形内角和计算出∠B的度数,然后根据相似三角形的性质得到∠B′的度数.【详解】解:∵∠A=50°,∠C=110°,∴∠B=180°﹣50°﹣110°=20°解析:20°【解析】【分析】先根据三角形内角和计算出∠B的度数,然后根据相似三角形的性质得到∠B′的度数.【详解】解:∵∠A=50°,∠C=110°,∴∠B=180°﹣50°﹣110°=20°,∵△ABC∽△A′B′C′,∴∠B′=∠B=20°.故答案为20°.本题考查了相似三角形的性质,如果两个三角形相似,那么它们的对应角相等,对应边成比例,它们对应面积的比等于相似比的平方.18.1:9.【解析】试题分析:由DE ∥BC ,可得△ADE ∽△ABC ,根据相似三角形的面积之比等于相似比的平方可得S △ADE :S △ABC=(AD :AB )2=1:9.考点:相似三角形的性质.解析:1:9.【解析】试题分析:由DE ∥BC ,可得△ADE ∽△ABC ,根据相似三角形的面积之比等于相似比的平方可得S △ADE :S △ABC =(AD :AB )2=1:9.考点:相似三角形的性质.19.54【解析】【分析】在同一时刻,物体的高度和影长成比例,根据此规律列方程求解.【详解】解:设小明举起的手臂超出头顶xm,根据题意得,,解得x=0.54即举起的手臂超出头顶0.54m解析:54【解析】【分析】在同一时刻,物体的高度和影长成比例,根据此规律列方程求解.【详解】解:设小明举起的手臂超出头顶xm,根据题意得,1.8 1.80.60.78x , 解得x=0.54即举起的手臂超出头顶0.54m.故答案为:0.54.【点睛】本题考查同一时刻物体的高度和影长成比例的投影规律,根据规律列比例式求解是解答此题的关键.,20.相交【分析】由圆的半径为4,圆心O到直线l的距离为2,利用直线和圆的位置关系,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【详解】解:∵⊙O的半径为4,圆心O到直线L的解析:相交【解析】【分析】由圆的半径为4,圆心O到直线l的距离为2,利用直线和圆的位置关系,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【详解】解:∵⊙O的半径为4,圆心O到直线L的距离为2,∵4>2,即:d<r,∴直线L与⊙O的位置关系是相交.故答案为:相交.【点睛】本题考查知道知识点是圆与直线的位置关系,若d<r,则直线与圆相交;若d>r,则直线与圆相离;若d=r,则直线与圆相切.21.15π.【解析】【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解析:15π.【解析】【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【详解】解:根据题意得圆锥的底面圆的半径为3,母线长为5,所以这个圆锥的侧面积=12×5×2π×3=15π.【点睛】本题考查圆锥侧面积的计算,掌握公式,准确计算是本题的解题关键. 22.15【解析】【分析】先根据勾股定理计算出母线长,然后利用圆锥的侧面积公式进行计算.【详解】∵圆锥的底面半径为3cm ,高为4cm∴圆锥的母线长∴圆锥的侧面展开图的面积故填:.【点睛】解析:15π【解析】【分析】先根据勾股定理计算出母线长,然后利用圆锥的侧面积公式进行计算.【详解】∵圆锥的底面半径为3cm ,高为4cm∴圆锥的母线长5()cm ==∴圆锥的侧面展开图的面积()23515cmππ=⨯⨯=故填:15π.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长. 23.4【解析】【分析】根据垂径定理求得BD ,然后根据勾股定理求得即可.【详解】解:∵OD ⊥BC ,∴BD=CD=BC=3,∵OB=AB=5,∴在Rt △OBD 中,OD==4.故答案为4.解析:4【解析】【分析】根据垂径定理求得BD ,然后根据勾股定理求得即可.【详解】解:∵OD ⊥BC ,∴BD=CD=12BC=3, ∵OB=12AB=5,∴在Rt △OBD 中,=4.故答案为4.【点睛】本题考查垂径定理及其勾股定理,熟记定理并灵活应用是本题的解题关键.24.24【解析】【分析】根据题意做图,圆心在内所能到达的区域为△EFG,先求出AB 的长,延长BE 交AC 于H 点,作HM⊥AB 于M ,根据圆的性质可知BH 平分∠ABC,故CH=HM,设CH=x=HM ,根解析:24【解析】【分析】根据题意做图,圆心P 在ABC ∆内所能到达的区域为△EFG ,先求出AB 的长,延长BE 交AC 于H 点,作HM ⊥AB 于M ,根据圆的性质可知BH 平分∠ABC ,故CH=HM,设CH=x=HM ,根据Rt △AMH 中利用勾股定理求出x 的值,作EK ⊥BC 于K 点,利用△BEK ∽△BHC ,求出BK 的长,即可求出EF 的长,再根据△EFG ∽△BCA 求出FG ,即可求出△EFG 的面积.【详解】如图,由题意点O 所能到达的区域是△EFG ,连接BE ,延长BE 交AC 于H 点,作HM ⊥AB 于M ,EK ⊥BC 于K ,作FJ ⊥BC 于J .∵90C ∠=︒,12AC =,9BC =,∴15=根据圆的性质可知BH 平分∠ABC∴故CH=HM,设CH=x=HM ,则AH=12-x ,BM=BC=9,∴AM=15-9=6在Rt △AMH 中,AH 2=HM 2+AM 2即AH 2=HM 2+AM 2(12-x )2=x 2+62解得x=4.5∵EK ∥AC ,∴△BEK ∽△BHC ,∴EK BK HC BC =,即14.59BK = ∴BK=2,∴EF=KJ=BC-BK-JC=9-2-1=6,∵EG ∥AB ,EF ∥AC ,FG ∥BC , ∴∠EGF =∠ABC ,∠FEG =∠CAB ,∴△EFG ∽△ACB ,故EF FG BC AC =,即6912FG = 解得FG=8 ∴圆心P 在ABC ∆内所能到达的区域的面积为12FG×EF=12×8×6=24, 故答案为24.【点睛】此题主要考查相似三角形的判定与性质综合,解题的关键是熟知勾股定理、相似三角形的判定与性质.25.【解析】【分析】直接利用黄金分割的定义求解.【详解】解:∵点C 是线段AB 的黄金分割点且AC >BC ,∴AC =AB .故答案为:.【点睛】本题考查了黄金分割的定义,点C 是线段AB 的黄金分51- 【解析】【分析】直接利用黄金分割的定义求解.【详解】解:∵点C 是线段AB 的黄金分割点且AC >BC ,∴AC =512-AB . 故答案为:51-. 【点睛】 本题考查了黄金分割的定义,点C 是线段AB 的黄金分割点且AC >BC ,则512AC BC -=,正确理解黄金分割的定义是解题的关键. 26.6【解析】【分析】结合等腰三角形的性质,根据勾股定理求解即可.【详解】解:如图AB =6,∠AOB =90°,且OA =OB ,在中,根据勾股定理得,即∴,故答案为:6.【点睛】解析:6【解析】【分析】结合等腰三角形的性质,根据勾股定理求解即可.【详解】解:如图AB =62,∠AOB =90°,且OA =OB ,在Rt OAB 中,根据勾股定理得222OA OB AB +=,即2222(62)72OA AB === ∴236OA =,0OA >6OA ∴=故答案为:6.本题考查了等腰三角形的性质及勾股定理,在等腰直角三角形中灵活利用勾股定理求线段长度是解题的关键.27.【解析】【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【详解】圆锥的底面周长cm ,设圆锥的母线长为,则: ,解得,故答案为.【点睛】本解析:【解析】【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【详解】圆锥的底面周长224ππ=⨯=cm ,设圆锥的母线长为R ,则:1204180R ππ⨯=, 解得6R =,故答案为6.【点睛】本题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于底面周长;弧长公式为: 180n r π. 28.【解析】【分析】根据二次函数性质可得出点的坐标,求得直线为,联立方程求得的坐标,即可求得的坐标,同理求得的坐标,即可求得的坐标,根据坐标的变化找出变化规律,即可找出点的坐标.【详解】解:∵解析:2(1010,1010)-【分析】根据二次函数性质可得出点1A 的坐标,求得直线12A A 为2y x =+,联立方程求得2A 的坐标,即可求得3A 的坐标,同理求得4A 的坐标,即可求得5A 的坐标,根据坐标的变化找出变化规律,即可找出点2019A 的坐标.【详解】解:∵A 点坐标为()1,1,∴直线OA 为y x =,()11,1A -,∵12A A OA ∕∕,∴直线12A A 为2y x =+,解22y x y x =+⎧⎨=⎩得11x y =-⎧⎨=⎩或24x y =⎧⎨=⎩, ∴()22,4A ,∴()32,4A -,∵34A A OA ∕∕,∴直线34A A 为6y x =+,解26y x y x =+⎧⎨=⎩得24x y =-⎧⎨=⎩或39x y =⎧⎨=⎩, ∴()43,9A ,∴()53,9A -…,∴()220191010,1010A -,故答案为()21010,1010-. 【点睛】本题考查了二次函数图象上点的坐标特征、一次函数的图象以及交点的坐标,根据坐标的变化找出变化规律是解题的关键.29.4π【解析】【分析】直接利用弧长公式计算即可求解.【详解】l ==4π,故答案为:4π.本题考查弧长计算公式,解题的关键是掌握:弧长l =(n 是弧所对应的圆心角度数)解析:4π【解析】【分析】直接利用弧长公式计算即可求解.【详解】l =6012180π⨯=4π, 故答案为:4π.【点睛】 本题考查弧长计算公式,解题的关键是掌握:弧长l =180n r π(n 是弧所对应的圆心角度数) 30.>【解析】【分析】根据二次函数y =ax2+bx+c(a >0)图象的对称轴为直线x =1,且经过点(﹣1,y1),(2,y2)和二次函数的性质可以判断y1 和y2的大小关系.【详解】解:∵二次解析:>【解析】【分析】根据二次函数y =ax 2+bx +c (a >0)图象的对称轴为直线x =1,且经过点(﹣1,y 1),(2,y 2)和二次函数的性质可以判断y 1 和y 2的大小关系.【详解】解:∵二次函数y =ax 2+bx +c (a >0)图象的对称轴为直线x =1,∴当x >1时,y 随x 的增大而增大,当x <1时,y 随x 的增大而减小,∵该函数经过点(﹣1,y 1),(2,y 2),|﹣1﹣1|=2,|2﹣1|=1,∴y 1>y 2,故答案为:>.【点睛】本题考查了二次函数的增减性问题,掌握二次函数的性质是解题的关键.三、解答题31.(1)30°;(2)【解析】(1)由题意证明△CDE ≌△COE ,从而得到△OCD 是等边三角形,然后利用同弧所对的圆周角等于圆心角的一半求解;(2)由垂径定理求得AE=12AC=3,然后利用30°角的正切值求得DE=3,然后根据题意求得OD=2DE=23,直径BD=2OD=43,从而使问题得解.【详解】解:连接OA,OC∵弦AC 垂直平分OD∴DE=OE ,∠DEC=∠OEC=90° 又∵CE=CE∴△CDE ≌△COE ∴CD=OC又∵OC=OD ∴CD=OC=OD∴△OCD 是等边三角形∴∠DOC=60°∴∠DAC =30°(2)∵弦AC 垂直平分OD∴AE=12AC=3 又∵由(1)可知,在Rt △DAE 中,∠DAC =30°∴tan 30DE AE =,即33DE =∴3∵弦AC 垂直平分OD∴3∴直径3∴3-33【点睛】本题考查垂径定理,全等三角形的判定和性质及锐角三角函数,掌握相关定理正确进行推理判断是本题的解题关键.32.[问题发现] 25;[问题探究] 3219-;[拓展应用]①出口E设在距直线OB的7.2米处可以使四边形CODE的面积最大为60平方米,②出口E距直线OB的距离为3666-米.【解析】【分析】[问题发现]△PAB的底边AB一定,面积最大也就是P点到AB的距离最大,故当OP⊥AB时,12OP AB=时最大,值是5,再计算此时△PAB面积即可;[问题探究]先由对称将折线长转化线段长,即分别以AB、AC所在直线为对称轴,作出P关于AB的对称点为M,P关于AC的对称点为N,连接MN,易求得:3MN AP=,而3PE EF PF ME EF FN MN AP++=++≥=,即当AP最小时,PE EF PF++可取得最小值.[拓展应用]①四边形CODE面积=S△CDO+S△CDE′,求出S△CDE′面积最大时即可;②先利用相似三角形将费用问题转化为CE+2DE=CE+QE,求CE+QE的最小值问题.然后利用相似三角形性质和勾股定理求解即可。
扬州市九年级上学期期末数学试卷 (解析版) 一、选择题1.一组数据0、-1、3、2、1的极差是( )A .4B .3C .2D .12.如图,在平面直角坐标系中,M 、N 、C 三点的坐标分别为(14,1),(3,1),(3,0),点A 为线段MN 上的一个动点,连接AC ,过点A 作AB ⊥AC 交y 轴于点B ,当点A 从M 运动到N 时,点B 随之运动,设点B 的坐标为(0,b ),则b 的取值范围是( )A .14-≤b ≤1B .54-≤b ≤1C .94-≤b ≤12D .94-≤b ≤1 3.某班7名女生的体重(单位:kg )分别是35、37、38、40、42、42、74,这组数据的众数是( )A .74B .44C .42D .40 4.若一元二次方程x 2﹣2x+m=0有两个不相同的实数根,则实数m 的取值范围是( )A .m≥1B .m≤1C .m >1D .m <1 5.下列图形,是轴对称图形,但不是中心对称图形的是( )A .B .C .D .6.如图,点A 、B 、C 均在⊙O 上,若∠AOC =80°,则∠ABC 的大小是( )A .30°B .35°C .40°D .50° 7.如图,AB 是O 的直径,AC 切O 于点A ,若70C ∠=︒,则AOD ∠的度数为( )A .40°B .45°C .60°D .70°8.已知二次函数y =x 2+mx +n 的图像经过点(―1,―3),则代数式mn +1有( ) A .最小值―3 B .最小值3 C .最大值―3 D .最大值39.如图1,在菱形ABCD 中,∠A =120°,点E 是BC 边的中点,点P 是对角线BD 上一动点,设PD 的长度为x ,PE 与PC 的长度和为y ,图2是y 关于x 的函数图象,其中H 是图象上的最低点,则a +b 的值为( )A .73B .234+C .1433D .223310.13名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前6名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这13名同学成绩的( )A .方差B .众数C .平均数D .中位数11.某同学在解关于x 的方程ax 2+bx +c =0时,只抄对了a =1,b =﹣8,解出其中一个根是x =﹣1.他核对时发现所抄的c 是原方程的c 的相反数,则原方程的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .有一个根是x =1D .不存在实数根 12.如图,在O 中,AB 是O 的直径,点D 是O 上一点,点C 是弧AD 的中点,弦CE AB ⊥于点F ,过点D 的切线交EC 的延长线于点G ,连接AD ,分别交CF BC 、于点P Q 、,连接AC .给出下列结论:①BAD ABC ∠=∠;②GP GD =;③点P 是ACQ 的外心;④AP AD ⋅CQ CB =⋅.其中正确的是( )A.①②③B.②③④C.①③④D.①②③④13.2的相反数是()A.12-B.12C.2D.2-14.如图1,一个扇形纸片的圆心角为90°,半径为4.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A.4233π-B.8433π-C.8233π-D.843π-15.下列方程中,有两个不相等的实数根的是()A.x2﹣x﹣1=0 B.x2+x+1=0 C.x2+1=0 D.x2+2x+1=0二、填空题16.如图,点A、B、C是⊙O上的点,且∠ACB=40°,阴影部分的面积为2π,则此扇形的半径为______.17.如图,在半径为3的⊙O中,直径AB与弦CD相交于点E,连接AC,BD.若AC=2,则cosD=________.18.将二次函数y=2x2的图像沿x轴向左平移2个单位,再向下平移3个单位后,所得函数图像的函数关系式为______________.19.如图是一个可以自由转动的转盘,转盘分成6个大小相同的扇形,颜色分为红、绿、黄三种颜色.指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形).转动一次转盘后,指针指向_____颜色的可能性大.20.设x 1、x 2是关于x 的方程x 2+3x -5=0的两个根,则x 1+x 2-x 1•x 2=________.21.在一块边长为30 cm 的正方形飞镖游戏板上,有一个半径为10 cm 的圆形阴影区域,则飞镖落在阴影区域内的概率为__________.22.设1x ,2x 是关于x 的一元二次方程240x x +-=的两根,则1212x x x x ++=______.23.如图,矩形ABCD 中,2AB =,点E 在边CD 上,且BC CE =,AE 的延长线与BC 的延长线相交于点F ,若CF AB =,则tan DAE ∠=______.24.已知关于x 的方程230x mx m ++=的一个根为-2,则方程另一个根为__________.25.如图,正方形ABCD 的顶点A 、B 在圆O 上,若23AB =cm ,圆O 的半径为2cm ,则阴影部分的面积是__________2cm .(结果保留根号和π)26.如图,已知△ABC 是面积为3的等边三角形,△ABC ∽△ADE ,AB =2AD ,∠BAD =45°,AC 与DE 相交于点F ,则△AEF 的面积等于_____(结果保留根号).27.数据1、2、3、2、4的众数是______.28.如图,港口A 在观测站 O 的正东方向,OA =4km ,某船从港口A 出发,沿北偏东15°方向航行一段距离后到达 B 处,此时从观测站O 处测得该船位于北偏东60°的方向,则该船与观测站之间的距离(即OB 的长)为 _____km.29.将抛物线y =-5x 2先向左平移2个单位长度,再向下平移3个单位长度后,得到新的抛物线的表达式是________.30.如图,在四边形ABCD 中,∠BAD =∠BCD =90°,AB +AD =8cm .当BD 取得最小值时,AC 的最大值为_____cm .三、解答题31.(1)解方程:2670x x +-=(2)计算:)04sin 45831tan 30︒--︒ 32.某鱼塘中养了某种鱼5000条,为了估计该鱼塘中该种鱼的总质量,从鱼塘中捕捞了3次,取得的数据如下:数量/条 平均每条鱼的质量/kg 第1次捕捞20 1.6 第2次捕捞15 2.0 第3次捕捞 15 1.8(1)求样本中平均每条鱼的质量;(2)估计鱼塘中该种鱼的总质量;(3)设该种鱼每千克的售价为14元,求出售该种鱼的收入y (元)与出售该种鱼的质量x (kg )之间的函数关系,并估计自变量x 的取值范围.33.解方程(1)(x +1)2﹣25=0(2)x 2﹣4x ﹣2=034.如图,在Rt ABC ∆中,90C =∠,矩形DEFG 的顶点G 、F 分别在边AC 、BC 上,D 、E 在边AB 上.(1)求证:ADG ∆∽FEB ∆;(2)若2AD GD =,则ADG ∆面积与BEF ∆面积的比为 .35.在平面直角坐标系中,直线y =x +3与x 轴交于点A ,与y 轴交于点B ,抛物线y =a 2x +bx +c (a <0)经过点A ,B ,(1)求a 、b 满足的关系式及c 的值,(2)当x <0时,若y =a 2x +bx +c (a <0)的函数值随x 的增大而增大,求a 的取值范围,(3)如图,当a =−1时,在抛物线上是否存在点P ,使△PAB 的面积为32?若存在,请求出符合条件的所有点P 的坐标;若不存在,请说明理由, 四、压轴题36.如图,在平面直角坐标系中,直线1l :162y x =-+分别与x 轴、y 轴交于点B 、C ,且与直线2l :12y x =交于点A .(1)分别求出点A 、B 、C 的坐标;(2)若D 是线段OA 上的点,且COD △的面积为12,求直线CD 的函数表达式; (3)在(2)的条件下,设P 是射线CD 上的点,在平面内里否存在点Q ,使以O 、C 、P 、Q 为顶点的四边形是菱形?若存在,直接写出点Q 的坐标;若不存在,请说明理由.37.在平面直角坐标系xOy 中,对于任意三点A ,B ,C ,给出如下定义:若矩形的任何一条边均与某条坐标轴平行,且A ,B ,C 三点都在矩形的内部或边界上,则称该矩形为点A ,B ,C 的外延矩形.点A ,B ,C 的所有外延矩形中,面积最小的矩形称为点A ,B ,C 的最佳外延矩形.例如,图中的矩形,,都是点A ,B ,C 的外延矩形,矩形是点A ,B ,C 的最佳外延矩形.(1)如图1,已知A (-2,0),B (4,3),C (0,).①若,则点A ,B ,C 的最佳外延矩形的面积为 ;②若点A ,B ,C 的最佳外延矩形的面积为24,则的值为 ; (2)如图2,已知点M (6,0),N (0,8).P (,)是抛物线上一点,求点M ,N ,P 的最佳外延矩形面积的最小值,以及此时点P 的横坐标的取值范围;(3)如图3,已知点D (1,1).E (,)是函数的图象上一点,矩形OFEG 是点O ,D ,E 的一个面积最小的最佳外延矩形,⊙H 是矩形OFEG 的外接圆,请直接写出⊙H 的半径r 的取值范围.38.如图,等边ABC 内接于O ,P 是AB 上任一点(点P 不与点A 、B 重合),连接AP 、BP ,过点C 作CM BP 交PA 的延长线于点M .(1)求APC ∠和BPC ∠的度数;(2)求证:ACM BCP △≌△;(3)若1PA =,2PB =,求四边形PBCM 的面积;(4)在(3)的条件下,求AB 的长度.39.在长方形ABCD 中,AB =5cm ,BC =6cm ,点P 从点A 开始沿边AB 向终点B 以1/cm s 的速度移动,与此同时,点Q 从点B 开始沿边BC 向终点C 以2/cm s 的速度移动.如果P 、Q 分别从A 、B 同时出发,当点Q 运动到点C 时,两点停止运动.设运动时间为t 秒.(1)填空:______=______,______=______(用含t 的代数式表示);(2)当t 为何值时,PQ 的长度等于5cm ?(3)是否存在t 的值,使得五边形APQCD 的面积等于226cm ?若存在,请求出此时t 的值;若不存在,请说明理由.40.如图,Rt ABC ∆中,90C ∠=︒,4AC =,3BC =.点P 从点A 出发,沿着A C B →→运动,速度为1个单位/s ,在点P 运动的过程中,以P 为圆心的圆始终与斜边AB 相切,设⊙P 的面积为S ,点P 的运动时间为t (s )(07t <<).(1)当47t <<时,BP = ;(用含t 的式子表示)(2)求S 与t 的函数表达式;(3)在⊙P 运动过程中,当⊙P 与三角形ABC 的另一边也相切时,直接写出t 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】根据极差的概念最大值减去最小值即可求解.【详解】解:这组数据:0、-1、3、2、1的极差是:3-(-1)=4.故选A .【点睛】本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.2.B解析:B【解析】【分析】延长NM 交y 轴于P 点,则MN ⊥y 轴.连接CN .证明△PAB ∽△NCA ,得出PB PA NA NC=,设PA =x ,则NA =PN ﹣PA =3﹣x ,设PB =y ,代入整理得到y =3x ﹣x 2=﹣(x ﹣32)2+94,根据二次函数的性质以及14≤x≤3,求出y 的最大与最小值,进而求出b 的取值范围.【详解】 解:如图,延长NM 交y 轴于P 点,则MN ⊥y 轴.连接CN .在△PAB 与△NCA 中,9090APB CNA PAB NCA CAN∠∠︒⎧⎨∠∠︒-∠⎩==== , ∴△PAB ∽△NCA , ∴PB PA NA NC=, 设PA =x ,则NA =PN ﹣PA =3﹣x ,设PB =y , ∴31y x x =-, ∴y =3x ﹣x 2=﹣(x ﹣32)2+94, ∵﹣1<0,14≤x≤3, ∴x =32时,y 有最大值94,此时b =1﹣94=﹣54, x =3时,y 有最小值0,此时b =1, ∴b 的取值范围是﹣54≤b≤1. 故选:B .【点睛】本题考查了相似三角形的判定与性质,二次函数的性质,得出y 与x 之间的函数解析式是解题的关键.3.C解析:C【解析】试题分析:众数是这组数据中出现次数最多的数据,在这组数据中42出现次数最多,故选C.考点:众数.4.D解析:D【解析】分析:根据方程的系数结合根的判别式△>0,即可得出关于m 的一元一次不等式,解之即可得出实数m 的取值范围.详解:∵方程2x 2x m 0-+=有两个不相同的实数根,∴()2240m =-->,解得:m <1.故选D .点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键. 5.A解析:A【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A.是轴对称图形,不是中心对称图形,符合题意;B.不是轴对称图形,是中心对称图形,不符合题意;C. 是轴对称图形,是中心对称图形,不符合题意;D. 是轴对称图形,是中心对称图形,不符合题意;故选:A .【点睛】本题考查的知识点是识别轴对称图形与中心对称图形,需要注意的是轴对称图形是关于对称轴成轴对称;中心对称图形是关于某个点成中心对称.6.C解析:C【解析】【分析】根据圆周角与圆心角的关键即可解答.【详解】∵∠AOC=80°,∴12ABC AOC4.故选:C.【点睛】此题考查圆周角定理:同弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.7.A解析:A【解析】【分析】先依据切线的性质求得∠CAB的度数,然后依据直角三角形两锐角互余的性质得到∠CBA 的度数,然后由圆周角定理可求得∠AOD的度数.【详解】解:∵AC是圆O的切线,AB是圆O的直径,∴AB⊥AC,∴∠CAB=90°,又∵∠C=70°,∴∠CBA=20°,∴∠AOD=40°.故选:A.【点睛】本题主要考查的是切线的性质、圆周角定理、直角三角形的性质,求得∠CBA=20°是解题的关键.8.A解析:A【解析】【分析】把点(-1,-3)代入y=x2+mx+n得n=-4+m,再代入mn+1进行配方即可.【详解】∵二次函数y=x2+mx+n的图像经过点(-1,-3),∴-3=1-m+n,∴n=-4+m ,代入mn+1,得mn+1=m 2-4m+1=(m-2)2-3.∴代数式mn +1有最小值-3.故选A.【点睛】本题考查了二次函数图象上点的坐标特征,以及二次函数的性质,把函数mn+1的解析式化成顶点式是解题的关键.9.C解析:C【解析】【分析】由A 、C 关于BD 对称,推出PA =PC ,推出PC +PE =PA +PE ,推出当A 、P 、E 共线时,PE +PC 的值最小,观察图象可知,当点P 与B 重合时,PE +PC =6,推出BE =CE =2,AB =BC =4,分别求出PE +PC 的最小值,PD 的长即可解决问题.【详解】解:∵在菱形ABCD 中,∠A =120°,点E 是BC 边的中点,∴易证AE ⊥BC ,∵A 、C 关于BD 对称,∴PA =PC ,∴PC +PE =PA +PE ,∴当A 、P 、E 共线时,PE +PC 的值最小,即AE 的长.观察图象可知,当点P 与B 重合时,PE +PC =6,∴BE =CE =2,AB =BC =4,∴在Rt △AEB 中,BE =∴PC +PE 的最小值为∴点H 的纵坐标a =∵BC ∥AD , ∴AD PD BE PB= =2,∵BD =∴PD =233⨯=∴点H 的横坐标b =3,∴a +b ==; 故选C .【点睛】本题考查动点问题的函数图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.10.D解析:D【解析】【分析】由于有13名同学参加歌咏比赛,要取前6名参加决赛,故应考虑中位数的大小.【详解】共有13名学生参加比赛,取前6名,所以小红需要知道自己的成绩是否进入前六.我们把所有同学的成绩按大小顺序排列,第7名学生的成绩是这组数据的中位数,所以小红知道这组数据的中位数,才能知道自己是否进入决赛.故选D .【点睛】本题考查了用中位数的意义解决实际问题.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.11.A解析:A【解析】【分析】直接把已知数据代入进而得出c 的值,再解方程根据根的判别式分析即可.【详解】∵x =﹣1为方程x 2﹣8x ﹣c =0的根,1+8﹣c =0,解得c =9,∴原方程为x 2-8x +9=0,∵24b ac ∆=-=(﹣8)2-4×9>0,∴方程有两个不相等的实数根.故选:A .【点睛】本题考查一元二次方程的解、一元二次方程根的判别式,解题的关键是掌握一元二次方程根的判别式,对于一元二次方程()200++=≠ax bx c a ,根的情况由24b ac ∆=-来判别,当24b ac ->0时,方程有两个不相等的实数根,当24b ac -=0时,方程有两个相等的实数根,当24b ac -<0时,方程没有实数根.12.B解析:B【解析】【分析】①由于AC 与BD 不一定相等,根据圆周角定理可判断①;②连接OD ,利用切线的性质,可得出∠GPD=∠GDP ,利用等角对等边可得出GP=GD ,可判断②;③先由垂径定理得到A 为CE 的中点,再由C 为AD 的中点,得到CD AE =,根据等弧所对的圆周角相等可得出∠CAP=∠ACP ,利用等角对等边可得出AP=CP ,又AB 为直径得到∠ACQ 为直角,由等角的余角相等可得出∠PCQ=∠PQC ,得出CP=PQ ,即P 为直角三角形ACQ 斜边上的中点,即为直角三角形ACQ 的外心,可判断③;④正确.证明△APF ∽△ABD ,可得AP×AD=AF×AB ,证明△ACF ∽△ABC ,可得AC 2=AF×AB ,证明△CAQ ∽△CBA ,可得AC 2=CQ×CB ,由此即可判断④;【详解】解:①错误,假设BAD ABC ∠=∠,则BD AC =,AC CD =,∴AC CD BD ==,显然不可能,故①错误.②正确.连接OD . GD 是切线,DG OD ∴⊥,90GDP ADO ∴∠+∠=︒,OA OD =,ADO OAD ∴∠=∠,90APF OAD ∠+∠=︒,GPD APF ∠=∠,GPD GDP ∴∠=∠,GD GP ∴=,故②正确.③正确.AB CE ⊥,∴AE AC =,AC CD =,∴CD AE =,CAD ACE ∴∠=∠,PC PA ∴=, AB 是直径,90ACQ ∴∠=︒,90ACP QCP ∴∠+∠=︒,90CAP CQP ∠+∠=︒,PCQ PQC ∴∠=∠,PC PQ PA ∴==,90ACQ ∠=︒,∴点P 是ACQ ∆的外心.故③正确.④正确.连接BD .90AFP ADB ∠=∠=︒,PAF BAD ∠=∠,APF ABD ∴∆∆∽,∴AP AFAB AD=,AP AD AF AB∴⋅=⋅,CAF BAC∠=∠,90AFC ACB∠=∠=︒,ACF ABC∴∆∆∽,可得2AC AF AB=,ACQ ACB∠=∠,CAQ ABC∠=∠,CAQ CBA∴∆∆∽,可得2AC CQ CB=⋅,AP AD CQ CB∴⋅=⋅.故④正确,故选:B.【点睛】本题考查相似三角形的判定和性质、垂径定理、圆周角定理、切线的性质等知识,解题的关键是正确现在在相似三角形解决问题,属于中考选择题中的压轴题.13.D解析:D【解析】【分析】根据相反数的概念解答即可.【详解】2的相反数是-2,故选D.14.C解析:C【解析】【分析】连接OD,根据勾股定理求出CD,根据直角三角形的性质求出∠AOD,根据扇形面积公式、三角形面积公式计算,得到答案.【详解】解:连接OD,在Rt△OCD中,OC=12OD=2,∴∠ODC=30°,CD2223OD OC+=∴∠COD=60°,∴阴影部分的面积=260418223=23 36023π⨯-⨯⨯π-,故选:C.【点睛】本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.15.A解析:A【解析】【分析】逐项计算方程的判别式,根据根的判别式进行判断即可.【详解】解:在x2﹣x﹣1=0中,△=(﹣1)2﹣4×1×(﹣1)=1+4=5>0,故该方程有两个不相等的实数根,故A符合题意;在x2+x+1=0中,△=12﹣4×1×1=1﹣4=﹣3<0,故该方程无实数根,故B不符合题意;在x2+1=0中,△=0﹣4×1×1=0﹣4=﹣4<0,故该方程无实数根,故C不符合题意;在x2+2x+1=0中,△=22﹣4×1×1=0,故该方程有两个相等的实数根,故D不符合题意;故选:A.【点睛】本题考查根的判别式,解题的关键是记住判别式,△>0有两个不相等实数根,△=0有两个相等实数根,△<0没有实数根,属于中考常考题型.二、填空题16.3【解析】【分析】根据圆周角定理可求出∠AOB的度数,设扇形半径为x,从而列出关于x的方程,求出答案.【详解】由题意可知:∠AOB=2∠ACB=2×40°=80°,设扇形半径为x,故阴解析:3【解析】【分析】根据圆周角定理可求出∠AOB的度数,设扇形半径为x,从而列出关于x的方程,求出答案.【详解】由题意可知:∠AOB=2∠ACB=2×40°=80°,设扇形半径为x,故阴影部分的面积为πx2×80360=29×πx2=2π,故解得:x1=3,x2=-3(不合题意,舍去),故答案为3.【点睛】本题主要考查了圆周角定理以及扇形的面积求解,解本题的要点在于根据题意列出关于x 的方程,从而得到答案.17.【解析】试题分析:连接BC,∴∠D=∠A,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=3×2 =6,AC=2,∴cosD=cosA===.故答案为.考点:1.圆周角定理;2.解直角三角形解析:1 3【解析】试题分析:连接BC,∴∠D=∠A,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=3×2=6,AC=2,∴cosD=cosA=ACAB=26=13.故答案为13.考点:1.圆周角定理;2.解直角三角形.18.y=2(x+2)2-3【解析】【分析】根据“上加下减,左加右减”的原则进行解答即可.解:根据“上加下减,左加右减”的原则可知,二次函数y=2x2的图象向左平移2个单位,再向下平移解析:y=2(x+2)2-3【解析】【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:根据“上加下减,左加右减”的原则可知,二次函数y=2x2的图象向左平移2个单位,再向下平移3个单位后得到的图象表达式为y=2(x+2)2-3【点睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.19.红【解析】【分析】哪一种颜色多,指针指向那种颜色的可能性就大.【详解】∵转盘分成6个大小相同的扇形,红色的有3块,∴转动一次转盘后,指针指向红颜色的可能性大.故答案为:红.【点睛】解析:红【解析】【分析】哪一种颜色多,指针指向那种颜色的可能性就大.【详解】∵转盘分成6个大小相同的扇形,红色的有3块,∴转动一次转盘后,指针指向红颜色的可能性大.故答案为:红.【点睛】本题考查了可能性大小的知识,解题的关键是看清那种颜色的最多,难度不大.20.2【解析】【分析】先根据根与系数的关系得出两根之和与两根之积,代入即可得出结论.解:∵x1,x2是关于 x 的方程x2+3x-5=0的两个根,根据根与系数的关系,得,x1+x2=解析:2【解析】【分析】先根据根与系数的关系得出两根之和与两根之积,代入即可得出结论.【详解】解:∵x1,x2是关于 x 的方程x2+3x-5=0的两个根,根据根与系数的关系,得,x1+x2=-3,x1x2=-5,则 x1+x2-x1x2=-3-(-5)=2,故答案为2.【点睛】本题考查了一元二次方程的根与系数的关系,求出x1+x2=-3,x1x2=-5是解题的关键.21.【解析】【分析】分别计算半径为10cm的圆的面积和边长为30cm的正方形ABCD的面积,然后计算即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm的圆的面积=π•102=100解析:9π【解析】【分析】分别计算半径为10cm的圆的面积和边长为30cm的正方形ABCD的面积,然后计算SS半圆正方形即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm的圆的面积=π•102=100πcm2,边长为30cm的正方形ABCD的面积=302=900cm2,∴P(飞镖落在圆内)=100==9009SSππ半圆正方形,故答案为:9π.【点睛】本题考查了几何概率,掌握概率=相应的面积与总面积之比是解题的关键.22.-5.【解析】【分析】根据一元二次方程根与系数的关系即可求解.【详解】∵,是关于的一元二次方程的两根,∴,∴,故答案为:.【点睛】本题考查了一元二次方程根与系数的关系,如果,是方解析:-5.【解析】【分析】根据一元二次方程根与系数的关系即可求解.【详解】∵1x ,2x 是关于x 的一元二次方程240x x +-=的两根,∴121214x x x x +=-=-,, ∴()1212145x x x x ++=-+-=-,故答案为:5-.【点睛】本题考查了一元二次方程根与系数的关系,如果1x ,2x 是方程20x px q ++=的两根,那么12x x p +=﹣,12x x q =. 23.【解析】【分析】设BC=EC=a,根据相似三角形得到,求出a 的值,再利用tanA 即可求解.【详解】设BC=EC=a,∵AB∥CD,∴△ABF∽△ECF,∴,即解得a=(-舍去)∴解析:12【解析】【分析】设BC=EC=a,根据相似三角形得到222a a =+,求出a 的值,再利用tan DAE ∠=tanA 即可求解.【详解】设BC=EC=a,∵AB ∥CD ,∴△ABF ∽△ECF , ∴AB EC BF CF =,即222a a =+解得1(-1舍去)∴tan DAE ∠=tanF=2EC a CF =. 【点睛】 此题主要考查相似三角形的判定与性质,解题的关键是熟知矩形的性质及正切的定义. 24.6【解析】【分析】将方程的根-2代入原方程求出m 的值,再解方程即可求解.【详解】解:把x=-2代入原方程得出,4-2m+3m=0,解得m=-4;故原方程为:,解方程得:.故答案为:6解析:6【解析】【分析】将方程的根-2代入原方程求出m 的值,再解方程即可求解.【详解】解:把x=-2代入原方程得出,4-2m+3m=0,解得m=-4;故原方程为:24120x x --=,解方程得:122,6x x =-=.故答案为:6.【点睛】本题考查的知识点是解一元二次方程,根据方程的一个解求出方程中参数的值是解此题的关键.25.【解析】【分析】设AD 和BC 分别与圆交于点E 和F ,连接AF 、OE ,过点O 作OG⊥AE,根据90°的圆周角对应的弦是直径,可得AF 为圆的直径,从而求出AF ,然后根据锐角三角函数和勾股定理,即可求解析:412333π-- 【解析】【分析】设AD 和BC 分别与圆交于点E 和F ,连接AF 、OE ,过点O 作OG ⊥AE ,根据90°的圆周角对应的弦是直径,可得AF 为圆O 的直径,从而求出AF ,然后根据锐角三角函数和勾股定理,即可求出∠AFB 和BF ,然后根据平行线的性质、锐角三角函数和圆周角定理,即可求出OG 、AG 和∠EOF ,最后利用S 阴影=S 梯形AFCD -S △AOE -S 扇形EOF 计算即可.【详解】解:设AD 和BC 分别与圆交于点E 和F ,连接AF 、OE ,过点O 作OG ⊥AE∵四边形ABCD 是正方形∴∠ABF=90°,AD ∥BC ,BC=CD=AD=23AB =∴AF 为圆O 的直径∵23AB =cm ,圆O 的半径为2cm ,∴AF=4cm在Rt △ABF 中sin ∠AFB=3AB AF ,BF=222AF AB -= ∴∠AFB=60°,FC=BC -BF=()232cm∴∠EAF=∠AFB=60°∴∠EOF=2∠EAF=120°在Rt △AOG 中,OG=sin ∠EAF ·3cm ,AG= cos ∠EAF ·AO=1cm根据垂径定理,AE=2AG=2cm∴S 阴影=S 梯形AFCD -S △AOE -S 扇形EOF=()21112022360OE CD FC AD AE OG π•+-•- =()211120223232232322360π•⨯+-⨯=24123cm π⎛⎫- ⎪⎝⎭故答案为:4123π-. 【点睛】 此题考查的是求不规则图形的面积,掌握正方形的性质、90°的圆周角对应的弦是直径、垂径定理、勾股定理和锐角三角函数的结合和扇形的面积公式是解决此题的关键.26.【解析】【分析】如图,过点F 作FH⊥AE 交AE 于H ,过点C 作CM⊥AB 交AB 于M ,根据等边三角形的性质可求出AB 的长,根据相似三角形的性质可得△ADE 是等边三角形,可得出AE 的长,根据角的和差解析:34- 【解析】【分析】如图,过点F 作FH ⊥AE 交AE 于H ,过点C 作CM ⊥AB 交AB 于M ,根据等边三角形的性质可求出AB 的长,根据相似三角形的性质可得△ADE 是等边三角形,可得出AE 的长,根据角的和差关系可得∠EAF=∠BAD=45°,设AH =HF =x ,利用∠EFH 的正确可用x 表示出EH 的长,根据AE=EH+AH 列方程可求出x 的值,根据三角形面积公式即可得答案.【详解】如图,过点F 作FH ⊥AE 交AE 于H ,过点C 作CM ⊥AB 交AB 于M ,∵△ABC CM ⊥AB ,∴12×AB×CM ,∠BCM =30°,BM=12AB ,BC=AB ,∴AB ,∴12AB 解得:AB =2,(负值舍去)∵△ABC ∽△ADE ,△ABC 是等边三角形,∴△ADE 是等边三角形,∠CAB=∠EAD=60°,∠E=60°,∴∠EAF+∠FAD=∠FAD+BAD=60°,∵∠BAD=45°,∴∠EAF =∠BAD =45°,∵FH ⊥AE ,∴∠AFH =45°,∠EFH =30°,∴AH =HF ,设AH=HF=x,则EH=xtan30°=33x.∵AB=2AD,AD=AE,∴AE=12AB=1,∴x+33x=1,解得x=33 33-=+.∴S△AEF=12×1×33-=334-.故答案为:33 -.【点睛】本题考查了相似三角形的性质,等边三角形的性质,锐角三角函数,根据相似三角形的性质得出△ADE是等边三角形、熟练掌握等边三角形的性质并熟记特殊角的三角函数值是解题关键.27.2【解析】【分析】根据众数的定义直接解答即可.【详解】解:数据1、2、3、2、4中,∵数字2出现了两次,出现次数最多,∴2是众数,故答案为:2.【点睛】此题考查了众数,掌握众数的解析:2【解析】【分析】根据众数的定义直接解答即可.【详解】解:数据1、2、3、2、4中,∵数字2出现了两次,出现次数最多,∴2是众数,故答案为:2.【点睛】此题考查了众数,掌握众数的定义是解题的关键,众数是一组数据中出现次数最多的数.28.2+2【解析】【分析】作AD⊥OB于点D,根据题目条件得出∠OAD=60°、∠DAB=45°、OA=4km,再分别求出AD、OD、BD的长,从而得出答案.【详解】如图所示,过点A作AD⊥O解析:23+2【解析】【分析】作AD⊥OB于点D,根据题目条件得出∠OAD=60°、∠DAB=45°、OA=4km,再分别求出AD、OD、BD的长,从而得出答案.【详解】如图所示,过点A作AD⊥OB于点D,由题意知,∠AOD=30°,OA=4km,则∠OAD=60°,∴∠DAB=45°,在Rt△OAD中,AD=OAsin∠AOD=4×sin30°=4×12=2(km),OD=OAcos∠AOD=4×cos30°=433km),在Rt△ABD中,BD=AD=2km,∴OB=OD+BD=32(km),故答案为:32.【点睛】本题主要考查解直角三角形的应用−方向角问题,解题的关键是构建合适的直角三角形,并熟练运用三角函数进行求解.29.y=-5(x+2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再解析:y=-5(x+2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再向下平移3个单位长度,∴新抛物线顶点坐标为(-2,-3),∴所得到的新的抛物线的解析式为y=-5(x+2)2-3.故答案为:y=-5(x+2)2-3.【点睛】本题考查了二次函数图象与几何变换,掌握平移的规律:左加右减,上加下减是关键.30.【解析】【分析】设AB=x,则AD=8﹣x,由勾股定理可得BD2=x2+(8﹣x)2,由二次函数的性质可求出AB=AD=4时,BD的值最小,根据条件可知A,B,C,D四点在以BD 为直径的圆上.解析:【解析】【分析】设AB=x,则AD=8﹣x,由勾股定理可得BD2=x2+(8﹣x)2,由二次函数的性质可求出AB=AD=4时,BD的值最小,根据条件可知A,B,C,D四点在以BD为直径的圆上.则AC为直径时最长,则最大值为.【详解】解:设AB=x,则AD=8﹣x,∵∠BAD=∠BCD=90°,∴BD2=x2+(8﹣x)2=2(x﹣4)2+32.∴当x =4时,BD 取得最小值为42.∵A ,B ,C ,D 四点在以BD 为直径的圆上.如图,∴AC 为直径时取得最大值.AC 的最大值为2.故答案为:2. 【点睛】本题考查了四边形的对角线问题,掌握勾股定理和圆内接四边形的性质是解题的关键.三、解答题31.(1)17x =-,21x =;(2)313- 【解析】【分析】(1)利用求根公式法解方程即可 (2)第一、四项利用特殊角的三角函数值计算,第二项化为最简二次根式,第三项利用零指数幂法则计算,【详解】解:(1)()2641764=-⨯⨯-= ∴66468x 342-±-±===-± ∴17x =-,21x =(2)原式233422112=⨯-=【点睛】本题考查的知识点有解一元二次方程和实数的运算,熟记求根公式和特殊角的三角函数值是解此题的关键.32.(1)1.78kg ;(2)8900kg ;(3)y =14x ,0≤x ≤8900.【解析】【分析】(1)根据平均数的公式求解即可;(2)根据每条鱼的平均质量×总条数=总质量即可得答案;(3)根据收入=单价×质量,列出函数表达式即可.。
扬州市2021初三数学九年级上册期末试题和答案一、选择题1.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到红灯的概率是( ) A .13B .512C .12D .12.如图,等腰直角三角形ABC 的腰长为4cm ,动点P 、Q 同时从点A 出发,以1cm/s 的速度分别沿A →B 和A →C 的路径向点B 、C 运动,设运动时间为x (单位:s),四边形PBC Q 的面积为y(单位:cm 2),则y 与x(0≤x≤4)之间的函数关系可用图象表示为( )A .B .C .D .3.如图,在由边长为1的小正方形组成的网格中,点A ,B ,C ,D 都在格点上,点E 在AB 的延长线上,以A 为圆心,AE 为半径画弧,交AD 的延长线于点F ,且弧EF 经过点C ,则扇形AEF 的面积为( )A 5B .58πC .54πD 5 4.△ABC 的外接圆圆心是该三角形( )的交点. A .三条边垂直平分线 B .三条中线 C .三条角平分线D .三条高5.分别写有数字﹣4,0,﹣1,6,9,2的六张卡片,除数字外其它均相同,从中任抽一张,则抽到偶数的概率是( ) A .16B .13C .12D .236.把二次函数y =2x 2的图象向右平移3个单位,再向上平移2个单位后的函数关系式是( )A .22(3)2y x =-+B .22(3)2y x =++C .22(3)?2y x =-D .22(3)?2y x =+7.将二次函数22y x =的图象先向左平移4个单位长度,再向下平移1个单位长度后,所得新的图象的函数表达式为( ) A .()2241y x =--B .()2241y x =+-C .()2241y x =-+D .()2241y x =++8.二次函数2(1)3y x =-+图象的顶点坐标是( ) A .(1,3) B .(1,3)- C .(1,3)- D .(1,3)-- 9.已知⊙O 的半径为4,点P 到圆心O 的距离为4.5,则点P 与⊙O 的位置关系是( ) A .P 在圆内B .P 在圆上C .P 在圆外D .无法确定10.若关于x 的方程20ax bx c ++=的解为11x =-,23x =,则方程2(1)(1)0a x b x c -+-+=的解为( )A .120,2x x ==B .122,4x x =-=C .120,4x x ==D .122,2x x =-=11.如图,四边形ABCD 中,90BAD ACB ∠=∠=,AB AD =,4AC BC =,设CD 的长为x ,四边形ABCD 的面积为y ,则y 与x 之间的函数关系式是( )A .2225y x =B .2425y x =C .225y x =D .245y x =12.O 的半径为5,圆心O 到直线l 的距离为3,则直线l 与O 的位置关系是( )A .相交B .相切C .相离D .无法确定13.设()12,A y -,()21,B y ,()32,C y 是抛物线2(1)y x k =-++上的三点,则1y ,2y ,3y 的大小关系为( )A .123y y y >>B .132y y y >>C .231y y y >>D .312y y y >>14.如图,在O 中,AB 是O 的直径,点D 是O 上一点,点C 是弧AD 的中点,弦CE AB ⊥于点F ,过点D 的切线交EC 的延长线于点G ,连接AD ,分别交CF BC 、于点P Q 、,连接AC .给出下列结论:①BAD ABC ∠=∠;②GP GD =;③点P 是ACQ的外心;④AP AD ⋅CQ CB =⋅.其中正确的是( )A .①②③B .②③④C .①③④D .①②③④15.某市计划争取“全面改薄”专项资金120 000 000元,用于改造农村义务教育薄弱学校100所数据120 000 000用科学记数法表示为( ) A .12×108B .1.2×108C .1.2×109D .0.12×109二、填空题16.将二次函数y=x 2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是_____.17.若记[]x 表示任意实数的整数部分,例如:[]4.24=,21⎡⎤=⎣⎦,…,则123420192020⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤-+-+⋅⋅⋅⋅⋅⋅+-⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦(其中“+”“-”依次相间)的值为______. 18.O 的半径为4,圆心O 到直线l 的距离为2,则直线l 与O 的位置关系是______.19.二次函数y =x 2﹣bx +c 的图象上有两点A (3,﹣2),B (﹣9,﹣2),则此抛物线的对称轴是直线x =________.20.已知点11(,)A x y ,22(,)B x y 在二次函数2(1)1y x =-+的图象上,若121x x >>,则1y __________2y .(填“>”“<”“=”)21.在▱ABCD 中,∠ABC 的平分线BF 交对角线AC 于点E ,交AD 于点F .若AB BC =35,则EFBF的值为_____.22.关于x 的方程220kx x --=的一个根为2,则k =______.23.如图,五边形 ABCDE 是⊙O 的内接正五边形, AF 是⊙O 的直径,则∠ BDF 的度数是___________°.24.方程290x 的解为________.25.点P 在线段AB 上,且BP APAP AB=.设4AB cm =,则BP =__________cm . 26.已知⊙O 半径为4,点,A B 在⊙O 上,21390,sin BAC B ∠=∠=OC 的最大值为_____.27.若m是关于x的方程x2-2x-3=0的解,则代数式4m-2m2+2的值是______.28.如图,港口A在观测站 O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达 B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船与观测站之间的距离(即OB的长)为 _____km.29.如图,正方形ABCD的边长为5,E、F分别是BC、CD上的两个动点,AE⊥EF.则AF 的最小值是_____.30.如图,一次函数y=x与反比例函数y=kx(k>0)的图像在第一象限交于点A,点C在以B(7,0)为圆心,2为半径的⊙B上,已知AC长的最大值为7,则该反比例函数的函数表达式为__________________________.三、解答题31.如图1,AB、CD是圆O的两条弦,交点为P.连接AD、BC.OM⊥ AD,ON⊥BC,垂足分别为M、N.连接PM、PN.图1 图2(1)求证:△ADP ∽△CBP;(2)当AB⊥CD时,探究∠PMO与∠PNO的数量关系,并说明理由;(3)当AB⊥CD时,如图2,AD=8,BC=6, ∠MON=120°,求四边形PMON的面积.32.“早黑宝”葡萄品种是我省农科院研制的优质新品种,在我省被广泛种植,邓州市某葡萄种植基地2017年种植“早黑宝”100亩,到2019年“卓黑宝”的种植面积达到196亩.(1)求该基地这两年“早黑宝”种植面积的平均增长率;(2)市场调查发现,当“早黑宝”的售价为20元/千克时,每天能售出200千克,售价每降价1元,每天可多售出50千克,为了推广宣传,基地决定降价促销,同时减少库存,已知该基地“早黑宝”的平均成本价为12元/千克,若使销售“早黑宝”每天获利1750元,则售价应降低多少元?33.某商店购进一批成本为每件 30 元的商品,经调查发现,该商品每天的销售量 y(件)与销售单价 x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量 y 与销售单价 x 之间的函数关系式;(2)若商店按单价不低于成本价,且不高于 50 元销售,则销售单价定为多少,才能使销售该商品每天获得的利润 w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于 800 元,则每天的销售量最少应为多少件?34.如图,某数学兴趣小组为测量一棵古树BH和教学楼CG的高,先在点A处用高1.5米∠为45︒,此时教学楼顶端点G恰好在视线DH 的测角仪测得古树顶端点H的仰角HDE∠为60︒,点A、上,再向前走7米到达点B处,又测得教学楼顶端点G的仰角GEFB、C点在同一水平线上.(1)计算古树BH的高度;(2)计算教学楼CG的高度.(结果精确到0.1米,参考数据:2 1.4≈,3 1.7≈).35.中国古代有着辉煌的数学成就,《周髀算经》,《九章算术》,《海岛算经》,《孙子算经》等是我国古代数学的重要文献.(1)小聪想从这4部数学名著中随机选择1部阅读,则他选中《九章算术》的概率为;(2)某中学拟从这4部数学名著中选择2部作为“数学文化”校本课程学习内容,求恰好选中《九章算术》和《孙子算经》的概率.四、压轴题36.如图,在平面直角坐标系中,直线l:y=﹣13x+2与x轴交于点B,与y轴交于点A,以AB为斜边作等腰直角△ABC,使点C落在第一象限,过点C作CD⊥AB于点D,作CE⊥x轴于点E,连接ED并延长交y轴于点F.(1)如图(1),点P为线段EF上一点,点Q为x轴上一点,求AP+PQ的最小值.(2)将直线l进行平移,记平移后的直线为l1,若直线l1与直线AC相交于点M,与y轴相交于点N,是否存在这样的点M、点N,使得△CMN为等腰直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.37.(2015秋•惠山区期末)如图,在平面直角坐标系中,半径为1的⊙A的圆心与坐标原点O重合,线段BC的端点分别在x轴与y轴上,点B的坐标为(6,0),且sin∠OCB=.(1)若点Q是线段BC上一点,且点Q的横坐标为m.①求点Q的纵坐标;(用含m的代数式表示)②若点P是⊙A上一动点,求PQ的最小值;(2)若点A从原点O出发,以1个单位/秒的速度沿折线OBC运动,到点C运动停止,⊙A 随着点A的运动而移动.①点A从O→B的运动的过程中,若⊙A与直线BC相切,求t的值;②在⊙A整个运动过程中,当⊙A与线段BC有两个公共点时,直接写出t满足的条件.38.如图,函数y=-x2+bx+c的图象经过点A(m,0),B(0,n)两点,m,n分别是方程x2-2x-3=0的两个实数根,且m<n.(1)求m,n的值以及函数的解析式;(2)设抛物线y=-x2+bx+c与x轴的另一交点为点C,顶点为点D,连结BD、BC、CD,求△BDC面积;(3)对于(1)中所求的函数y=-x2+bx+c,①当0≤x≤3时,求函数y的最大值和最小值;②设函数y在t≤x≤t+1内的最大值为p,最小值为q,若p-q=3,求t的值.39.对于线段外一点和这条线段两个端点连线所构成的角叫做这个点关于这条线段的视角.如图1,对于线段AB及线段AB外一点C,我们称∠ACB为点C关于线段AB的视角.如图2,点Q在直线l上运动,当点Q关于线段AB的视角最大时,则称这个最大的“视角”为直线l关于线段AB的“视角”.(1)如图3,在平面直角坐标系中,A(0,4),B(2,2),点C坐标为(﹣2,2),点C关于线段AB的视角为度,x轴关于线段AB的视角为度;(2)如图4,点M是在x轴上,坐标为(2,0),过点M作线段EF⊥x轴,且EM=MF =1,当直线y=kx(k≠0)关于线段EF的视角为90°,求k的值;(3)如图5,在平面直角坐标系中,P(3,2),Q(3+1,1),直线y=ax+b(a>0)与x轴的夹角为60°,且关于线段PQ的视角为45°,求这条直线的解析式.40.如图,扇形OMN的半径为1,圆心角为90°,点B是上一动点,BA⊥OM于点A,BC⊥ON于点C,点D、E、F、G分别是线段OA、AB、BC、CO的中点,GF与CE相交于点P,DE与AG相交于点Q.(1)当点B移动到使AB:OA=:3时,求的长;(2)当点B移动到使四边形EPGQ为矩形时,求AM的长.(3)连接PQ,试说明3PQ2+OA2是定值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据随机事件A的概率P(A)=事件A可能出现的结果数 所有可能出现的结果数,据此用红灯亮的时间除以以上三种灯亮的总时间,即可得出答案.【详解】解:∵每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒, ∴红灯的概率是:301302552=++.故答案为:C. 【点睛】本题考查的知识点是简单事件的概率问题,熟记概率公式是解题的关键.2.C解析:C 【解析】 【分析】先计算出四边形PBCQ 的面积,得到y 与x 的函数关系式,再根据函数解析式确定图象即可. 【详解】 由题意得: 22111448222y x x =⨯⨯-=-+(0≤x≤4), 可知,抛物线开口向下,关于y 轴对称,顶点为(0,8), 故选:C. 【点睛】此题考查二次函数的性质,根据题意列出解析式是解题的关键.3.B解析:B 【解析】 【分析】连接AC ,根据网格的特点求出r=AC 的长度,再得到扇形的圆心角度数,根据扇形面积公式即可求解. 【详解】连接AC ,则r=AC=22251=+ 扇形的圆心角度数为∠BAD=45°,∴扇形AEF 的面积=()2455360π⨯⨯=58π故选B.【点睛】此题主要考查扇形面积求解,解题的关键是熟知勾股定理及扇形面积公式.4.A解析:A 【解析】 【分析】根据三角形的外接圆的概念、三角形的外心的概念和性质直接填写即可. 【详解】解:△ABC 的外接圆圆心是△ABC 三边垂直平分线的交点, 故选:A . 【点睛】本题考查了三角形的外心,三角形的外接圆圆心即为三角形的外心,是三条边垂直平分线的交点,正确理解三角形外心的概念是解题的关键.5.D解析:D 【解析】 【分析】根据概率公式直接计算即可. 【详解】解:在这6张卡片中,偶数有4张, 所以抽到偶数的概率是46=23, 故选:D . 【点睛】本题主要考查了随机事件的概率,随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数,灵活利用概率公式是解题的关键.6.A解析:A 【解析】将二次函数22y x =的图象向右平移3个单位,再向上平移2个单位后的函数关系式为:22(3)2y x =-+.故选A.7.B解析:B 【解析】 【分析】根据题意直接利用二次函数平移规律进而判断得出选项. 【详解】解:22y x =的图象向左平移4个单位长度,再向下平移1个单位长度,平移后的函数关系式是:()2241y x =+-. 故选:B .【点睛】本题考查二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.8.A解析:A【解析】【分析】根据二次函数顶点式即可得出顶点坐标.【详解】∵2(1)3y x =-+,∴二次函数图像顶点坐标为:(1,3).故答案为A.【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a (x-h )2+k 中,对称轴为x=h ,顶点坐标为(h ,k ). 9.C解析:C【解析】【分析】点到圆心的距离大于半径,得到点在圆外.【详解】∵点P 到圆心O 的距离为4.5,⊙O 的半径为4,∴点P 在圆外.故选:C.【点睛】此题考查点与圆的位置关系,通过比较点到圆心的距离d 的距离与半径r 的大小确定点与圆的位置关系.10.C解析:C【解析】【分析】设方程2(1)(1)0a x b x c -+-+=中,1t x =-,根据已知方程的解,即可求出关于t 的方程的解,然后根据1t x =-即可求出结论.【详解】解:设方程2(1)(1)0a x b x c -+-+=中,1t x =-则方程变为20at bt c ++=∵关于x 的方程20ax bx c ++=的解为11x =-,23x =,∴关于t 的方程20at bt c ++=的解为11t =-,23t =, ∴对于方程2(1)(1)0a x b x c -+-+=,11x -=-或3解得:10x =,24x =,故选C .【点睛】此题考查的是根据已知方程的解,求新方程的解,掌握换元法是解决此题的关键.11.C解析:C【解析】【分析】四边形ABCD 图形不规则,根据已知条件,将△ABC 绕A 点逆时针旋转90°到△ADE 的位置,求四边形ABCD 的面积问题转化为求梯形ACDE 的面积问题;根据全等三角形线段之间的关系,结合勾股定理,把梯形上底DE ,下底AC ,高DF 分别用含x 的式子表示,可表示四边形ABCD 的面积.【详解】作AE ⊥AC ,DE ⊥AE ,两线交于E 点,作DF ⊥AC 垂足为F 点,∵∠BAD=∠CAE=90°,即∠BAC+∠CAD=∠CAD+∠DAE∴∠BAC=∠DAE又∵AB=AD ,∠ACB=∠E=90°∴△ABC ≌△ADE (AAS )∴BC=DE ,AC=AE ,设BC=a ,则DE=a ,DF=AE=AC=4BC=4a ,CF=AC-AF=AC-DE=3a ,在Rt △CDF 中,由勾股定理得,CF 2+DF 2=CD 2,即(3a )2+(4a )2=x 2,解得:a=5x , ∴y=S 四边形ABCD =S 梯形ACDE =12×(DE+AC )×DF =12×(a+4a )×4a =10a 2=25x 2. 故选C .【点睛】本题运用了旋转法,将求不规则四边形面积问题转化为求梯形的面积,充分运用了全等三角形,勾股定理在解题中的作用.12.A解析:A【解析】【分析】根据直线和圆的位置关系可知,圆的半径大于直线到圆距离,则直线l 与O 的位置关系是相交.【详解】∵⊙O 的半径为5,圆心O 到直线的距离为3,∴直线l 与⊙O 的位置关系是相交. 故选A .【点睛】本题考查了直线和圆的位置关系,直接根据直线和圆的位置关系解答即可.13.A解析:A【解析】【分析】根据二次函数的性质得到抛物线y =-(x +1)2+k (k 为常数)的开口向下,对称轴为直线x =﹣1,然后根据三个点离对称轴的远近判断函数值的大小.【详解】解:∵抛物线y =-(x +1)2+k (k 为常数)的开口向下,对称轴为直线x =﹣1,而A (2,y 1)离直线x =﹣1的距离最远,C (﹣2,y 3)点离直线x =1最近,∴123y y y >>. 故选A .【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.14.B解析:B【解析】【分析】①由于AC 与BD 不一定相等,根据圆周角定理可判断①;②连接OD ,利用切线的性质,可得出∠GPD=∠GDP ,利用等角对等边可得出GP=GD ,可判断②;③先由垂径定理得到A 为CE 的中点,再由C 为AD 的中点,得到CD AE =,根据等弧所对的圆周角相等可得出∠CAP=∠ACP ,利用等角对等边可得出AP=CP ,又AB 为直径得到∠ACQ 为直角,由等角的余角相等可得出∠PCQ=∠PQC ,得出CP=PQ ,即P 为直角三角形ACQ 斜边上的中点,即为直角三角形ACQ 的外心,可判断③;④正确.证明△APF ∽△ABD ,可得AP×AD=AF×AB ,证明△ACF ∽△ABC ,可得AC 2=AF×AB ,证明△CAQ ∽△CBA ,可得AC 2=CQ×CB ,由此即可判断④;【详解】解:①错误,假设BAD ABC ∠=∠,则BD AC =,AC CD =,∴AC CD BD ==,显然不可能,故①错误.②正确.连接OD . GD 是切线,DG OD ∴⊥,90GDP ADO ∴∠+∠=︒,OA OD =,ADO OAD ∴∠=∠,90APF OAD ∠+∠=︒,GPD APF ∠=∠,GPD GDP ∴∠=∠,GD GP ∴=,故②正确.③正确.AB CE ⊥,∴AE AC =,AC CD =,∴CD AE =,CAD ACE ∴∠=∠,PC PA ∴=, AB 是直径,90ACQ ∴∠=︒,90ACP QCP ∴∠+∠=︒,90CAP CQP ∠+∠=︒,PCQ PQC ∴∠=∠,PC PQ PA ∴==,90ACQ ∠=︒,∴点P 是ACQ ∆的外心.故③正确.④正确.连接BD .90AFP ADB ∠=∠=︒,PAF BAD ∠=∠,APF ABD ∴∆∆∽, ∴AP AF AB AD=, AP AD AF AB ∴⋅=⋅,CAF BACAFC ACB∠=∠=︒,∠=∠,90∽,∴∆∆ACF ABC可得2=,AC AF AB∠=∠,∠=∠,CAQ ABCACQ ACB∽,可得2∴∆∆CAQ CBA=⋅,AC CQ CB∴⋅=⋅.故④正确,AP AD CQ CB故选:B.【点睛】本题考查相似三角形的判定和性质、垂径定理、圆周角定理、切线的性质等知识,解题的关键是正确现在在相似三角形解决问题,属于中考选择题中的压轴题.15.B解析:B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】120 000 000=1.2×108,故选:B.【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二、填空题16.y=x2+2【解析】分析:先确定二次函数y=x2﹣1的顶点坐标为(0,﹣1),再根据点平移的规律得到点(0,﹣1)平移后所得对应点的坐标为(0,2),然后根据顶点式写出平移后的抛物线解析式.详解析:y=x2+2【解析】分析:先确定二次函数y=x2﹣1的顶点坐标为(0,﹣1),再根据点平移的规律得到点(0,﹣1)平移后所得对应点的坐标为(0,2),然后根据顶点式写出平移后的抛物线解析式.详解:二次函数y=x2﹣1的顶点坐标为(0,﹣1),把点(0,﹣1)向上平移3个单位长度所得对应点的坐标为(0,2),所以平移后的抛物线解析式为y=x2+2.故答案为y=x2+2.点睛:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.17.-22【解析】【分析】先确定的整数部分的规律,根据题意确定算式的运算规律,再进行实数运算. 【详解】解:观察数据12=1,22=4,32=9,42=16,52=25,62=36的特征,得出数解析:-22【解析】【分析】2020的整数部分的规律,根据题意确定算式-+-+⋅⋅⋅⋅⋅⋅+-的运算规律,再进行实数运算.【详解】解:观察数据12=1,22=4,32=9,42=16,52=25,62=36的特征,得出数据1,2,3,4 (2020)中,算术平方根是1的有3个,算术平方根是2的有5个,算数平方根是3的有7个,算数平方根是4的有9个,…其中432=1849,442=1936,452=2025,所以在、⋅⋅⋅⋅⋅⋅中,算术平方根依次为1,2,3……43的个数分别为3,5,7,9……个,均为奇数个,最大算数平方根为44的有85个,所以-+-+⋅⋅⋅⋅⋅⋅+-=1-2+3-4+…+43-44= -22【点睛】本题考查自定义运算,通过正整数的算术平方根的整数部分出现的规律,找到算式中相同加数的个数及符号的规律,方能进行运算.18.相交【解析】【分析】由圆的半径为4,圆心O到直线l的距离为2,利用直线和圆的位置关系,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【详解】解:∵⊙O的半径为4,圆心O到直线L的解析:相交【解析】【分析】由圆的半径为4,圆心O到直线l的距离为2,利用直线和圆的位置关系,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【详解】解:∵⊙O的半径为4,圆心O到直线L的距离为2,∵4>2,即:d<r,∴直线L与⊙O的位置关系是相交.故答案为:相交.【点睛】本题考查知道知识点是圆与直线的位置关系,若d<r,则直线与圆相交;若d>r,则直线与圆相离;若d=r,则直线与圆相切.19.-3【解析】【分析】观察A(3,﹣2),B(﹣9,﹣2)两点坐标特征,纵坐标相等,可知A,B两点关于抛物线对称轴对称,对称轴为经过线段AB中点且平行于y轴的直线.【详解】解:∵ A(3,﹣解析:-3【解析】【分析】观察A(3,﹣2),B(﹣9,﹣2)两点坐标特征,纵坐标相等,可知A,B两点关于抛物线对称轴对称,对称轴为经过线段AB中点且平行于y轴的直线.【详解】解:∵ A(3,﹣2),B(﹣9,﹣2)两点纵坐标相等,∴A,B两点关于对称轴对称,根据中点坐标公式可得线段AB的中点坐标为(-3,-2),∴抛物线的对称轴是直线x= -3.【点睛】本题考查二次函数图象的对称性及对称轴的求法,常见确定对称轴的方法有,已知解析式则利用公式法确定对称轴,已知对称点利用对称性确定对称轴,根据条件确定合适的方法求对称轴是解答此题的关键.20.【解析】抛物线的对称轴为:x=1,∴当x>1时,y 随x 的增大而增大.∴若x1>x2>1 时,y1>y2 .故答案为>解析:12y y >【解析】抛物线()2y x 11=-+的对称轴为:x=1,∴当x>1时,y 随x 的增大而增大.∴若x 1>x 2>1 时,y 1>y 2 .故答案为> 21..【解析】【分析】根据平行四边形的性质和角平分线的性质,得出边的关系,进而利用相似三角形的性质求解.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠AFB =∠EBC ,∵B 解析:38.【解析】【分析】根据平行四边形的性质和角平分线的性质,得出边的关系,进而利用相似三角形的性质求解.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠AFB =∠EBC ,∵BF 是∠ABC 的角平分线,∴∠EBC =∠ABE =∠AFB ,∴AB =AF ,∴35AB AF BC BC ==, ∵AD ∥BC ,∴△AFE ∽△CBE , ∴35AF EF BC BE ==, ∴38EF BF =; 故答案为:38. 【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知平行四边形的性质、角平分线的性质及相似三角形的判定定理.22.1【解析】【分析】方程的根即方程的解,就是能使方程两边相等的未知数的值,利用方程解的定义就可以得到关于k 的方程,从而求得k 的值.【详解】把x =2代入方程得:4k−2−2=0,解得k =1故解析:1【解析】【分析】方程的根即方程的解,就是能使方程两边相等的未知数的值,利用方程解的定义就可以得到关于k 的方程,从而求得k 的值.【详解】把x =2代入方程得:4k−2−2=0,解得k =1故答案为:1.【点睛】本题主要考查了方程的根的定义,是一个基础的题目.23.54【解析】【分析】连接AD ,根据圆周角定理得到∠ADF=90°,根据五边形的内角和得到∠ABC=∠C=108°,求得∠ABD=72°,由圆周角定理得到∠F=∠ABD=72°,求得∠FAD=1解析:54【解析】【分析】连接AD,根据圆周角定理得到∠ADF=90°,根据五边形的内角和得到∠ABC=∠C=108°,求得∠ABD=72°,由圆周角定理得到∠F=∠ABD=72°,求得∠FAD=18°,于是得到结论.【详解】连接AD,∵AF是⊙O的直径,∴∠ADF=90°,∵五边形ABCDE是⊙O的内接正五边形,∴∠ABC=∠C=108°,∴∠ABD=72°,∴∠F=∠ABD=72°,∴∠FAD=18°,∴∠CDF=∠DAF=18°,∴∠BDF=36°+18°=54°,故答案为54.【点睛】本题考查正多边形与圆,圆周角定理等知识,解题的关键灵活运用所学知识解决问题.24.【解析】【分析】这个式子先移项,变成x2=9,从而把问题转化为求9的平方根.【详解】解:移项得x2=9,解得x=±3.故答案为.【点睛】本题考查了解一元二次方程-直接开平方法,解这x=±解析:3【解析】【分析】这个式子先移项,变成x2=9,从而把问题转化为求9的平方根.【详解】解:移项得x 2=9,解得x =±3.故答案为3x =±.【点睛】本题考查了解一元二次方程-直接开平方法,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x 2=a (a ≥0)的形式,利用数的开方直接求解.注意:(1)用直接开方法求一元二次方程的解的类型有:x 2=a (a ≥0);ax 2=b (a ,b 同号且a ≠0);(x +a )2=b (b ≥0);a (x +b )2=c (a ,c 同号且a ≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.25.【解析】【分析】根据题意,将问题转化为解一元二次方程的求解问题即可得出答案.【详解】解:设BP=x ,则AP=4-x ,根据题意可得,,整理为:,利用求根公式解方程得:,∴,(舍去).解析:(6-【解析】【分析】根据题意,将问题转化为解一元二次方程的求解问题即可得出答案.【详解】解:设BP=x ,则AP=4-x , 根据题意可得,444x x x -=-, 整理为:212160x x -+=,利用求根公式解方程得:1212x 622±±===±,∴16x =-264x =+>(舍去).故答案为:6-【点睛】本题考查的知识点是由实际问题抽化出来的一元二次方程问题,将问题转化为一元二次方程求解问题,熟记一元二次方程的求根公式是解此题的关键.26.【解析】过点A作AE⊥AO,并使∠AEO=∠ABC,先证明,由三角函数可得出,进而求得,再通过证明,可得出,根据三角形三边关系可得:,由勾股定理可得,求出BE 的最大值,则答案即可求出.解析:41383+ 【解析】【分析】 过点A 作AE ⊥AO,并使∠AEO =∠ABC,先证明ABC AEO ∆∆,由三角函数可得出23AO AE =,进而求得6AE =,再通过证明AEB AOC ∆∆,可得出23OC BE =,根据三角形三边关系可得:BE OE OB ≤+,由勾股定理可得213OE =,求出BE 的最大值,则答案即可求出.【详解】解:过点A 作AE ⊥AO,并使∠AEO =∠ABC,∵OAE BAC AEO ABC ∠=∠⎧⎨∠=∠⎩, ∴ABC AEO ∆∆,∴tan AC AO B AB AE ∠==, ∵213sin B ∠=, ∴2213313cos 11313B ⎛⎫∠=-= ⎪ ⎪⎝⎭, ∴213sin 213tan cos 3313B B n B ∠∠===∠, ∴23AO AE =,∴6AE =,∵90,90EAB BAO OAC BAO ∠+∠=︒∠+∠=︒,∴ =EAB OAC ∠∠, 又∵AC AO AB AE=, ∴AEB AOC ∆∆, ∴23OC AC BE AB ==, ∴23OC BE =, 在△OEB 中,根据三角形三边关系可得:BE OE OB ≤+,∵OE ===,∴4OE OB +=,∴BE 的最大值为:4,∴OC 的最大值为:()284333=+. 【点睛】本题主要考查了三角形相似的判定和性质、三角函数、勾股定理及三角形三边关系,解题的关键是构造直角三角形. 27.-4【解析】【分析】先由方程的解的含义,得出m2-2m-3=0,变形得m2-2m=3,再将要求的代数式提取公因式-2,然后将m2-2m=3代入,计算即可.【详解】解:∵m 是关于x 的方程x2解析:-4【解析】【分析】先由方程的解的含义,得出m 2-2m-3=0,变形得m 2-2m=3,再将要求的代数式提取公因式-2,然后将m 2-2m=3代入,计算即可.【详解】解:∵m 是关于x 的方程x 2-2x-3=0的解,∴m 2-2m-3=0,∴m 2-2m=3,∴4m-2m 2+2= -2(m2-2m)+2= -2×3+2= -4.故答案为:-4.【点睛】本题考查了利用一元二次方程的解的含义在代数式求值中的应用,明确一元二次方程的解的含义并将要求的代数式正确变形是解题的关键.28.2+2【解析】【分析】作AD⊥OB于点D,根据题目条件得出∠OAD=60°、∠DAB=45°、OA=4km,再分别求出AD、OD、BD的长,从而得出答案.【详解】如图所示,过点A作AD⊥O解析:23+2【解析】【分析】作AD⊥OB于点D,根据题目条件得出∠OAD=60°、∠DAB=45°、OA=4km,再分别求出AD、OD、BD的长,从而得出答案.【详解】如图所示,过点A作AD⊥OB于点D,由题意知,∠AOD=30°,OA=4km,则∠OAD=60°,∴∠DAB=45°,在Rt△OAD中,AD=OAsin∠AOD=4×sin30°=4×12=2(km),OD=OAcos∠AOD=4×cos30°=433km),在Rt△ABD中,BD=AD=2km,∴OB=OD+BD=32(km),故答案为:32.【点睛】本题主要考查解直角三角形的应用−方向角问题,解题的关键是构建合适的直角三角形,并熟练运用三角函数进行求解.29.【解析】【分析】设BE=x,CF=y,则EC=5﹣x,构建二次函数了,利用二次函数的性质求出CF的最大值,求出DF的最小值即可解决问题.【详解】解:设BE=x,CF=y,则EC=5﹣x,解析:25 4【解析】【分析】设BE=x,CF=y,则EC=5﹣x,构建二次函数了,利用二次函数的性质求出CF的最大值,求出DF的最小值即可解决问题.【详解】解:设BE=x,CF=y,则EC=5﹣x,∵AE⊥EF,∴∠AEF=90°,∴∠AEB+∠FEC=90°,而∠AEB+∠BAE=90°,∴∠BAE=∠FEC,∴Rt△ABE∽Rt△ECF,∴ABEC=BECF,∴55x-=xy,∴y=﹣15x2+x=﹣15(x﹣52)2+54,∵﹣15<0,∴x=52时,y有最大值54,∴CF的最大值为54,∴DF的最小值为5﹣54=154,∴AF 254,。
2021-2022学年江苏省扬州市高邮市九年级上学期数学期末考试题及答案一、选择题(每题3分,共24分.)1. 若,则的值是( ) 2a b =a a b +A.B. C. D. 3122332【答案】B【解析】 【分析】由可得a=2b ,代入约分化简即可. 2a b =a a b+【详解】解:∵, 2a b =∴a=2b, ∴=, a a b +222233b b b b b ==+故选B .【点睛】本题考查了分式的约分,根据分式的基本性质把分子、分母中除1以外的公因式约去,叫做分式的约分.2. 比赛中“去掉一个最高分,去掉一个最低分”后,一定不会发生变化的统计量是( )A. 平均数B. 众数C. 中位数D. 极差 【答案】C【解析】【分析】根据平均数,众数,极差,中位数的概念可得:比赛中“去掉一个最高分,去掉一个最低分”后,不会影响中间数排序的位置,从而可得中位数不会发生改变,而众数,平均数与极差都有可能变化,从而可得答案.【详解】解:比赛中“去掉一个最高分,去掉一个最低分”后,可得总分发生变化,数据的个数也发生变化,所以平均数也可能发生变化, 众数也可能发生变化,极差也可能发生变化,而最高分与最低分去掉后,不会影响中间数排序的位置,所以不会发生变化的是中位数, 故选C【点睛】本题考查的是平均数,众数,中位数,极差的含义,掌握以上基本概念是解本题的关键.3. 下列各项中,方程的两个根互为相反数的是( )A. B. C. D. 210x +=210x -=20x x +=20x x -=【答案】B【解析】【分析】设方程的两个根分别为,根据互为相反数的定义得到,即方程中12,x x 120x x +=一次项系数为0,分别解方程,,即可得到答案.210x +=210x -=【详解】解:设方程的两个根分别为,12,x x ∵方程的两个根互为相反数,∴,即二次项系数为1的方程中一次项系数为0,120x x +=排除选项C 、D ,∵,210x +=∴,方程无解;选项A 不符合题意;21x =-∵,210x -=∴,121,1x x ==-故选:B .【点睛】此题考查了互为相反数的定义,解一元二次方程,一元二次方程根与系数的关系正确掌握解一元二次方程的方法是解题的关键.4. 如图,已知OB ,OD 是的半径,BC 、CD 、DA 是的弦,连接AB ,若O O ,则度数为( )100BOD ∠=︒BCD ∠A. 100°B. 120°C. 130°D. 140°【答案】C【解析】 【分析】先根据圆周角定理求出∠A,再根据圆内接四边形的对角互补求出即可.BCD ∠【详解】解:∵,100BOD ∠=︒∴∠A=∠BOD=50°,12∴∠BCD=180°-50°=130°,故选C .【点睛】此题考查了圆周角定理,熟练掌握圆周角定理是解答本题的关键,同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半.也考查了圆内接四边形的对角互补.5. 如图,已知中,,,若,于点E ,则ABC 10AB AC ==16BC =BD DC =DE AB ⊥( )tan BDE ∠=A. B. C. D. 35533443【答案】D【解析】【分析】连接AD ,由题意易得AD⊥BC,然后可得,进而根据三角函数可BAD BDE ∠=∠进行求解.【详解】解:连接AD ,如图所示:∵,BD=DC ,10AB AC ==∴AD⊥BC,∵,DE AB ⊥∴,90ADB DEB ∠=∠=︒∴,即,90BAD B BDE B ∠+∠=∠+∠=︒BAD BDE ∠=∠∵,,16BC =BD DC =∴,8BD DC ==∴在Rt△ADB 中,,6AD ==∴; 4tan tan 3BD BDE BAD AD ∠=∠==故选D . 【点睛】本题主要考查等腰三角形的性质、勾股定理及三角函数,熟练掌握等腰三角形的性质、勾股定理及三角函数是解题的关键.6. 如图,在下列四个条件:①∠B=∠C,②∠ADB=∠AEC,③AD:AC=AE:AB,④PE:PD=PB:PC 中,随机抽取一个能使△BPE∽△CPD 的概率是( )A. 0.25B. 0.5C. 0.75D. 1 【答案】C【解析】【分析】根据已知及相似三角形的判定方法进行分析,再直接由概率公式求解即可.【详解】解:∵∠BPE=∠CPD,①当∠B=∠C,则△BPE∽△CPD 成立,①符合题意;②当∠ADB=∠AEC,即∠CDP=∠BEP,则△BPE∽△CPD 成立,②符合题意;③当AD:AB=AE:AC ,又∠A 公共,则△ACE∽△ABD,∴∠B=∠C,∴△BPE∽△CPD 才成立;而当AD:AC=AE:AB ,就不能推出△BPE∽△CPD,③不符合题意;④当PE:PD=PB:PC ,则△BPE∽△CPD 成立,④符合题意;四个选项中有三个符合题意,∴随机抽取一个能使△BPE∽△CPD 的概率是0.75, 34=故选:C .【点睛】本题考查了概率公式,相似三角形的判定,①有两个对应角相等的三角形相似;②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似.7. 已知m 、n 是两个不相等的实数根,若,则m 满足的条件是2250x x --=m n <( )A. B. C. D. 32m -<<-21m -<<-10m -<<01m <<【答案】B【解析】【分析】先利用公式法求出方程的两根,可得 ,再求出的取值范围,即1m =1可求解.【详解】解:∵,2250x x --= ,()()2245240∆=--⨯-=>解得:,1211x x =+=-∵m、n 是两个不相等的实数根, ,2250x x --=m n <∴ ,1m =∵ , 23<<∴,32-<<-∴,即.211-<<-21m -<<-故选:B【点睛】本题主要考查了解一元二次方程,无理数的估算,熟练掌握一元二次方程的解法是解题的关键.8. 已知二次函数,若时,函数的最大值与最小值()2220y ax ax a a =-++≠12x -≤≤的差为4,则a 的值为( )A. 1B. -1C.D. 无法确±1定【答案】C【解析】【分析】分a >0或a <0两种情况讨论,求出y 的最大值和最小值,即可求解;【详解】当a >0时,∵对称轴为x=, 212a a--=当x=1时,y 有最小值为2,当x=3时,y 有最大值为4a+2,∴4a+2-2=4.∴a=1,当a <0时,同理可得y 有最大值为2; y 有最小值为4a+2,∴2-(4a+2)=4,∴a=-1,综上,a 的值为±1故选:C【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征等知识,利用分类思想解决问题是本题的关键.二、填空题(每题3分,共30分.)9. 若一组数据7,3,5,,2,9的众数为7,则这组数据的中位数是__________.x 【答案】6【解析】【分析】根据众数为7可得x=7,然后根据中位数的概念求解.【详解】解:∵这组数据众数为7,∴x=7,这组数据按照从小到大的顺序排列为:2,3,5,7,7,9, 则中位数为:, 5762+=故答案为:6.【点睛】本题考查了中位数的知识:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.10. 在Rt△ABC 中,∠C=90°,sinA =,则tanA =_____. 45【答案】 43【解析】【分析】根据已知条件设出直角三角形一直角边与斜边的长,再根据勾股定理求出另一直角边的长,运用三角函数的定义解答.【详解】由sinA =知,可设a =4x ,则c =5x ,b =3x , 45∴tanA==. a 4x b 3x =43故答案为. 43【点睛】本题考查了同角三角函数的关系.求锐角的三角函数值的方法:利用锐角三角函数的定义,通过设参数的方法求三角函数值,或者利用同角(或余角)的三角函数关系式求三角函数值.11. 二次函数的图像不经过第______象限.241y x x =-+-【答案】二【解析】【分析】根据题目中的函数解析式和二次函数的性质可以得到该函数图象不经过哪个象限.【详解】解:∵y=-x 2+4x-1=-(x-2)2+3,∴该函数图象的顶点坐标为(2,3)且经过点(0,-1),函数图象开口向下,∴该函数图象不经过第二象限,故答案为:二.【点睛】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.12. 如图,已知的半径,若弦AB 垂直平分OC ,则______cm .C 2cm OC =AB =【答案】【解析】【分析】连接OA ,如图,先利用弦AB 垂直平分OC 得到OD=cm ,,根1OC 12=OC AB ⊥据垂径定理得到AD=BD ,然后根据勾股定理计算出AD ,也就也可以求出AB=2AD=.【详解】连接OA ,如图∵弦AB 垂直平分OC ,垂足为D ,∴,. 11cm 2OD OC ==OC AB ⊥∴AD=BD,在中,t R OAD ∵OA=2cm,OD=1cm .∴cm ,AD ==∴AB=2AD=.故答案为:【点睛】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考察了勾股定理的相关内容.13. 无人机驾驶员已正式成为国家认可的新职业,2019年底至2021年底,我国拥有民用无人机驾驶执照的人数从2.44万人增加到6.72万人.若设2019年底至2021年底,我国拥有民用无人机驾驶执照人数的年平均增长率为x ,则可列出关于x 的方程为______.【答案】()22.441 6.72x +=【解析】【分析】设用无人机驾驶执照人数的年平均增长率为x ,根据“用无人机驾驶执照的人数从2.44万人增加到6.72万人.”列出方程,即可求解.【详解】解:设用无人机驾驶执照人数的年平均增长率为x ,根据题意得: .()22.441 6.72x +=故答案为:()22.441 6.72x +=【点睛】本题主要考查了一元二次方程的应用,明确题意,准确得到等量关系是解题的关键.14. 如图,四边形EFGH 与四边形ABCD 关于点O 位似,且OE=2AE ,则四边形EFGH 与四边形ABCD 的面积比为______.【答案】4:9【解析】【分析】根据题意求出两个相似多边形的相似比,根据相似多边形的性质解答.【详解】解:∵四边形ABCD 与四边形EFGH 位似,位似中心点是点O ,且OE=2AE , ∴, 23OE EF OA AB ==则, 22(23(49EFGH ABCD S EF S AB ===四边形四边形故答案为:4:9.【点睛】本题考查的是位似变换的性质,掌握位似图形与相似图形的关系、相似多边形的性质是解题的关键.15. 个圆锥的主视图为边长等于的等边三角形,则这个圆锥的侧面积为_________.4cm 2cm【答案】8π【解析】【分析】根据视图的意义得到圆锥的母线长和底面圆的直径为,然后根据圆锥的侧面4cm 展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,利用扇形的面积公式求解即可.【详解】解:根据题意得圆锥的母线长为,底面圆的直径为,4cm 4cm ∴底面圆的周长,4cm ππ==d ∴这个圆锥的侧面积=, 21448cm 2ππ=⨯⨯=故答案为:.8π【点睛】本题考查了三视图和圆锥的侧面积计算,熟练掌握圆锥的侧面积的计算公式是解题的关键.16. 若关于x 的方程有两个不相等的正整数根,则整数m 的值为()2330mx m x +--=______.【答案】-1【解析】【分析】用公式法解方程,得出方程的解,根据有两个不相等的正整数根,求出整数m 的值即可.【详解】解:由题意可知:Δ=(3﹣m)2﹣4m×(﹣3)=m 2+6m+9=(m+3)2≥0,∴x=1或x =﹣, 3m由方程有两个不相等的正整数根,可知:m =﹣1,故答案为:﹣1【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.17. 如图,已知A 、B 、C 三点的坐标分别是、、,过点C 作直线()1,1-()2,0()0,2l y ⊥轴,若点P 为直线l 上一个动点,且的面积为5,则点P 的坐标是______.ABP △【答案】或##或()6,2-()14,2()14,2()6,2-【解析】【分析】设P (m ,2),过A 作AE⊥直线l 于点E ,延长AB 与l 交于点D ,根据S △PAB =S △PAD −S △PBD 列出m 的方程,进行解答便可.【详解】解:设P (m ,2),过A 作AE⊥直线l 于点E ,延长AB 与l 交于点D ,如图,∴E(1,2)∵A(1,-1)、B (2,0)设直线AB 的解析式为y=kx+b ,把A (1,-1)、B (2,0)代入上式得,120k b k b +=-⎧⎨+=⎩解得 12k b =⎧⎨=-⎩∴直线AB 的解析式为y=x-2,当y=2时,2=x-2,则x=4, ∴D(4,2), ∴ED=3,PD=|4 –m|, ∴S △PAB =S △PAD −S △PBD =, 113|4|2|4|522m m ⨯⨯--⨯⨯-=∴|4|10m -=∴ 410,410m m -=-=-解得,m=-6或14, ∴P(-6,2)或(14,2). 故答案为:(-6,2)或(14,2).【点睛】本题主要考查了三角形的面积计算,图形与坐标特征,关键是根据S △PAB =S △PAD −S △PBD 列出方程解答.18. 已知平面直角坐标系中,点P 的坐标为,若二次函数的图()2,1--242y x x m =-++像与线段OP 有且只有一个公共点,则m 满足的条件是______. 【答案】 152m -≤≤-【解析】【分析】分别把点, 代入二次函数,可得 ,()0,0()2,1--242y x x m =-++2m =- 即可求解.15m =-【详解】解:如图,把点 代入,得: , ()0,0242y x x m =-++2m =-把点 代入,得: ,()2,1--242y x x m =-++15m =-∴当时,二次函数的图像与线段OP 有且只有一个公共点, 152m -≤≤-242y x x m =-++∴二次函数的图像与线段OP 有且只有一个公共点, m 满足的条件是242y x x m =-++.152m -≤≤-故答案为:152m -≤≤-【点睛】本题主要考查了二次函数的图象和性质,熟练掌握二次函数的图象和性质是解题的关键.三、解答题(本大题共有10小题,共96分.解答时应写出文字说明、证明过程或演算步骤)19. (1)计算:; 2cos30tan 60︒+︒(2)解方程:.2410x x -+=【答案】(1)-1;(2), 12x =+22x =-【解析】【分析】(1)根据三角函数定义、绝对值概念及算术平方根的概念逐个求解即可; (2)根据一元二次方程的求根根式解方程即可.【详解】解:(1)原式21=--1=+--.1=-(2)由题意可知:,1,4,1a b c ==-=,241641112b ac ∆=-=-⨯⨯=∴ 12x ===+22x ===【点睛】本题考查了特殊角的三角函数,二次根式的混合运算,一元二次方程的解法等,属于基础题,计算过程中细心即可.20. 为了了解我市两家公司员工的收入情况,某数学兴趣小组的同学对甲、乙两家公司员工月收入进行了一项抽样调查,并将两家公司10名员工月收入(单位:千元)情况进行整理得到下边两幅统计图:根据以上信息,整理分析数据如表:平均月收入/千元中位数 众数 方差 甲公司 a 6.5 6 1.8 乙公司 7b7c(1)填空:______;______. =a b =(2)求c 的值;(3)某位同学的叔叔决定从两家公司中选择一家去上班,你建议他选哪家公司?说明理由.【答案】(1)7,7 (2)1.4 (3)选乙公司,理由见解析 【解析】【分析】(1)利用平均数、中位数的定义分别计算后即可确定正确的答案; (2)利用方差的计算公式进行计算后即可确定正确的答案;(3)根据平均数一样,中位数及众数的大小和方差的大小进行选择即可. 【小问1详解】甲公司员工月收入6千元占比为:110%10%20%20%40%----=甲公司员工的平均月收入为:(千元) 510%640%710%820%910%7⨯+⨯+⨯+⨯+⨯=∴7a =乙公司员工月收入从小至大排列为:5,5,7,7,7,7,7,8,8,9, ∴中位数为7 ∴7b =故答案为:7,7 【小问2详解】 ∵ 7x =∴ 222221[(57)2(77)5(87)2(97)] 1.410S =-⨯+-⨯+-⨯+-=∴ 1.4c =【小问3详解】 选乙公司,理由如下:因为月收入平均数一样,中位数、众数乙公司大于甲公司,且乙公司方差小,更稳定. 【点睛】本题考查了求平均数、中位数、众数和方差,解题的关键是能够了解有关的计算公式.21. 在“庆元旦、迎新年”班级活动中,同学们准备了四个节目:A 唱歌、B 跳舞、C 说相声、D 弹古筝.并通过抽签的方式决定这四个节目的表演顺序. (1)第一个节目是说相声的概率是______; (2)求第二个节目是弹古筝的概率. 【答案】(1)14(2)14【解析】【分析】(1)直接根据概率公式即可求解;(2)根据题意画出树状图,得到共有12种等可能性,其中第二个节目是D 弹古筝的结果有3种,根据概率公式即可求解. 【小问1详解】解:第一个节目是说相声的概率是, 14故答案为:; 14【小问2详解】 解:画树状图如下:由树状图得共有12种等可能性,其中第二个节目是D 弹古筝的结果有3种, ∴第二个节目是弹古筝的概率是. 31=124【点睛】本题考查了列举法求概率,熟知概率公式,并根据题意利用树状图或画表格列举出所有等可能结果是解题关键.22. 在平面直角坐标系中,过格点A 、B 、C 作一圆弧,每个网格设单位长度为1,如图:(1)该圆弧所在圆的圆心P 的坐标为______; (2)求弧AB 的长(结果保留π)(3)点D 是上一点,连接AD 、BD ,则______. BCsin D =【答案】(1) ()2,2(2(3 【解析】【分析】(1)连接AC ,由∠ABC=90°,结合90°的圆周角所对的弦为直径得到AC 为圆P 的直径,进而求出AC 的中点即为圆P 的圆心;(2)连接BP 、AP ,再由弧长公式即可求解; (3)过圆心P 作PH⊥AB 于H ,由同弧所对的圆周角等于圆心角的一半得到∠D=∠BPA,再12由垂径定理得到∠BPH=∠BPA,进而得到∠D=∠BPH=45°,最后12sin sin BH D BPH BP =∠==【小问1详解】解:由题意可知:连接AC ,如下图所示:∵∠ABC=90°, ∴AC 为圆P 的直径, 且A(1,1),C(3,3),故AC 的中点圆心P 的坐标为(2,2); 【小问2详解】解:连接BP 、AP ,如下图所示:则∠BPA=90°,圆P=由弧长公式可知:; 90180ABπ=⨯=【小问3详解】解:过圆心P 作PH⊥AB 于H ,如下图所示:由同弧所对的圆周角等于圆心角的一半可知:∠D=∠BPA, 12由垂径定理可知:∠BPH=∠BPA=×90°=45°, 1212∴∠D=∠BPH=45°,且1,BH BP ==∴. sin sin BH D BPH BP =∠==【点睛】本题考查了垂径定理、圆周角定理及其推论,属于基础题,熟练掌握圆周角定理及其推论是解决本题的关键.23. 如图,将绕点A 旋转至的位置,点恰好在BC 上,AC 与交于点ABC A B C '''V B 'B C ''E ,连接.CC '(1)求证:; EC EB EC EA'='(2)求证:. ABB ACC ''∽△△【答案】(1)见解析 (2)见解析 【解析】【分析】(1)利用两个角相等证明△AEC′∽△B'EC 即可; (2)证明∠B=∠AC′C,利用两个角相等证明相似即可; 【小问1详解】证明:由旋转的性质可知:∠AC′B′=∠ACB, ∵∠AEC′=∠B′EC, ∴△AEC'∽△B'EC, ∴. EC EB EC EA'='【小问2详解】证明:由旋转的性质可知:∠BAB′=∠CAC′,AB =AB′,AC′=AC , ∴∠B=∠AB′B=180°-∠BAB′,∠AC′C=∠ACC′=180°-∠CAC′,∴∠B=∠AC′C, ∴△ABB′∽△ACC′.【点睛】本题考查相似三角形的判定与性质,旋转的性质,解题的关键是熟练运用相似三角形的性质与判定以及旋转的性质,本题属于基础题型.24. 始建于1375年的孟城驿是目前全国规模最大、保存最完好的古代驿站,小明为测量盂城驿中的鼓楼高度,采用如下方法:如图,首先站在鼓楼AB 正对面C 处,用测角仪测得鼓楼的最高处A 的仰角为43°,再向前走了1米到E 处,测得最高处A 的仰角为45°,已知测角仪的高度为1米.请你根据以上信息,求出鼓楼的高度AB .(结果保留一位小数,参考数据:,,)sin 430.68︒≈cos 430.73︒≈tan 430.93︒≈【答案】14.3 【解析】【分析】过点F 作FG⊥AB 于点G ,根据题意可得BG=EF=CD=1米,DF=CE=1米,FG=BE ,点D 、F 、G 三点共线,∠AFG=45°,∠ADG=43°,可得AG=FG ,设 米,则 米,AG x =FG x = 米,在 中,利用锐角三角函数,即可求解.()1DG x =+Rt ADG 【详解】解:如图,过点F 作FG⊥AB 于点G ,根据题意得:BG=EF=CD=1米,DF=CE=1米,FG=BE ,点D 、F 、G 三点共线,∠AFG=45°,∠ADG=43°, ∵FG⊥AB, ∴∠FAG=45°, ∴∠FAG=∠AFG, ∴AG=FG,设 米,则 米, 米, AG x =FG x =()1DG x =+在 中, , Rt ADG tan AGADG DG∠=∴,解得: , 0.931xx ≈+13.3x ≈∴ 米, 14.3AB AG BG =+≈答:鼓楼的高度AB 约为14.3米.【点睛】本题主要考查了解直角三角形的实际应用,正确构造直角三角形是解题的关键. 25. 如图,在中,,BO 平分,交AC 于点O ,以点O 为圆心,Rt ABC △90ACB ∠=︒ABC ∠OC 长为半径画.O(1)求证:AB 是的切线; O (2)若,,求的半径. 3AO =1tan 3OBC ∠=O 【答案】(1)见解析 (2)2.4. 【解析】【分析】(1)过O 作OD⊥AB 交AB 于点D ,先根据角平分线的性质求出DO=CO ,再根据切线的判定定理即可得出答案;(2)设圆O 的半径为r ,即OC=r ,由得BC=3r ,由勾股定理求得1tan 3OBC ∠=,根据方程求解即可. 222(3(3)(3)r r r +=++【小问1详解】如图所示:过O 作OD⊥AB 交AB 于点D .∵OC⊥BC,且BO 平分∠ABC,∴OD=OC, ∵OC 是圆O 的半径 ∴AB 与圆O 相切. 【小问2详解】设圆O 的半径为r ,即OC=r , ∵ 1tan 3OBC ∠=∴13OC r BC BC ==∴=3BC r ∵OC⊥BC,且OC 是圆O 的半径 ∴BC 是圆O 的切线, 又AB 是圆O 的切线, ∴BD=BC=3r在中, Rt OAD ∆3OD r AO ==,∴AD =∴3AB r =+在中, Rt ABC ∆222AB BC AC =+∴ 222(3(3)(3)r r r +=++整理得,253360r r +-=解得,,(不合题意,舍去) 1 2.4r =23r =-∴的半径为2.4O 【点睛】此题主要考查了复杂作图以及切线的判定等知识,正确把握切线的判定定理是解题关键.26. 高邮双黄鸭蛋已入选全世界最值得品尝百种味道,某专卖店根据以往销售数据发现:高邮双黄鸭蛋每天销售数量y (盒)与销售单价x (元/盒)的关系满足一次函数,每盒高邮双黄鸭蛋各项成本合计为40元/盒.100=-+y x (1)若该专卖店某天获利800元,求销售单价x (元/盒)的值;(2)当销售单价x 定为多少元/盒时,该专卖店每天获利最大?最大利润为多少? (3)若该专卖店决定每销售一盒就捐出元给当地学校作为贫困学生的助学金,()15m m ≤当每天的销售量不低于25盒时,为了确保该店每天扣除捐出后的利润随着销售量的减小而增大,则m 的取值范围为______.【答案】(1)60或80(2)当销售单价x 定70元/盒时,该专卖店每天获利最大,最大利润,900元(3)1015m ≤≤【解析】【分析】(1)利用利润等于每天的销售额减去总成本,列出方程,即可求解;(2)设该专卖店每天获利 元,根据题意,列出函数关系式,再根据二次函数的性质,即w 可求解;(3)设该店每天扣除捐出后的利润为 元,每天销售量为 盒,则每盒的销售单价为y a 元/盒 ,每盒的利润为 元,根据题意列出关于的()100a -+()1004060a a -+-=-+y a 函数关系式,再根据二次函数的性质,即可求解.【小问1详解】解:根据题意得:,()()10040100800x x x -+--+=解得: ,1260,80x x ==答:若该专卖店某天获利800元,销售单价为60或80元/盒;【小问2详解】解:设该专卖店每天获利 元,根据题意得:w ,()()()2210040100140400070900w x x x x x x =-+--+=-+-=--+∴当销售单价x 定70元/盒时,该专卖店每天获利最大,最大利润,900元;【小问3详解】解:设该店每天扣除捐出后的利润为 元,每天销售量为 盒,则每盒的销售单价为w a 元/盒 ,每盒的利润为 元,根据题意得: ()100a -+()1004060a a -+-=-+ ,()()26060w a a ma a m a =-+-=-+-∵ ,10-<∴该图象开口向下,对称轴为: , 602m a -=根据题意得:当 时, 随 的减小而增大,25a ≥y a ∴ ,解得: , 60252m -≤10m ≥∵ ,15m ≤∴m 的取值范围为 .1015m ≤≤【点睛】本题主要考查了一元二次方程的应用,二次函数的应用,明确题意,准确得到等量关系是解题的关键.27. 定义:如图1,已知点M 是一次函数图像上的一个动点,的半径为2,线y =M 段OM 与交于点A .若点P 在上,且满足,则称点P 为的“等径M M 2PA =M 点”.(1)若点M 的横坐标为3时,的“等径点”的是______;M (2)若的“等径点”P 恰好在y 轴上,求圆心M 的坐标;M(3)若的“等径点”P 在二次函数的图像上,求点P 的坐标.M 2y x =++【答案】(1)或;((4,(2)或; (2,(2,--(3)或.(0,(3-+【解析】 【分析】(1)标出,作MH⊥x 轴,在圆M 上标出 , 使得以及,根据θ1P 2P 12P A =22PA =角度和垂径定理可知, ,,进而可由M 点坐标推出P 点坐标; 1PM x ∥轴2P A x ∥轴(2)在y轴上时,由(1)可知,∥x 轴,,进而可证四边形 1P 2AP 190PMH ∠=︒1OPMH 为矩形,由M 点横坐标可算出纵坐标;(3)P 点坐标为(a ,b )由(1)可知M 点坐标为(a +2,b ),将坐标代入函数解析式中可选出P 的坐标.【小问1详解】解:如图所示,标出,作MH⊥x 轴,在圆M 上标出 , 使得以及, θ1P 2P 12P A =22PA =∵中 y =k =tan y xθ==∴=60θ∠︒∴M 坐标为, y =(3∵MH⊥,交于点G ,2AP ∴AG=1,结合AM=2可知,∠OMH=30°,∴,260OMP ∠=︒∵, 12AP AP =∴ , 1260PMA AMP ∠=∠=︒∴, 190PMH ∠=︒∴ 的横坐标为3-2=1,纵坐标与M 相同,1P∴(1P 由①可知,且 ,260AMP ∠=︒=60θ∠︒∴,2AP x ∥轴∵MH⊥,2AP ∴,21GP =∴ 横坐标为3+1=4,2P且, cos30=2MG AM =⋅︒∴纵坐标为,2P∴, (24,P综上所述的坐标为或.2P ((4,【小问2详解】解:如图所示点在y轴上时,由(1)可知,∥x 轴,, 1P 2AP 190PMH ∠=︒∴,1PO OH ∥∴四边形 为矩形,1OPMH∴M 横坐标为2,M 纵坐标为2∴.(2,M 当圆M 在x 轴下方时,如图所示:同理可知M 点的横坐标为﹣2,∴M 点纵坐标为,2﹣﹣∴M 点坐标为,(2﹣,﹣综上所述M 点坐标为或.(2(2﹣,﹣【小问3详解】设:P 点坐标为(a ,b )由(1)可知M 点坐标为(a +2,b ),P 点在函数,M 点在,2y x =++y =∴代入联立得:,)22b a b a ⎧=++⎪⎨=+⎪⎩解得:或 , 0ab =⎧⎪⎨=⎪⎩3a b ⎧=⎪⎨=-⎪⎩∴P 的坐标为 或.(0,()3【点睛】本题考查平行四边形判定,三角函数,平面直角坐标系中点的坐标,圆的性质,能够构造合适的辅助线是解决本题的关键.28. 如图1,已知等边的边长为8,点D 在AC边上,,点P 是AB 边上的一ABC 2AD =个动点.(1)连接PC 、PD .①当______时,;AP =APD ACP ∽△△②若与相似,求AP 的长度;APD △BPC △(2)已知点Q 在线段PB 上,且.2PQ =①如图2,若与相似,则与之间的数量关系是______; APD △BQC ACQ ∠PDC ∠②如图3,若E 、F 分别是PD 、CQ 的中点,连接EF ,线段EF 的长是否是一个定值,若是,求出EF 的长,若不是,说明理由.【答案】(1)①4;②4或1.6(2)①或.120ACQ PDC ∠+∠=︒120PDC ACQ ∠-∠=︒【解析】【分析】(1)①根据相似三角形的判定,列出比例式求解即可;②分类讨论,根据相似三角形的性质列出比例式求解即可;(2)①根据相似三角形对应角相等,得出或,再结合BCQ APD ∠=∠BCQ ADP ∠=∠等边三角形的性质求解即可;②连接QE 并延长,使QE=EG ,连接DG ,CG ,作AH⊥BC 于H ,GI⊥BC 于I ,求出CG 长即可.【小问1详解】解:①∵,A A ∠=∠当时,; AP AD AC AP=APD ACP ∽△△∵等边的边长为8,,ABC 2AD =,解得,(负值舍去), 28AP AP=4AP =故答案为:4;②当时,APD BPC ∽△△,即,解得,; AP AD BP BC=288AP AP =- 1.6AP =当时,APD BCP ∽△△,即,解得,; AP AD BC BP =288AP AP=-4AP =AP 的长度为4或1.6.【小问2详解】解:①当时,,APD BQC ∽△△BCQ ADP ∠=∠∴,180PDC BCQ ∠+∠=︒∵,60BCQ ACQ ∠=︒-∠∴;120PDC ACQ ∠-∠=︒当时,,APD BCQ ∽△△BCQ APD ∠=∠∵,60PDC APD ∠=︒+∠∴,60PDC BCQ ∠=︒+∠∵,60BCQ ACQ ∠=︒-∠∴;120ACQ PDC ∠+∠=︒故答案为:或;120ACQ PDC ∠+∠=︒120PDC ACQ ∠-∠=︒②线段EF 的长是一个定值,理由如下:连接QE 并延长至G ,使QE=EG ,连接DG ,CG ,作AH⊥BC 于H ,GI⊥BC 于I ,∵QE=EG,PE=DE ,∠PEQ =∠DEG,∴△PEQ≌△DEG,∴DG=PQ=2,∠QPE =∠GDE,∴DG=AD=2,QP∥GD,∴∠DAP =∠GDA=60°,∴△GDA 是等边三角形,∴∠DAG=∠ACB=60°,GA=2,∴GA∥BC,∵AH⊥BC,GI⊥BC,∴HA∥GI,∴四边形HAGI是平行四边形,∴GA= HI =2,∵∵AH⊥BC,∴HC =4,HI =2,AH==GI=,,CG==∵F分别是CQ的中点,∴GC= 2EF,∴EF=【点睛】本题考查了相似三角形的性质与判定,全等三角形的判定与性质,勾股定理,等边三角形的性质与判定,解题关键是恰当作辅助线,利用全等三角形和相似三角形的判定与性质进行推理计算.。
扬州市数学九年级上册期末试题和答案一、选择题1.如图,矩形ABCD 的对角线交于点O ,已知CD a =,DCA β∠=∠,下列结论错误的是( )A .BDC β∠=∠B .2sin aAO β=C .tan BC a β=D .cos aBD β=2.已知34a b=(0a ≠,0b ≠),下列变形错误的是( ) A .34a b = B .34a b =C .43b a = D .43a b =3.已知关于x 的函数y =x 2+2mx +1,若x >1时,y 随x 的增大而增大,则m 的取值范围是( ) A .m ≥1B .m ≤1C .m ≥-1D .m ≤-14.如图,点I 是△ABC 的内心,∠BIC =130°,则∠BAC =( )A .60°B .65°C .70°D .80° 5.若关于x 的一元二次方程x 2-2x -k =0没有实数根,则k 的取值范围是( ) A .k >-1B .k≥-1C .k <-1D .k≤-16.如图,四边形ABCD 内接于⊙O ,已知∠A =80°,则∠C 的度数是( )A .40°B .80°C .100°D .120°7.sin30°的值是( )2228.已知一元二次方程x 2+kx-3=0有一个根为1,则k 的值为( ) A .−2B .2C .−4D .49.一枚质地匀均的骰子,其六个面上分别标有数字:1,2,3,4,5,6,投掷一次,朝上面的数字大于4的概率是( ) A .12B .13C .23D .1610.如图,ABC △内接于⊙O ,30BAC ∠=︒,8BC = ,则⊙O 半径为( )A .4B .6C .8D .1211.如图,AB 是O 的直径,AC 切O 于点A ,若70C ∠=︒,则AOD ∠的度数为( )A .40°B .45°C .60°D .70° 12.数据3、4、6、7、x 的平均数是5,这组数据的中位数是( )A .4B .4.5C .5D .6 13.已知一组数据2,3,4,x ,1,4,3有唯一的众数4,则这组数据的中位数是( ) A .2B .3C .4D .514.设()12,A y -,()21,B y ,()32,C y 是抛物线2(1)y x k =-++上的三点,则1y ,2y ,3y 的大小关系为( )A .123y y y >>B .132y y y >>C .231y y y >>D .312y y y >>15.如图,AB ,AM ,BN 分别是⊙O 的切线,切点分别为 P ,M ,N .若 MN ∥AB ,∠A =60°,AB =6,则⊙O 的半径是( )22二、填空题16.如图所示,在正方形ABCD 中,G 为CD 边中点,连接AG 并延长交BC 边的延长线于E 点,对角线BD 交AG 于F 点.已知FG =2,则线段AE 的长度为_____.17.已知矩形ABCD ,AB=3,AD=5,以点A 为圆心,4为半径作圆,则点C 与圆A 的位置关系为 __________.18.飞机着陆后滑行的距离s (单位:m )关于滑行的时间t (单位:s )的函数解析式是2200.5s t t =-,飞机着陆后滑行______m 才能停下来.19.当a≤x≤a+1时,函数y=x 2﹣2x+1的最小值为1,则a 的值为_____. 20.在△ABC 中,∠C =90°,cosA =35,则tanA 等于 . 21.如图,△ABC 中,AB >AC ,D ,E 两点分别在边AC ,AB 上,且DE 与BC 不平行.请填上一个你认为合适的条件:_____,使△ADE∽△ABC.(不再添加其他的字母和线段;只填一个条件,多填不给分!)22.一组数据:2,5,3,1,6,则这组数据的中位数是________. 23.关于x 的方程220kx x --=的一个根为2,则k =______. 24.若32x y =,则x y y+的值为_____. 25.一组数据3,2,1,4,x 的极差为5,则x 为______.26.当21x -≤≤时,二次函数22()1y x m m =--++有最大值4,则实数m 的值为________.27.如图,一块飞镖游戏板由大小相等的小正方形构成,向游戏板随机投掷一枚飞镖(飞镖每次都落在游戏板上),击中黑色区域的概率是_____.28.已知:二次函数y=ax 2+bx+c 图象上部分点的横坐标x 与纵坐标y 的对应值如表格所示,那么它的图象与x轴的另一个交点坐标是_____.x…﹣1012…y…0343…29.如图,将二次函数y=12(x-2)2+1的图像沿y轴向上平移得到一条新的二次函数图像,其中A(1,m),B(4,n)平移后对应点分别是A′、B′,若曲线AB所扫过的面积为12(图中阴影部分),则新的二次函数对应的函数表达是__________________.30.有4根细木棒,它们的长度分别是2cm、4cm、6cm、8cm.从中任取3根恰好能搭成一个三角形的概率是_____.三、解答题31.如图,在ABC∆中,AD是高.矩形EFGH的顶点E、H分别在边AB、AC上,FG在边BC上,6BC=,4=AD,23EF EH=.求矩形EFGH的面积.32.已知函数y=ax2+bx+c(a≠0,a、b、c为常数)的图像经过点A(-1,0)、B(0,2).(1)b=(用含有a的代数式表示),c=;(2)点O是坐标原点,点C是该函数图像的顶点,若△AOC的面积为1,则a=;(3)若x>1时,y<5.结合图像,直接写出a的取值范围.33.已知关于x的一元二次方程(a﹣1)x2﹣2x+1=0有两个不相等的实数根,求a的取值范围.34.如图,在矩形 ABCD 中,CE⊥BD,AB=4,BC=3,P 为 BD 上一个动点,以 P 为圆心,PB 长半径作⊙P,⊙P 交 CE、BD、BC 交于 F、G、H(任意两点不重合),(1)半径 BP 的长度范围为;(2)连接 BF 并延长交 CD 于 K,若 tan ∠KFC = 3 ,求 BP;(3)连接 GH ,将劣弧 HG 沿着 HG 翻折交 BD 于点 M ,试探究PMBP是否为定值,若是求出该值,若不是,请说明理由.35.为了从小华和小亮两人中选拔一人参加射击比赛,现对他们的射击水平进行测试,两人在相同条件下各射击6次,命中的环数如下(单位:环): 小华:7,8,7,8,9,9; 小亮:5,8,7,8,10,10. (1)填写下表:平均数(环) 中位数(环) 方差(环2) 小华 8 小亮83(2)根据以上信息,你认为教练会选择谁参加比赛,理由是什么?(3)若小亮再射击2次,分别命中7环和9环,则小亮这8次射击成绩的方差 .(填“变大”、“变小”、“不变”)四、压轴题36.如图,等边ABC 内接于O ,P 是AB 上任一点(点P 不与点A 、B 重合),连接AP 、BP ,过点C 作CMBP 交PA 的延长线于点M .(1)求APC ∠和BPC ∠的度数; (2)求证:ACM BCP △≌△;(3)若1PA =,2PB =,求四边形PBCM 的面积; (4)在(3)的条件下,求AB 的长度.37.如图, AB是⊙O的直径,点D、E在⊙O上,连接AE、ED、DA,连接BD并延长至∠=∠.点C,使得DAC AED(1)求证: AC是⊙O的切线;(2)若点E是BC的中点, AE与BC交于点F,=;①求证: CA CF②若⊙O的半径为3,BF=2,求AC的长.38.(2015秋•惠山区期末)如图,在平面直角坐标系中,半径为1的⊙A的圆心与坐标原点O重合,线段BC的端点分别在x轴与y轴上,点B的坐标为(6,0),且sin∠OCB=.(1)若点Q是线段BC上一点,且点Q的横坐标为m.①求点Q的纵坐标;(用含m的代数式表示)②若点P是⊙A上一动点,求PQ的最小值;(2)若点A从原点O出发,以1个单位/秒的速度沿折线OBC运动,到点C运动停止,⊙A 随着点A的运动而移动.①点A从O→B的运动的过程中,若⊙A与直线BC相切,求t的值;②在⊙A整个运动过程中,当⊙A与线段BC有两个公共点时,直接写出t满足的条件.39.如图,已知AB是⊙O的直径,AB=8,点C在半径OA上(点C与点O、A不重合),过点C作AB的垂线交⊙O于点D,连结OD,过点B作OD的平行线交⊙O于点E、交射线CD于点F.(1)若ED=BE,求∠F的度数:(2)设线段OC=a,求线段BE和EF的长(用含a的代数式表示);(3)设点C关于直线OD的对称点为P,若△PBE为等腰三角形,求OC的长.40.翻转类的计算问题在全国各地的中考试卷中出现的频率很大,因此初三(5)班聪慧的小菲同学结合2011年苏州市数学中考卷的倒数第二题对这类问题进行了专门的研究。
江苏省扬州市高邮市2020-2021学年九年级上学期期末数学试题学校_________ 班级__________ 姓名__________ 学号__________一、单选题1. 若一元二次方程(x﹣2)2=9可转化为两个一元一次方程,一个一元一次方程是x﹣2=3,则另一个一元一次方程是()A.x﹣2=3 B.x﹣2=﹣3 C.x+2=3 D.x+2=﹣32. 两年前,某校七(1)班的学生平均年龄为13岁,方差为3,若学生没有变动,则今年升为九(1)班的学生年龄中()A.平均年龄为13岁,方差改变B.平均年龄为15岁,方差不变C.平均年龄为15岁,方差改变D.平均年龄不变,方差不变3. 若直线l与半径为5的⊙O相交,则圆心O到直线l的距离d满足()A.d<5 B.d>5 C.d=5 D.d≤54. “翻开苏科版九年级上册《数学补充习题》,恰好翻到第586页”,这个事件是()A.随机事件B.必然事件C.不可能事件D.无法判断5. 已知,则锐角的取值范围是()A.B.C.D.6. 已知等腰△ABC的底角为75°,则下列三角形一定与△ABC相似的是()A.顶角为30°的等腰三角形B.顶角为40°的等腰三角形C.等边三角形D.顶角为75°的等腰三角形7. 已知二次函数y=x2﹣4x+m2+1(m是常数),若当x=a时,对应的函数值y <0,则下列结论中正确的是()A.a﹣4<0B.a﹣4=0C.a﹣4>0D.a与4的大小关系不能确定8. 若三条线段a、b、c的长满足,则将这三条线段首尾顺次相连()A.能围成锐角三角形B.能围成直角三角形C.能围成钝角三角形D.不能围成三角形二、填空题9. 一元二次方程x2+9x=0的较大的根为_____.10. 如图,点A、B、C均在⊙O上,点D在AB的延长线上,若∠CBD=74°,则∠AOC=_____°.11. 如图,CD是△ABC的高,若AB=10,CD=6,tan∠CAD=,则BD=_____.12. 如图,把一只篮球放在高为16cm的长方体纸盒中,发现篮球的一部分露出盒,其截图如图所示.若量得EF=24cm,则该篮球的半径为_____cm.13. 如图是高铁站自动检票口的双翼闸机,检票后双翼收起,通过闸机的物体的最大宽度为70cm,检票前双翼展开呈扇形CAP和扇形DBQ,若AC=BD=55cm,∠PCA=∠BDQ=30°,则A、B之间的距离为_____cm.14. 如图,若△ABC内接于⊙O,∠BAC=50°,的长是,则⊙O的半径是_____.15. 若点A(﹣,y1)、B(,y2)都在二次函数y=﹣x2+2x+m的图像上,则y1_____y2.16. 已知一组数据的方差S2=[(6﹣10)2+(9﹣10)2+(a﹣10)2+(11﹣10)2+(b﹣10)2]=6.8,则a2+b2的值为_____.17. 已知关于x的一元二次方程m﹣nx﹣m﹣3=0,对于任意实数n都有实数根,则m的取值范围是_____.18. 如图,Rt△ABC中,∠C=90°,∠A=30°,AB=20,点P是AC边上的一个动点,将线段BP绕点B顺时针旋转60°得到线段BQ,连接CQ,则在点P运动过程中,线段CQ的最小值为_____.三、解答题19. (1)解方程:x(x﹣6)=5(6﹣x);(2)计算:2sin60°+|﹣2|﹣cos45°.20. 如图,△ABC的顶点坐标分别为:A(1,0),B(3,0),C(0,1).(1)△ABC的外接圆圆心M的坐标为;(2)①以点M为位似中心,画出△DEF,使它与△ABC位似(点D与A对应),且相似比为2:1;②△DEF的面积为个平方单位.21. 国庆长假期间,兴趣小组随机采访了10位到高邮的游客使用“街兔”共享电动车的次数,得到了这10位游客1天内使用“街兔”共享电动车的次数,统使用次0 2 3 4 6数人数 1 1 4 3 1是次,众数是次,平均数是次;(2)若小明同学把统计表中的数据“6”错看成了“5”,则用“街兔”共享电动车的次数的中位数、众数、和平均数这三个统计量中不受影响的是;(填“中位数”、“众数”或“平均数”)(3)若国庆长假期间,每天约有1200位游客到高邮,试估计这些游客7天国庆长假期间使用“街兔”共享电动车的总次数.22. 如图,在电路AB中,有三个开关:S1、S2、S3.(1)当开关S1已经是闭合状态时,开关S2、S3的断开与闭合是随机的,电路AB能正常工作的概率是;(2)若三个开关S1、S2、S3的断开与闭合都是随机的,求电路AB能正常工作的概率.23. 建造一个池底为正方形、深度为2m的长方体无盖水池,池壁的造价为每平方米100元,池底的造价为每平方米200元,总造价为6400元.求该水池池底的边长.24. 如图,在Rt△ABC中,∠ACB=90°,点D在BC上,连接AD,CE⊥AD,垂足为E,连接BE.(1)若CD=,AE=2时,求DE的长;(2)若D是BC的中点,判断∠BED与∠ABC是否相等,并说明理由.25. 如图1,Rt△ABC中,∠ACB=90°,AB=5,BC=3,点D在边AB的延长线上,BD=3,过点D作DE⊥AB,与边AC的延长线相交于点E,以DE为直径作⊙O 交AE于点F.(1)求⊙O的半径及圆心O到弦EF的距离;(2)连接CD,交⊙O于点G(如图2).求证:点G是CD的中点.26. 二次函数y=a+bx+c的图像如图所示,根据图像解答下列问题:(1)方程a+bx+c=0的两个根为,不等式a+bx+c>0的解集为;(2)若关于x的一元二次方程a+bx+c=k的两个不相等的实数根,则k的取值范围为;(3)若关于x的一元二次方程a+bx+c﹣t=0在1<x<4的范围内有实数根,求t的取值范围.27. 如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“韵三角形”,这条边叫做“韵三角形”的底边.(1)等腰Rt△ABC“韵三角形”(填“是”或“不是”);(2)如图1,已知点P是正方形的边CD所在直线上的一个动点,AB=4.①△ABP“韵三角形”(填“是”或“不是”),若△ABP是等腰三角形,则AP=;②如图2,当点P在点C右侧,且tan∠BPC=时,求AP的长;③如图3,当点P在点C右侧,且BP=时,将△ABP绕点A按逆时针旋转45°得到△AB′P′,AP′交直线CD于点Q,求AQ的长.28. 如图,将边长为4的正方形纸片ABCD折叠,使点A落在边CD上的点M处(不与点C、D重合),折痕EF分别交AD、BC于点E、F,边AB折叠后交边BC 于点G.(1)若点M是边CD的中点,求△CMG的周长;(2)若DM=CD,求△CMG的周长;(3)若M是边CD上的动点,①你有什么猜想?证明你的猜想;②四边形CDEF的面积S是否存在最值?若存在,求出这个最值;若不存在,说明理由.。
江苏省扬州市高邮市2020-2021学年九年级上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.入冬以来气温变化异常,在校学生患流感人数明显增多,若某校某日九年级8个班因病缺课人数分别为2、6、4、6、10、4、6、2,则这组数据的众数是( ) A .5人 B .6人 C .4人 D .8人 2.在平面直角坐标系中,O 的直径为10,若圆心O 为坐标原点,则点()8,6P -与O 的位置关系是( )A .点P 在O 上B .点P 在O 外C .点P 在O 内D .无法确定 3.关于x 的一元一次方程122a x m -+=的解为1x =,则a m -的值为( ) A .5 B .4 C .3D .2 4.若点()10,A y ,()21,B y 在抛物线()213y x =-++上,则下列结论正确的是( )A .213y y <<B .123y y <<C .213y y <<D .213y y << 5.如图,已知AB 为O 的直径,点C ,D 在O 上,若28BCD ∠=︒,则ABD ∠=( )A .72︒B .56︒C .62︒D .52︒ 6.如图,矩形ABCD 的对角线交于点O ,已知CD a =,DCA β∠=∠,下列结论错误的是( )A .BDC β∠=∠B .2sin a AO β=C .tan BC a β=D .cos a BD β= 7.如图,已知点D 在ABC ∆的BC 边上,若CAD B ∠=∠,且:1:2CD AC =,则:CD BD =( )A .1:2B .2:3C .1:4D .1:3 8.如图,矩形ABCD 中,3AB =,8BC =,点P 为矩形内一动点,且满足PBC PCD ∠=∠,则线段PD 的最小值为( )A .5B .1C .2D .3二、填空题9.若53x y x +=,则y x=______. 10.如图是一个可以自由转动的转盘,转盘分成6个大小相同的扇形,颜色分为红、绿、黄三种颜色.指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形).转动一次转盘后,指针指向_____颜色的可能性大.11.已知一组数据:4,4,m ,6,6的平均数是5,则这组数据的方差是______. 12.若a 是方程223x x =+的一个根,则代数式263a a -的值是______.13.已知小明身高1.8m ,在某一时刻测得他站立在阳光下的影长为0.6m .若当他把手臂竖直举起时,测得影长为0.78m ,则小明举起的手臂超出头顶______m .14.如图,已知正六边形内接于O ,若正六边形的边长为2,则图中涂色部分的面积为______.15.如图,若抛物线2y ax h =+与直线y kx b =+交于()3,A m ,()2,B n -两点,则不等式2ax b kx h -<-的解集是______.16.如图,已知Rt ABC ∆中,90ACB ∠=︒,8AC =,6BC =,将ABC ∆绕点C 顺时针旋转得到MCN ∆,点D 、E 分别为AB 、MN 的中点,若点E 刚好落在边BC 上,则sin DEC ∠=______.17.如图,已知菱形ABCD 中,4AB =,C ∠为钝角,AM BC ⊥于点M ,N 为AB 的中点,连接DN ,MN .若90DNM ∠=︒,则过M 、N 、D 三点的外接圆半径为______.18.若记[]x 表示任意实数的整数部分,例如:[]4.24=,1=,…,则-+-+⋅⋅⋅⋅⋅⋅+-(其中“+”“-”依次相间)的值为______.三、解答题19.(1)计算:()212cos6020202π-⎛⎫++-︒ ⎪⎝︒⎭(2)若关于x 的方程22210x x m ++-=有两个相等的实数根,求m 的值. 20.习总书记在2020新年贺词中讲到“垃圾分类引领新时尚”为积极响应号召,普及垃圾分类知识,某社区工作人员在一个小区随机抽取了若干名居民,开展垃圾分类知识有奖问答,并用得到的数据绘制了如图所示条形统计图.请根据图中信息,解答下列问题:(1)本次调查一共抽取了______名居民(2)求本次调查获取的样本数据的平均数______:中位数______;(3)杜区决定对该小区2000名居民开展这项有奖问答活动,得10分者设为一等奖.根据调查结果,估计社区工作人员需准备多少份一等奖奖品?21.某校为了丰富学生课余生活,计划开设以下社团:A .足球、B .机器人、C .航模、D .绘画,学校要求每人只能参加一个社团小丽和小亮准备随机报名一个项目.(1)求小亮选择“机器人”社团的概率为______;(2)请用树状图或列表法求两人至少有一人参加“航模”社团的概率.22.某市2021年对市区绿化工程投入的资金是5000万元,为争创全国文明卫生城,加大对绿化工程的投入,2021年投入的资金是7200万元,且从2021年到2021年,两年间每年投入资金的年平均增长率相同.(1)求该市对市区绿化工程投入资金的年平均增长率;(2)若投入资金的年平均增长率不变,那么该市在2021年预计需投入多少万元? 23.2021年12月17日,我国第一艘国产航母“山东舰”在海南三亚交付海军.如图,“山东舰”在一次试水测试中,航行至M 处,观测指挥塔P 位于南偏西30方向,在沿正南方向以30海里/小时的速度匀速航行2小时后,到达N 处,再观测指挥塔P 位于南偏西45︒方向,若继续向南航行.求“山东舰”与指挥塔之间的最近距离为多少海里?(结果保留根号)24.如图,平行四边形ABCD 中,30B ∠=︒,过点A 作AE BC ⊥于点E ,现将ABE ∆沿直线AE 翻折至AFE ∆的位置,AF 与CD 交于点G .(1)求证:CG BF CD CF ⋅=⋅;(2)若AB =8AD =,求DG 的长.25.如图,二次函数2y x bx c =-++的图像经过()0,3M ,()2,5N --两点.(1)求该函数的解析式;(2)若该二次函数图像与x 轴交于A 、B 两点,求ABM ∆的面积;(3)若点P 在二次函数图像的对称轴上,当MNP ∆周长最短时,求点P 的坐标. 26.我们定义:如果圆的两条弦互相垂直,那么这两条弦互为“十字弦”,也把其中的一条弦叫做另一条弦的“十字弦”.如:如图,已知O 的两条弦AB CD ⊥,则AB 、CD 互为“十字弦”,AB 是CD 的“十字弦”,CD 也是AB 的“十字弦”.(1)若O 的半径为5,一条弦8AB =,则弦AB 的“十字弦”CD 的最大值为______,最小值为______.(2)如图1,若O 的弦CD 恰好是O 的直径,弦AB 与CD 相交于H ,连接AC ,若12AC =,7DH =,9CH =,求证:AB 、CD 互为“十字弦”;(3)如图2,若O 的半径为5,一条弦8AB =,弦CD 是AB 的“十字弦”,连接AD ,若60ADC ∠=︒,求弦CD 的长.27.5G 网络比4G 网络的传输速度快10倍以上,因此人们对5G 产品充满期待.华为集团计划2021年元月开始销售一款5G 产品.根据市场营销部的规划,该产品的销售价格将随销售月份的变化而变化.若该产品第x 个月(x 为正整数)销售价格为y 元/台,y 与x 满足如图所示的一次函数关系:且第x 个月的销售数量p (万台)与x 的关系为1p x =+.(1)该产品第6个月每台销售价格为______元;(2)求该产品第几个月的销售额最大?该月的销售价格是多少元/台?(3)若华为董事会要求销售该产品的月销售额不低于27500万元,则预计销售部符合销售要求的是哪几个月?(4)若每销售1万台该产品需要在销售额中扣除m 元推广费用,当68x ≤≤时销售利润最大值为22500万元时,求m 的值.28.如图,已知矩形ABCD 的边6AB =,4BC =,点P 、Q 分别是AB 、BC 边上的动点.(1)连接AQ 、PQ ,以PQ 为直径的O 交AQ 于点E .①若点E 恰好是AQ 的中点,则QPB ∠与AQP ∠的数量关系是______;②若3BE BQ ==,求BP 的长;(2)已知3AP =,1BQ =,O 是以PQ 为弦的圆.①若圆心O 恰好在CB 边的延长线上,求O 的半径: ②若O 与矩形ABCD 的一边相切,求O 的半径.参考答案1.B【解析】【分析】找出这组数据出现次数最多的那个数据即为众数.【详解】解:∵数据2、6、4、6、10、4、6、2,中数据6出现次数最多为3次,∴这组数据的众数是6.故选:B.【点睛】本题考查众数的概念,出现次数最多的数据为这组数的众数.2.B【分析】求出P 点到圆心的距离,即OP 长,与半径长度5作比较即可作出判断.【详解】解:∵()8,6P -,∴10= ,∵O 的直径为10,∴r=5,∵OP>5,∴点P 在O 外.故选:B.【点睛】本题考查点和直线的位置关系,当d>r 时点在圆外,当d=r 时,点在圆上,当d<r 时,点在圆内,解题关键是根据点到圆心的距离和半径的关系判断.3.D【分析】满足题意的有两点,一是此方程为一元一次方程,即未知数x 的次数为1;二是方程的解为x=1,即1使等式成立,根据两点列式求解.【详解】解:根据题意得,a-1=1,2+m=2,解得,a=2,m=0,∴a-m=2.故选:D.【点睛】本题考查一元一次方程的定义及方程解的定义,对定义的理解是解答此题的关键. 4.A【分析】将x=0和x=1代入表达式分别求y 1,y 2,根据计算结果作比较.【详解】当x=0时,y 1= -1+3=2,当x=1时,y 2= -4+3= -1,∴213y y <<.故选:A.【点睛】本题考查二次函数图象性质,对图象的理解是解答此题的关键.5.C【分析】连接AD,根据同弧所对的圆周角相等,求∠BAD 的度数,再根据直径所对的圆周角是90°,利用内角和求解.【详解】解:连接AD,则∠BAD=∠BCD=28°,∵AB 是直径,∴∠ADB=90°,∴∠ABD=90°-∠BAD=90°-28°=62°.故选:C.【点睛】本题考查圆周角定理,运用圆周角定理是解决圆中角问题的重要途径,直径所对的圆周角是90°是圆中构造90°角的重要手段.6.B【分析】根据矩形的性质得对角线相等且互相平分,再结合三角函数的定义,逐个计算即可判断. 【详解】解:∵四边形ABCD是矩形,∴AC=BD,AO=CO,BO=DO, ∠ADC=∠BCD=90°∴AO=CO=BO=DO,∴∠OCD=∠ODC=β,A、BDC DCAβ∠=∠=∠,故A选项正确;B、在Rt△ADC中,cos∠ACD=DCAC, ∴cosβ=2aAO,∴AO=2cosa,故B选项错误;C、在Rt△BCD中,tan∠BDC=BCDC, ∴ tanβ=BCa∴BC=atanβ,故C选项正确;D、在Rt△BCD中,cos∠BDC=DCDB, ∴ cosβ=aBD∴cosaBDβ=,故D选项正确.故选:B.【点睛】本题考查矩形的性质及三角函数的定义,掌握三角函数的定义是解答此题的关键. 7.D【分析】根据两角对应相等证明△CAD∽△CBA,由对应边成比例得出线段之间的倍数关系即可求解.【详解】解:∵∠CAD=∠B,∠C=∠C,∴△CAD∽△CBA,∴12 CD CACA CB,∴CA=2CD,CB=2CA, ∴CB=4CD,∴BD=3CD,∴13 CDBD.故选:D.【点睛】本题考查相似三角形的判定与性质,得出线段之间的关系是解答此题的关键.8.B【分析】通过矩形的性质和等角的条件可得∠BPC=90°,所以P点应该在以BC为直径的圆上,即OP=4,根据两边之差小于第三边及三点共线问题解决.【详解】如图,∵四边形ABCD为矩形,∴AB=CD=3,∠BCD=90°,∴∠PCD+∠PCB=90°,∵PBC PCD∠=∠,∴∠PBC+∠PCB=90°,∴∠BPC=90°,∴点P在以BC为直径的圆⊙O上,在Rt△OCD中,OC=118422BC,CD=3,由勾股定理得,OD=5,∵PD≥OD OP,∴当P,D,O三点共线时,PD最小,∴PD的最小值为OD-OP=5-4=1.故选:B.【点睛】本题考查矩形的性质,勾股定理,线段最小值问题及圆的性质,分析出P点的运动轨迹是解答此题的关键.9.2 3【分析】将已知比例式变形化成等积式,整理出x与y的倍数关系,再化成比例式即可得. 【详解】解:∵53x yx+=,∴3x+3y=5x, ∴2x=3y,∴23 yx=.故答案为:2 3 .【点睛】本题考查比例的基本性质,解题关键是将比例式与等积式之间能相互转换. 10.红【解析】【分析】哪一种颜色多,指针指向那种颜色的可能性就大.【详解】∵转盘分成6个大小相同的扇形,红色的有3块,∴转动一次转盘后,指针指向红颜色的可能性大.故答案为:红.【点睛】本题考查了可能性大小的知识,解题的关键是看清那种颜色的最多,难度不大. 11.0.8【分析】根据平均数是5,求m 值,再根据方差公式计算,方差公式为:2222121n S x x x x x x n (x 表示样本的平均数,n 表示样本数据的个数,S 2表示方差.)【详解】解:∵4,4,m ,6,6的平均数是5,∴4+4+m+6+6=5×5,∴m=5,∴这组数据为4,4,m ,6,6,∴22222214545556565=0.85S ,即这组数据的方差是0.8.故答案为:0.8.【点睛】本题考查样本的平均数和方差的定义,掌握定义是解答此题的关键.12.9【分析】根据方程解的定义,将a 代入方程得到含a 的等式,将其变形,整体代入所求的代数式.【详解】解:∵a 是方程223x x =+的一个根,∴2a 2=a+3,∴2a 2-a=3,∴()2263=32339a a a a --=⨯=.故答案为:9.【点睛】本题考查方程解的定义及代数式求值问题,理解方程解的定义和整体代入思想是解答此题的关键.13.0.54【分析】在同一时刻,物体的高度和影长成比例,根据此规律列方程求解.【详解】解:设小明举起的手臂超出头顶xm,根据题意得, 1.8 1.80.60.78x , 解得x=0.54即举起的手臂超出头顶0.54m.故答案为:0.54.【点睛】本题考查同一时刻物体的高度和影长成比例的投影规律,根据规律列比例式求解是解答此题的关键.,14.23π 【分析】根据圆的性质和正六边形的性质证明△CDA ≌△BDO ,得出涂色部分即为扇形AOB 的面积,根据扇形面积公式求解.【详解】解:连接OA,OB,OC,AB,OA 与BC 交于D 点∵正六边形内接于O ,∴∠BOA=∠AOC=60°,OA=OB=OC=4,∴∠BOC=120°,OD ⊥BC,BD=CD∴∠OCB=∠OBC=30°,∴OD=1122OB OA DA , ∵∠CDA=∠BDO,∴△CDA ≌△BDO,∴S △CDA =S △BDO ,∴图中涂色部分的面积等于扇形AOB 的面积为:260223603ππ⨯=. 故答案为:23π.【点睛】本题考查圆的内接正多边形的性质,根据圆的性质结合正六边形的性质将涂色部分转化成扇形面积是解答此题的关键.15.23x -<<【分析】观察图象当23x -<<时,直线在抛物线上方,此时二次函数值小于一次函数值,当2x <-或3x >时,直线在抛物线下方,二次函数值大于一次函数值,将不等式变形,观察图象确定x 的取值范围,即为不等式的解集.【详解】解:设21y ax h =+,2y kx b =+,∵2ax b kx h -<-∴2ax h kx b +<+,∴12y y <即二次函数值小于一次函数值,∵抛物线与直线交点为()3,A m ,()2,B n -,∴由图象可得,x 的取值范围是23x -<<.【点睛】本题考查不等式与函数的关系及函数图象交点问题,理解图象的点坐标特征和数形结合思想是解答此题的关键.16 【分析】根据旋转性质及直角三角形斜边中线等于斜边一半,求出CD=CE=5,再根据勾股定理求DE 长,sin DEC ∠的值即为等腰△CDE 底角的正弦值,根据等腰三角形三线合一构建直角三角形求解.【详解】如图,过D 点作DM ⊥BC ,垂足为M ,过C 作CN ⊥DE ,垂足为N ,在Rt △ACB 中,AC=8,BC=6,由勾股定理得,AB=10,∵D 为AB 的中点,∴CD=152AB = , 由旋转可得,∠MCN=90°,MN=10,∵E 为MN 的中点,∴CE=152MN ,∵DM ⊥BC,DC=DB,∴CM=BM=132BC =, ∴EM=CE-CM=5-3=2,∵DM=142AC ,∴由勾股定理得,DE=∵CD=CE=5,CN ⊥DE,∴,∴由勾股定理得,CN=∴sin ∠DEC=25CNCE .. 【点睛】 本题考查旋转性质,直角三角形的性质和等腰三角形的性质,能够用等腰三角形三线合一的性质构建直角三角形解决问题是解答此题的关键.171【分析】通过延长MN 交DA 延长线于点E ,DF ⊥BC,构造全等三角形,根据全等性质证出DE=DM,,再通过AE=BM=CF,在Rt △DMF 和Rt △DCF 中,利用勾股定理列方程求DM 长,根据圆的性质即可求解.【详解】如图,延长MN 交DA 延长线于点E ,过D 作DF ⊥BC 交BC 延长线于F,连接MD, ∵四边形ABCD 是菱形,∴AB=BC=CD=4,AD ∥BC,∴∠E=∠EMB, ∠EAN=∠NBM,∵AN=BN,∴△EAN ≌BMN,∴AE=BM,EN=MN,∵90DNM ∠=︒,∴DN ⊥EM,∴DE=DM,∵AM ⊥BC,DF ⊥BC,AB=DC,AM=DF∴△ABM ≌△DCF,∴BM=CF,设BM=x,则DE=DM=4+x,在Rt △DMF 中,由勾股定理得,DF 2=DM 2-MF 2=(4+x)2-42,在Rt △DCF 中,由勾股定理得,DF 2=DC 2-CF 2=4 2-x 2,∴(4+x)2-42=4 2-x 2,解得,x 1=2,x 2=232(不符合题意,舍去)∴DM=2,∴90DNM ∠=︒∴过M 、N 、D 三点的外接圆的直径为线段DM, ∴其外接圆的半径长为1312DM .1.【点睛】本题考查菱形的性质,全等的判定与性质,勾股定理及圆的性质的综合题目,根据已知条件结合图形找到对应的知识点,通过“倍长中线”构建“X 字型”全等模型是解答此题的突破口,也是解答此题的关键.18.-22【分析】2020的整数部分的规律,根据题意确定算式-+-+⋅⋅⋅⋅⋅⋅+-的运算规律,再进行实数运算. 【详解】解:观察数据12=1,22=4,32=9,42=16,52=25,62=36的特征,得出数据1,2,3,4……2020中,算术平方根是1的有3个,算术平方根是2的有5个,算数平方根是3的有7个,算数平方根是4的有9个,…其中432=1849,442=1936,452=2025,所以在、⋅⋅⋅⋅⋅⋅中,算术平方根依次为1,2,3……43的个数分别为3,5,7,9……个,均为奇数个,最大算数平方根为44的有85个,所以-+-+⋅⋅⋅⋅⋅⋅+-=1-2+3-4+…+43-44= -22【点睛】本题考查自定义运算,通过正整数的算术平方根的整数部分出现的规律,找到算式中相同加数的个数及符号的规律,方能进行运算.19.(1)6;(2)1m =.【分析】(1)根据负指数幂和0次幂法则,特殊三角函数值分别算出原算式中的每一项,然后进行实数运算即可.(2)根据一元二次方程根的判别式与根个数的关系,可得出b 2-4ac=0,列方程求解.【详解】解:(1)()2012cos6020202π-⎛⎫++- ⎪⎝⎭︒ 12412=⨯++ 6=;(2)∵22210x x m ++-=有两个相等的实数根,∴b 2-4ac=22-4(2m-1)=0,∴m=1.【点睛】本题考查实数运算和一元二次方程根的判别式与根个数的关系,掌握负指数幂,0次幂和特殊三角形函数值及根的判别式是解答此题的关键. 20.(1)50;(2)8.26,8;(3)400【分析】(1)根据总数等于各组数量之和列式计算;(2)根据样本平均数和中位数的定义列式计算;(3)利用样本估计总体的思想解决问题.【详解】解:(1)本次调查一共抽取了4+10+15+11+10=50名;(2)调查获取的样本数据的平均数为6471081591110108.2650分;4+10+15=29<26,所以中位数为8+8=82分;(3)根据题意得2000名居民中得分为10分的约有102000=40050名,∴社区工作人员需准备400份一等奖奖品.【点睛】本题考查条形统计图,读懂图形,从图形中得到必要的信息是解答此题的关键,条形统计图的特点是能清楚的反映出各个项目的数据.21.(1)14;(2)716;【分析】(1)属于求简单事件的概率,根据概率公式计算可得;(2)用列表格法列出所有的等可能结果,从中确定符合事件的结果,根据概率公式计算可得.【详解】解:(1)小亮随机报名一个项目共有4种等可能结果,分别为A.足球、B.机器人、C.航模、D.绘画,其中选择“机器人”的有1种,为B.机器人,所以选择“机器人”的概率为P=1 4 .(2)用列表法表示所有可能出现的结果如图:从表格可以看出,总共有16种结果,每种结果出现的可能性相同,其中至少有一人参加“航模”社团有7种,分别为(A,C),(B,C),(C,A), (C,B),(C,C), (C,D),(D,C),所以两人至少有一人参加“航模”社团的概率P=7 16.【点睛】本题考查的是求简单事件的概率和两步操作事件的概率,用表格或树状图表示总结果数是解答此类问题的关键.22.(1)20%;(2)8640万元.【分析】(1)设平均增长率为x,根据题意可得2021年投入的资金是5000(1+x)万元,2021年投入的资金是5000(1+x) (1+x)万元,由2021年投入的资金是7200万元即可列出方程.,求解即可.(2)相当于数字7200增长了20%,列式计算.【详解】解:(1)设两年间每年投入资金的平均增长率为x,根据题意得,5000(1+x)2=7200解得,x1=0.2=20%,x2= -2.2(不符合题意,舍去)答:该市对市区绿化工程投入资金的年平均增长率为20%;(2)根据题意得,7200(1+20%)=8640万元.答:在2021年预计需投入8640万元.【点睛】本题考查一元二次方程的实际应用,增长率问题,根据a(1+x)2=b(a、b、x、n分别表示增长前量、增长后量、增长率和增长次数)列方程是解答增长率问题的关键.23.30【分析】过P 作PH ⊥MN 于H ,构建直角三角形,设PH=x 海里,分别在两个直角三角形△PHN 和△PHM 中利用正切函数表示出NH 长和MH 长,列方程求解.【详解】过P 作PH ⊥MN ,垂足为H ,设PH=x 海里,在Rt △PHN ,tan ∠PNH=PH NH, ∴tan45°=PH NH, ∴NH=tan 45x x ,在Rt △PHM 中,tan ∠PMH=PH MH , ∴tan30°=PH MH, ∴MH=3tan 30xx , ∵MN=30×2=60海里,60x -= , ∴30330x .答:“山东舰”与指挥塔之间的最近距离为30海里.【点睛】本题考查解直角三角形的应用,解答此题的关键是构建直角三角形,找准线段之间的关系,利用锐角三角函数进行解答.24.(1)见解析;(2【分析】(1)根据平行四边形的性质得AB∥CD,AB=CD,通过两角对应相等证明△FCG∽△FBA,利用对应边成比例列比例式,进行等量代换后化等积式即可;(2)根据直角三角形30°角所对的直角边等于斜边的一半及勾股定理,求出BE的长,再由折叠性质求出BF长,结合(1)的结论代入数据求解.【详解】解(1)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,AD=BC∴∠GCF=∠B, ∠CGF=∠BAF,∴△FCG∽△FBA,∴CG CF AB BF=,∴CG CF CD BF∴CG BF CD CF⋅=⋅. (2)∵AE BC⊥,∴∠AEB=90°,∵∠B=30°, AB=∴AE=1232AB , 由勾股定理得,BE=6,由折叠可得,BF=2BE=12,∵AD=BC=8,∴CF=4∵CG BF CD CF ⋅=⋅,∴124CG =,∴CG=3,∴. 【点睛】本题考查平行四边形的性质和相似三角形的判定与性质,平行四边形的性质即为相似三角形判定的条件,利用相似三角形的对应边成比例是解答问题的关键.25.(1)2y x 2x 3=-++;(2)6;(3)()1,1P【解析】【分析】(1)将M,N 两点代入2y x bx c =-++求出b,c 值,即可确定表达式;(2)令y=0求x 的值,即可确定A 、B 两点的坐标,求线段AB 长,由三角形面积公式求解.(3)求出抛物线的对称轴,确定M 关于对称轴的对称点G 的坐标,直线NG 与对称轴的交点即为所求P 点,利用一次函数求出P 点坐标.【详解】解:将点()0,3M ,()2,5N --代入2y x bx c =-++中得, 3425c b c =⎧⎨--+=-⎩,解得,23b c =⎧⎨=⎩, ∴y 与x 之间的函数关系式为2y x 2x 3=-++;(2)如图,当y=0时,2230x x -++=,∴x 1=3,x 2= -1,∴A(-1,0),B(3,0),∴AB=4,∴S △ABM =14362⨯⨯= . 即ABM ∆的面积是6.(3)如图,抛物线的对称轴为直线2122bx a , 点()0,3M 关于直线x=1的对称点坐标为G(2,3),∴PM=PG,连MG 交抛物线对称轴于点P ,此时NP+PM=NP+PG 最小,即MNP ∆周长最短. 设直线NG 的表达式为y=mx+n,将N(-2,-5),G(2,3)代入得,2523m n m n -+=-⎧⎨+=⎩, 解得,21m n =⎧⎨=-⎩, ∴y=2m-1,∴P点坐标为(1,1).【点睛】本题考查抛物线与图形的综合题,涉及待定系数法求解析式,图象的交点问题,利用对称性解决线段和的最小值问题,利用函数观点解决图形问题是解答此题的关键.如图,二次函数y=-x²+bx+c的图像经过M(0,3),N(-2,-5)两点.26.(1)10,6;(2)见解析;(3)3.【分析】(1)根据“十字弦”定义可得弦AB的“十字弦”CD为直径时最大,当CD过A点或B点时最小;(2)根据线段长度得出对应边成比例且有夹角相等,证明△ACH∽△DCA,由其性质得出对应角相等,结合90°的圆周角证出AH⊥CD,根据“十字弦”定义可得;(3)过O作OE⊥AB于点E,作OF⊥CD于点F,利用垂径定理得出OE=3,由正切函数得出DH,设DH=x,在Rt△ODF中,利用线段和差将边长用x表示,根据勾股定理列方程求解.【详解】解:(1)当CD 为直径时,CD 最大,此时CD=10,∴弦AB 的“十字弦”CD 的最大值为10;当CD 过A 点时,CD 长最小,即AM 的长度,过O 点作ON ⊥AM,垂足为N,作OG ⊥AB ,垂足为G,则四边形AGON 为矩形,∴AN=OG,∵OG ⊥AB,AB=8,∴AG=4,∵OA=5,∴由勾股定理得OG=3,∴AN=3,∵ON ⊥AM,∴AM=6,即弦AB 的“十字弦”CD 的最小值是6.(2)证明:如图,连接AD ,∵12AC =,7DH =,9CH =, ∴AC CH CD AC, ∵∠C=∠C,∴△ACH ∽△DCA,∴∠CAH=∠D,∵CD 是直径,∴∠CAD=90°,∴∠C+∠D=90°,∴∠C+∠CAH=90°,∴∠AHC=90°,∴AH ⊥CD,∴AB 、CD 互为“十字弦”.(3)如图,过O 作OE ⊥AB 于点E ,作OF ⊥CD 于点F ,连接OA ,OD ,则四边形OEHF 是矩形,∴OE=FH,OF=EH,∴AE=4,∴由勾股定理得OE=3,∴FH=3,∵tan ∠ADH=AH HD, ∴tan60°=3AHHD ,设DH=,则∴x,在Rt △ODF 中,由勾股定理得,OD 2=OF 2+FD 2,∴(3+x)2x)2=52,解得,x=3 2,∴FD=3332322,∵OF⊥CD,∴CD=2DF=32234332即CD=3【点睛】本题考查圆的相关性质,利用垂径定理,相似三角形等知识是解决圆问题的常用手段,对结合学过的知识和方法的基础上,用新的方法和思路来解决新题型或新定义的能力是解答此题的关键.27.(1)4500元;(2)7,4000;(3)4、5、6、7、8、9、10;(4)9000 7.【解析】【分析】(1)利用待定系数法将(2,6500),(4,5500)代入y=kx+b求k,b确定表达式,求当x=6时的y值即可;(2)求销售额w与x之间的函数关系式,利用二次函数的最大值问题求解;(3)分三种情况讨论假设6月份,7月份,8月份的最大销售为22500万元时,求相应的m 值,再分别求出此时另外两月的总利润,通过比较作出判断.【详解】设y=kx+b,根据图象将(2,6500),(4,5500)代入得,2650045500k b k b , 解得,5007500k b ,∴y= -500x+7500,当x=6时,y= -500×6+7500=4500元;(2)设销售额为z 元,z=yp=( -500x+7500 )(x+1)= -500x 2+7000x+7500= -500(x-7)2+32000,∵z 与x 成二次函数,a= -500<0,开口向下,∴当x=7时,z 有最大值,当x=7时,y=-500×7+7500=4000元.答:该产品第7个月的销售额最大,该月的销售价格是4000元/台.(3)z 与x 的图象如图的抛物线当y=27500时,-500(x-7)2+32000=27500,解得,x 1=10,x 2=4∴预计销售部符合销售要求的是4,5,6,7,8,9,10月份.(4)设总利润为W= -500x 2+7000x+7500-m(x+1)= -500x 2+(7000-m)x+7500-m,第一种情况:当x=6时,-500×62+(7000-m) ×6+7500-m=22500,解得,m=90007, 此时7月份的总利润为-500×72+(7000-90007) ×7+7500-90007≈17714<22500, 此时8月份的总利润为-500×82+(7000-90007) ×8+7500-90007≈19929<22500,∴当m=90007时,6月份利润最大,且最大值为22500万元. 第二种情况:当x=7时,-500×72+(7000-m) ×7+7500-m=22500,解得,m=1187.5 ,此时6月份的总利润为-500×62+(7000-1187.5) ×6+7500-1187.5=23187.5>22500, ∴当m=1187.5不符合题意,此种情况不存在.第三种情况:当x=8时,-500×82+(7000-m) ×8+7500-m=22500,解得,m=1000 ,此时7月份的总利润为-500×72+(7000-1000) ×7+7500-1000=24000>22500,∴当m=1000不符合题意,此种情况不存在.∴当68x ≤≤时销售利润最大值为22500万元时,此时m=90007. 【点睛】本题考查二次函数的实际应用,最大利润问题,利用二次函数的最值性质是解决实际问题的重要途径.28.(1)①2QPB AQP ∠=∠;②1.5;(2)①5;②53、255,35630、5. 【解析】【分析】(1)①根据直径所对的圆周角是直角判断△APQ 为等腰三角形,结合等腰三角形的两底角相等和圆周角定理证明;②证明△PBQ ∽△QBA ,由对应边成比例求解;(2)①画出图形,由勾股定理列方程求解;②分O 与矩形ABCD 的四边分别相切,画出图形,利用切线性质,由勾股定理列方程求解.【详解】解:(1)①如图,PQ 是直径,E 在圆上,∴∠PEQ=90°,∴PE ⊥AQ,∵AE=EQ,∴PA=PQ,∴∠PAQ=∠PQA,∴∠QPB=∠PAQ+∠PQA=2∠AQP,∵∠QPB=2∠AQP.\②解:如图,∵BE=BQ=3,∴∠BEQ=∠BQE,∵∠BEQ=∠BPQ,∵∠PBQ=∠QBA,∴△PBQ∽△QBA,∴BP BQ BQ BA,∴3 36 BP,∴BP=1.5;(2)①如图,BP=3,BQ=1,设半径OP=r,在Rt△OPB中,根据勾股定理得,PB2+OB2=OP2∴32+(r-1)2=r2,∴r=5,∴O的半径是5.②如图,O与矩形ABCD的一边相切有4种情况,如图1,当O与矩形ABCD边BC相切于点Q,过O作OK⊥AB于K,则四边形OKBQ为矩形,设OP=OQ=r,则PK=3x,由勾股定理得,r2=12+(3-r)2,解得,r=5 3 ,∴O半径为5 3 .如图2,当O与矩形ABCD边AD相切于点N,延长NO交BC于L,则OL⊥BC,过P作PS⊥NL于S,设OS=x,则ON=OP=OQ=3+x,设PS=BL=y,由勾股定理得,2222223331x x yx x y,解得125 2x(舍去),225 2x,∴ON=25 5,∴O 半径为25 53.如图3,当O与矩形ABCD边CD相切于点M,延长MO交AB于R,则OR⊥AB,过O作OH⊥BC于H,设OH=BR=x,设HQ=y, 则OM=OP=OQ=4-1-y=3-y,由勾股定理得,2222223331y x yy x y,解得163032x(舍去),263032x,∴OM=35630,∴O半径为35630.如图4,当O与矩形ABCD边AB相切于点P,过O作OG⊥BC于G,则四边形AFCG为矩形,设OF=CG=x,,则OP=OQ=x+4,由勾股定理得(x+4)2=32+(x+3)2,解得,x=1,∴OP=5,∴O半径为5.综上所述,若O与矩形ABCD的一边相切,为O的半径53,255,35630,5.【点睛】本题考查圆的相关性质,涉及圆周角定理,垂径定理,切线的性质等,综合性较强,利用分类思想画出对应图形,化繁为简是解答此题的关键.。
2020-2021学年江苏省扬州市九年级(上)期末数学试卷一、选择题(每小题3分,共24分)1.(3分)下列方程中,一元二次方程共有( )个.①2210x x --=;②20ax bx c ++=;③22350x x+-=;④20x -=;⑤22(1)2x y -+=;⑥2(1)(3)x x x --=.A .1B .2C .3D .4 2.(3分)下列函数是关于x 的二次函数的有( )①(21)y x x =-;②21y x =;③231y x =-;④22(y ax x a =+为任意实数);⑤22(1)y x x =--;⑥21y x x =++.A .2个B .3个C .4个D .5个3.(3分)A 、B 是半径为5cm 的O 上两个不同的点,则弦AB 的取值范围是( )A .0AB > B .05AB <<C .010AB <<D .010AB <4.(3分)如图,小明为了测量一凉亭的高度AB (顶端A 到水平地面BD 的距离),在凉亭的旁边放置一个与凉亭台阶BC 等高的台阶(0.5DE DE BC ==米,A 、B 、C 三点共线),把一面镜子水平放置在平台上的点G 处,测得15CG =米,然后沿直线CG 后退到点E 处,这时恰好在镜子里看到凉亭的顶端A ,测得3EG =米,小明身高1.6米,则凉亭的高度AB 约为( )A .8.5米B .9米C .9.5米D .10米5.(3分)下列线段中,能成比例的是( )A .3cm 、6cm 、8cm 、9cmB .3cm 、5cm 、6cm 、9cmC .3cm 、6cm 、7cm 、9cmD .3cm 、6cm 、9cm 、18cm6.(3分)如果一条抛物线2(0)y ax bx c a =++≠与x 轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”, [a ,b ,]c 称为“抛物线三角形系数”,若抛物线三角形系数为[1-,b ,0]的“抛物线三角形”是等腰直角三角形,则b 的值( )A .2±B .3±C .2D .37.(3分)若抛物线223y x x =-+不动,将平面直角坐标系xOy 先沿水平方向向右平移一个单位,再沿铅直方向向上平移三个单位,则原抛物线图象的解析式应变为( )A .2(2)3y x =-+B .2(2)5y x =-+C .21y x =-D .24y x =+8.(3分)已知抛物线2(0)y ax bx c b a =++>>与x 轴最多有一个交点,现有以下四个结论: ①该抛物线的对称轴在y 轴左侧;②关于x 的方程220ax bx c +++=无实数根;③0a b c -+; ④a b c b a++-的最小值为3. 其中,正确结论的个数为( )A .1个B .2个C .3个D .4个二、填空题(共10小题,每小题3分,共30分)9.(3分)已知关于x 的方程2(3)13a x a x -+-=为一元二次方程,则a 的取值范围是10.(3分)如图,在坐标系中,动点P 在以O 为圆心,10为半径的圆上运动,整数点P 有个.11.(3分)如图,O 是正五边形ABCDE 的外接圆,则CAD ∠= .12.(3分)如图,圆锥的侧面展开图是一个圆心角为120︒的扇形,若圆锥的底面圆半径是5,则圆锥的母线l=.13.(3分)如图,正ABC∆的顶点R与点A重合,∆的边长为9cm,边长为3cm的正RPQ点P,Q分别在AC,AB上,将RPQ∆沿着边AB,BC,CA连续翻转(如图所示),π直至点P第一次回到原来的位置,则点P运动路径的长为cm.(结果保留)14.(3分)如图,AB,CD是O的两条弦,M,N分别为AB,CD的中点,且AB=,则CD=.AMN CNM∠=∠,615.(3分)如图,ABC∠,AC=,CD平分ACBBC=,2∆内接于O,AB是直径,4则弦AD长为.16.(3分)在比例尺为1:40000的地图上,某条道路的长为7cm,则该道路的实际长度是km.17.(3分)小红家的阳台上放置了一个晒衣架如图1.图2是晒衣架的侧面示意图,立杆AB、CD 相交于点O ,B 、D 两点立于地面,经测量:136AB CD cm ==,51OA OC cm ==,34OE OF cm ==,现将晒衣架完全稳固张开,扣链EF 成一条线段,且32EF cm =.垂挂在衣架上的连衣裙总长度小于 cm 时,连衣裙才不会拖落到地面上.18.(3分)如图所示方格纸中每个小正方形的边长为1,其中有三个格点A 、B 、C ,则sin ABC ∠= .三、解答题(共10小题,共96分)19.甲、乙两人用如图的两个分格均匀的转盘A 、B 做游戏,游戏规则如下:分别转动两个转盘,转盘停止后,指针分别指向一个数字(若指针停止在等份线上,那么重转一次,直到指针指向某一数字为止).用所指的两个数字相乘,如果积是奇数,则甲获胜;如果积是偶数,则乙获胜.请你解决下列问题:(1)用列表格或画树状图的方法表示游戏所有可能出现的结果.(2)求甲、乙两人获胜的概率.20.如图,AB 是O 的直径,C 是BD 的中点,CE AB ⊥于E ,BD 交CE 于点F ,(1)求证:CF BF =;(2)若12CD =,16AC =,求O 的半径和CE 的长.21.我校初三学子在不久前结束的体育中考中取得满意成绩,赢得2013年中考开门红.现随机抽取了部分学生的成绩作为一个样本,按A (满分)、B (优秀)、C (良好)、D (及格)四个等级进行统计,并将统计结果制成如下2幅不完整的统计图,如图,请你结合图表所给信息解答下列问题:(1)此次调查共随机抽取了 名学生,其中学生成绩的中位数落在 等级;(2)将折线统计图在图中补充完整;(3)为了今后中考体育取得更好的成绩,学校决定分别从成绩为满分的男生和女生中各选一名参加“经验座谈会”,若成绩为满分的学生中有4名女生,且满分的男、女生中各有2名体育特长生,请用列表或画树状图的方法求出所选的两名学生刚好都不是体育特长生的概率.22.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,ABC ∆的顶点都在格点上,建立如图所示的平面直角坐标系.(1)将ABC ∆向左平移7个单位后再向下平移3个单位,请画出两次平移后的△111A B C ,若M 为ABC ∆内的一点,其坐标为(,)a b ,直接写出两次平移后点M 的对应点1M 的坐标;(2)以原点O 为位似中心,将ABC ∆缩小,使变换后得到的△222A B C 与ABC ∆对应边的比为1:2.请在网格内画出在第三象限内的△222A B C ,并写出点2A 的坐标.23.关于x 的方程2(1)220k x kx -++=.(1)求证:无论k 为何值,方程总有实数根.(2)设1x ,2x 是方程2(1)220k x kx -++=的两个根,记211212x x S x x x x =+++,S 的值能为2吗?若能,求出此时k 的值;若不能,请说明理由.24.如图,水库大坝的横断面为四边形ABCD ,其中//AD BC ,坝顶10BC =米,坝高20米,斜坡AB 的坡度1:2.5i =,斜坡CD 的坡角为30︒.(1)求坝底AD 的长度(结果精确到1米);(2)若坝长10023 1.732)≈ 25.ABC ∆和DEF ∆是两个全等的等腰直角三角形,90BAC EDF ∠=∠=︒,DEF ∆的顶点E与ABC ∆的斜边BC 的中点重合,将DEF ∆绕点E 旋转,旋转过程中,线段DE 与线段AB 相交于点P ,线段EF 与射线CA 相交于点Q .(1)如图①,当点Q 在线段AC 上,且AP AQ =时,求证:BPE CQE ∆≅∆;(2)如图②,当点Q 在线段CA 的延长线上时,求证:BPE CEQ ∆∆∽;并求当2BP =,9CQ =时BC 的长.26.如图,抛物线2(0)y ax bx c a =++≠与直线(0)y kx k =≠相交于点(1,1)M ,(3,3)N ,且这条抛物线的对称轴为1x =.(1)若将该抛物线平移使得其经过原点,且对称轴不变,求平移后的抛物线的表达式及k 的值.(2)设P 为直线y kx =下方的抛物线上一点,求PMN ∆面积的最大值及此时P 点的坐标.27.东坡商贸公司购进某种水果的成本为20元/kg ,经过市场调研发现,这种水果在未来48天的销售单价p (元/)kg 与时间t (天)之间的函数关系式为()()130124,41482548,2t t t p t t t ⎧+⎪⎪=⎨⎪-+⎪⎩为整数为整数,且其日销售量()y kg 与时间t (天)的关系如表: 时间t (天)1 3 6 10 20 40 ⋯日销售量()y kg 118 114 108 100 80 40 ⋯(1)已知y 与t 之间的变化规律符合一次函数关系,试求在第30天的日销售量是多少?(2)问哪一天的销售利润最大?最大日销售利润为多少?(3)在实际销售的前24天中,公司决定每销售1kg 水果就捐赠n 元利润(9)n <给“精准扶贫”对象.现发现:在前24天中,每天扣除捐赠后的日销售利润随时间t 的增大而增大,求n 的取值范围.28.如图,抛物线214y x bx c =++的顶点为M ,对称轴是直线1x =,与x 轴的交点为(3,0)A -和B .将抛物线214y x bx c =++绕点B 逆时针方向旋转90︒,点1M ,1A 为点M ,A 旋转后的对应点,旋转后的抛物线与y 轴相交于C ,D 两点.(1)写出点B 的坐标及求抛物线214y x bx c =++的解析式; (2)求证:A ,M ,1A 三点在同一直线上;(3)设点P 是旋转后抛物线上1DM 之间的一动点,是否存在一点P ,使四边形1PM MD 的面积最大?如果存在,请求出点P 的坐标及四边形1PM MD 的面积;如果不存在,请说明理由.2020-2021学年江苏省扬州市九年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)下列方程中,一元二次方程共有( )个.①2210x x --=;②20ax bx c ++=;③22350x x+-=;④20x -=;⑤22(1)2x y -+=;⑥2(1)(3)x x x --=.A .1B .2C .3D .4 【解答】解:①2210x x --=,符合一元二次方程的定义,是一元二次方程;②20ax bx c ++=,没有二次项系数不为0这个条件,不符合一元二次方程的定义,不是一元二次方程; ③22350x x +-=不是整式方程,不符合一元二次方程的定义,不是一元二次方程; ④20x -=,符合一元二次方程的定义,是一元二次方程;⑤22(1)2x y -+=,方程含有两个未知数,不符合一元二次方程的定义,不是一元二次方程; ⑥2(1)(3)x x x --=,方程整理后,未知数的最高次数是1,不符合一元二次方程的定义,不是一元二次方程.综上所述,一元二次方程共有2个.故选:B .2.(3分)下列函数是关于x 的二次函数的有( )①(21)y x x =-;②21y x=;③21y =-;④22(y ax x a =+为任意实数);⑤22(1)y x x =--;⑥y =A .2个B .3个C .4个D .5个【解答】解:是关于x 的二次函数的有①③,故选:A .3.(3分)A 、B 是半径为5cm 的O 上两个不同的点,则弦AB 的取值范围是( )A .0AB > B .05AB <<C .010AB <<D .010AB <【解答】解:圆中最长的弦为直径,010AB ∴<.故选:D.4.(3分)如图,小明为了测量一凉亭的高度AB(顶端A到水平地面BD的距离),在凉亭的旁边放置一个与凉亭台阶BC等高的台阶(0.5DE DE BC==米,A、B、C三点共线),把一面镜子水平放置在平台上的点G处,测得15CG=米,然后沿直线CG后退到点E处,这时恰好在镜子里看到凉亭的顶端A,测得3EG=米,小明身高1.6米,则凉亭的高度AB 约为()A.8.5米B.9米C.9.5米D.10米【解答】解:由题意AGC FGE∠=∠,90ACG FEG∠=∠=︒,ACG FEG∴∆∆∽,∴AC CG EF GE=,∴15 1.63 AC=,8AC∴=,80.58.5AB AC BC∴=+=+=米.故选:A.5.(3分)下列线段中,能成比例的是()A.3cm、6cm、8cm、9cm B.3cm、5cm、6cm、9cmC.3cm、6cm、7cm、9cm D.3cm、6cm、9cm、18cm【解答】解:根据如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.所给选项中,只有D符合,31869⨯=⨯,故选:D.6.(3分)如果一条抛物线2(0)y ax bx c a =++≠与x 轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”, [a ,b ,]c 称为“抛物线三角形系数”,若抛物线三角形系数为[1-,b ,0]的“抛物线三角形”是等腰直角三角形,则b 的值( )A .2±B .3±C .2D .3【解答】解:抛物线三角形系数为[1-,b ,0],∴抛物线解析式为222()24b b y x bx x =-+=--+, ∴顶点坐标为(2b ,2)4b , 令0y =,则20x bx -+=,解得10x =,2x b =,∴与x 轴的交点为(0,0),(,0)b ,“抛物线三角形”是等腰直角三角形, ∴21||42b b =, 22b b ∴=或22b b =-,0b =时,抛物线与x 轴只有一个交点(0,0),0b ∴=不符合题意,2b ∴=或2b =-,故选:A .7.(3分)若抛物线223y x x =-+不动,将平面直角坐标系xOy 先沿水平方向向右平移一个单位,再沿铅直方向向上平移三个单位,则原抛物线图象的解析式应变为( )A .2(2)3y x =-+B .2(2)5y x =-+C .21y x =-D .24y x =+【解答】解:将平面直角坐标系xOy 先沿水平方向向右平移一个单位,再沿铅直方向向上平移三个单位,这个相当于把抛物线向左平移有关单位,再向下平移3个单位,2(1)2y x =-+,∴原抛物线图象的解析式应变为22(11)231y x x =-++-=-,故选:C .8.(3分)已知抛物线2(0)y ax bx c b a =++>>与x 轴最多有一个交点,现有以下四个结论: ①该抛物线的对称轴在y 轴左侧;②关于x 的方程220ax bx c +++=无实数根;③0a b c -+; ④a b c b a++-的最小值为3. 其中,正确结论的个数为( )A .1个B .2个C .3个D .4个【解答】解:0b a >>02b a ∴-<, 所以①正确;抛物线与x 轴最多有一个交点,240b ac ∴-,∴关于x 的方程220ax bx c +++=中,△224(2)480b a c b ac a =-+=--<,所以②正确;0a >及抛物线与x 轴最多有一个交点,x ∴取任何值时,0y∴当1x =-时,0a b c -+;所以③正确;当2x =-时,420a b c -+33a b c b a ++-3()a b c b a ++-3a b c b a++- 所以④正确.故选:D .二、填空题(共10小题,每小题3分,共30分)9.(3分)已知关于x 的方程2(3)3a x -+=为一元二次方程,则a 的取值范围是 1a 且3a ≠【解答】解:方程是一元二次方程,30a ∴-≠,得 3a ≠, 又二次根式1a -有意义,10a ∴-,得1a ,1a ∴且3a ≠.故本题的答案是1a 且3a ≠.10.(3分)如图,在坐标系中,动点P 在以O 为圆心,10为半径的圆上运动,整数点P 有12 个.【解答】解:设点(,)P x y ,由题意知:22100x y +=,则方程的整数解是:6x =,8y =;8x =,6y =;10x =,0y =;6x =,8y =-;8x =,6y =-;0x =,10y =-;6x =-,8y =-;8x =-,6y =-;10x =-,0y =;6x =-,8y =;8x =-,6y =;0x =,10y =.所以点P 的坐标可以是:(6,8),(8,6),(10,0),(6,8)(8-,6)-,(0,10)-(6,8)--,(8,6)--,(10,0)-,(6,8)-,(8-,6)(0,10).所以,这样的整数点有12个.11.(3分)如图,O 是正五边形ABCDE 的外接圆,则CAD ∠= 36︒ .【解答】解:O 是正五边形ABCDE 的外接圆,(52)1805108BAE ∴∠=-⨯︒÷=︒,BC CD DE ==,∴BC CD DE ==, 1108363CAD ∴∠=⨯︒=︒; 故答案为:36︒.12.(3分)如图,圆锥的侧面展开图是一个圆心角为120︒的扇形,若圆锥的底面圆半径是5,则圆锥的母线l = 35 .【解答】解:圆锥的底面周长2525cm ππ=⨯=,则:12025180l ππ⨯=, 解得35l =.故答案为:35.13.(3分)如图,正ABC ∆的边长为9cm ,边长为3cm 的正RPQ ∆的顶点R 与点A 重合,点P ,Q 分别在AC ,AB 上,将RPQ ∆沿着边AB ,BC ,CA 连续翻转(如图所示),直至点P 第一次回到原来的位置,则点P 运动路径的长为 6π cm .(结果保留)π【解答】解:从图中可以看出在AB 边,翻转的第一次是一个120度的圆心角,半径是3,所以弧长1203180π⨯=,第二次是以点P 为圆心,所以没有路程,在BC 边上, 在BC 边,第一次1203180π⨯,第二次同样没有路程,AC 边上也是如此, 点P 运动路径的长为120336180ππ⨯⨯=. 故答案为:6π.14.(3分)如图,AB ,CD 是O 的两条弦,M ,N 分别为AB ,CD 的中点,且AMN CNM ∠=∠,6AB =,则CD = 6 .【解答】证明:连接OM ,ON ,OA ,OC ,M 、N 分别为AB 、CD 的中点,OM AB ∴⊥,ON CD ⊥,12AM AB ∴=,12CN CD =, AMN CNM ∠=∠,NMO MNO ∴∠=∠,即OM ON =,在Rt AOM ∆与Rt CON ∆中,OM ON OA OC =⎧⎨=⎩, Rt AOM Rt CON(HL)∴∆≅∆,AM CN ∴=,6AB CD ∴==.故答案是:6.15.(3分)如图,ABC ∆内接于O ,AB 是直径,4BC =,2AC =,CD 平分ACB ∠,则弦AD 长为 10 .【解答】解:连接BD,AB为直径,CD平分ACB∠交O于D,ACD BCD∴∠=∠=︒,45∠=∠,2DCB∠=∠,1ACD∴∠=∠,12∴=,AD BD4AC=,BC=,2222∴=+=,AB42202220∴+=,AD DBAD∴=.10故答案为:10.16.(3分)在比例尺为1:40000的地图上,某条道路的长为7cm,则该道路的实际长度是 2.8 km.【解答】解:设这条道路的实际长度为x,则:17=,40000x解得280000 2.8==.x cm km∴这条道路的实际长度为2.8km.故答案为:2.817.(3分)小红家的阳台上放置了一个晒衣架如图1.图2是晒衣架的侧面示意图,立杆AB、OA OC cm==,51==,AB CD cmCD相交于点O,B、D两点立于地面,经测量:136EF cm=.垂OE OF cm==,现将晒衣架完全稳固张开,扣链EF成一条线段,且32 34挂在衣架上的连衣裙总长度小于120cm时,连衣裙才不会拖落到地面上.【解答】解:AB 、CD 相交于点O ,AOC BOD ∴∠=∠OA OC =, 1(180)2OAC OCA BOD ∴∠=∠=︒-∠, 同理可证:1(180)2OBD ODB BOD ∠=∠=︒-∠, OAC OBD ∴∠=∠,//AC BD ∴,在Rt OEM ∆中,2230()OM OE EM cm =-=,过点A 作AH BD ⊥于点H ,同理可证://EF BD ,ABH OEM ∴∠=∠,则Rt OEM Rt ABH ∆∆∽,∴OE OM AB AH =,30136120()34OM AB AH cm OE ⨯===, 所以垂挂在衣架上的连衣裙总长度小于120cm 时,连衣裙才不会拖落到地面上.故答案为:120.18.(3分)如图所示方格纸中每个小正方形的边长为1,其中有三个格点A 、B 、C ,则sin ABC ∠= 9145 .【解答】解:如图所示:过点A 作AD BC ⊥于点D ,连接AC .111202524149222ABC S ∆=-⨯⨯-⨯⨯-⨯⨯=, 192ABC S BC AD ∆=⨯⨯=, ∴12592AD ⨯=, 解得:95AD =,故9145sin AD ABC AB ∠==. 故答案为:9145. 三、解答题(共10小题,共96分)19.甲、乙两人用如图的两个分格均匀的转盘A 、B 做游戏,游戏规则如下:分别转动两个转盘,转盘停止后,指针分别指向一个数字(若指针停止在等份线上,那么重转一次,直到指针指向某一数字为止).用所指的两个数字相乘,如果积是奇数,则甲获胜;如果积是偶数,则乙获胜.请你解决下列问题:(1)用列表格或画树状图的方法表示游戏所有可能出现的结果.(2)求甲、乙两人获胜的概率.【解答】解:(1)所有可能出现的结果如图:4567 1(1,4)(1,5)(1,6)(1,7)2(2,4)(2,5)(2,6)(2,7)3(3,4)(3,5)(3,6)(3,7)(2)从上面的表格(或树状图)可以看出,所有可能出现的结果共有12种,且每种结果出现的可能性相同,其中积是奇数的结果有4种,即5、7、15、21,积是偶数的结果有8种,即4、6、8、10、12、14、12、18,∴甲、乙两人获胜的概率分别为:P(甲获胜)41 123==,P(乙获胜)82 123==.20.如图,AB是O的直径,C是BD的中点,CE AB⊥于E,BD交CE于点F,(1)求证:CF BF=;(2)若12CD=,16AC=,求O的半径和CE的长.【解答】解:(1)证明:AB是O的直径,90ACB∴∠=︒,又CE AB⊥,90CEB∴∠=︒,290ABC A∴∠=︒-∠=∠,又C是弧BD的中点,1A∴∠=∠,12∴∠=∠,CF BF∴=;(2)C 是弧BD 的中点,∴BC CD =,12BC CD ∴==, 又在Rt ABC ∆中,16AC =,∴由勾股定理可得:20AB =,O ∴的半径为10, 1122ABC S AC BC AB CE ∆==, 9.6AC BC CE AB∴==. 21.我校初三学子在不久前结束的体育中考中取得满意成绩,赢得2013年中考开门红.现随机抽取了部分学生的成绩作为一个样本,按A (满分)、B (优秀)、C (良好)、D (及格)四个等级进行统计,并将统计结果制成如下2幅不完整的统计图,如图,请你结合图表所给信息解答下列问题:(1)此次调查共随机抽取了 20 名学生,其中学生成绩的中位数落在 等级;(2)将折线统计图在图中补充完整;(3)为了今后中考体育取得更好的成绩,学校决定分别从成绩为满分的男生和女生中各选一名参加“经验座谈会”,若成绩为满分的学生中有4名女生,且满分的男、女生中各有2名体育特长生,请用列表或画树状图的方法求出所选的两名学生刚好都不是体育特长生的概率.【解答】解:(1)共抽取的学生人数为:945%20÷=人,A 等级有2035%7⨯=人,D 等级有207922---=人,∴按照成绩从高到低,第10、11两人都在B 等级,∴中位数在B 等级;(2)A 等级人数有7人,B 等级人数为9人, C 等级人数为2人,D 等级人数为2人,补全条形统计图如图;(3)成绩为满分的四名女生分别为女1,女2,女3,女4,其中女1,女2是体育特长生; 成绩为满分的三名男生为男1,男2,男3,其中男1,男2是体育特长生; 列出如下:女1 女2 女3 女4 男1 (男1,女1) (男1,女2) (男1,女3) (男1,女4) 男2 (男2,女1) (男2,女2) (男2,女3) (男2,女4) 男3(男3,女1)(男3,女2)(男3,女3)(男3,女4)由表可得共有12种情况,其中都不是体育特长生的有2种情况, 所以P (都不是体育特长生)16=. 22.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,ABC ∆的顶点都在格点上,建立如图所示的平面直角坐标系.(1)将ABC ∆向左平移7个单位后再向下平移3个单位,请画出两次平移后的△111A B C ,若M 为ABC ∆内的一点,其坐标为(,)a b ,直接写出两次平移后点M 的对应点1M 的坐标; (2)以原点O 为位似中心,将ABC ∆缩小,使变换后得到的△222A B C 与ABC ∆对应边的比为1:2.请在网格内画出在第三象限内的△222A B C ,并写出点2A 的坐标.【解答】解:(1)所画图形如下所示,其中△111A B C 即为所求,根据平移规律:左平移7个单位,再向下平移3个单位,可知1M 的坐标(7,3)a b --;(2)所画图形如下所示,其中△222A B C 即为所求,点2A 的坐标为(1,4)--.23.关于x 的方程2(1)220k x kx -++=. (1)求证:无论k 为何值,方程总有实数根.(2)设1x ,2x 是方程2(1)220k x kx -++=的两个根,记211212x x S x x x x =+++,S 的值能为2吗?若能,求出此时k 的值;若不能,请说明理由.【解答】解:(1)当1k =时,原方程可化为220x +=,解得:1x =-,此时该方程有实根; 当1k ≠时,方程是一元二次方程, △2(2)4(1)2k k =--⨯ 2488k k =-+24(1)40k =-+>,∴无论k 为何实数,方程总有实数根,综上所述,无论k 为何实数,方程总有实数根.(2)由根与系数关系可知,1221k x x k +=--,1221x x k =-, 若2S =,则2112122x x x x x x +++=,即212121212()22x x x x x x x x +-++=, 将12x x +、12x x 代入整理得:2320k k -+=, 解得:1k =(舍)或2k =, S ∴的值能为2,此时2k =.24.如图,水库大坝的横断面为四边形ABCD ,其中//AD BC ,坝顶10BC =米,坝高20米,斜坡AB 的坡度1:2.5i =,斜坡CD 的坡角为30︒.(1)求坝底AD 的长度(结果精确到1米);(2)若坝长100米,求建筑这个大坝需要的土石料(参考数据:2 1.414,3 1.732)≈≈ 【解答】解:(1)作BE AD ⊥于E ,CF AD ⊥于F , 则四边形BEFC 是矩形, 10EF BC ∴==米,20BE =米,斜坡AB 的坡度1:2.5i =, 50AE ∴=米,20CF =米,斜坡CD 的坡角为30︒,20335tan30CFDF ∴==≈︒米,95AD AE EF FD ∴=++=米;(2)建筑这个大坝需要的土石料:1(9510)201001050002⨯+⨯⨯=米3.25.ABC ∆和DEF ∆是两个全等的等腰直角三角形,90BAC EDF ∠=∠=︒,DEF ∆的顶点E与ABC ∆的斜边BC 的中点重合,将DEF ∆绕点E 旋转,旋转过程中,线段DE 与线段AB 相交于点P ,线段EF 与射线CA 相交于点Q .(1)如图①,当点Q 在线段AC 上,且AP AQ =时,求证:BPE CQE ∆≅∆;(2)如图②,当点Q 在线段CA 的延长线上时,求证:BPE CEQ ∆∆∽;并求当2BP =,9CQ =时BC 的长.【解答】(1)证明:ABC ∆是等腰直角三角形, 45B C ∴∠=∠=︒,AB AC =,AP AQ =, BP CQ ∴=,E 是BC 的中点,BE CE ∴=,在BPE ∆和CQE ∆中, BE CE B C BP CQ =⎧⎪∠=∠⎨⎪=⎩, ()BPE CQE SAS ∴∆≅∆;(2)解:ABC ∆和DEF ∆是两个全等的等腰直角三角形, 45B C DEF ∴∠=∠=∠=︒,BEQ EQC C ∠=∠+∠,即BEP DEF EQC C ∠+∠=∠+∠, 4545BEP EQC ∴∠+︒=∠+︒, BEP EQC ∴∠=∠, BPE CEQ ∴∆∆∽,∴BP BE CECQ=,2BP=,9CQ=,BE CE=,218BE∴=,32BE CE∴==,62BC∴=.26.如图,抛物线2(0)y ax bx c a=++≠与直线(0)y kx k=≠相交于点(1,1)M,(3,3)N,且这条抛物线的对称轴为1x=.(1)若将该抛物线平移使得其经过原点,且对称轴不变,求平移后的抛物线的表达式及k的值.(2)设P为直线y kx=下方的抛物线上一点,求PMN∆面积的最大值及此时P点的坐标.【解答】解:(1)由题意得121933baa b ca b c⎧-=⎪⎪++=⎨⎪++=⎪⎩,解得12132 abc⎧=⎪⎪=-⎨⎪⎪=⎩,∴抛物线为21322y x x=-+,该抛物线平移使得其经过原点,且对称轴不变,∴平移后的抛物线为212y x x=-,将(1,1)M代入y kx=得1k=;(2)过P作//PQ y轴,交MN于Q,设(,)Q t t,则213(,)22P t t t-+,则221313()22222PQ t t t t t=--+=-+-,2211311(31)2(2)22222S PQ PQ t t t∴=⨯-==-+-=--+,∴当2t=时,PMN∆的面积最大,此时3(2,)2P,12PMNS∆=.27.东坡商贸公司购进某种水果的成本为20元/kg,经过市场调研发现,这种水果在未来48天的销售单价p(元/)kg与时间t(天)之间的函数关系式为()()130124,41482548,2t t tpt t t⎧+⎪⎪=⎨⎪-+⎪⎩为整数为整数,且其日销售量()y kg与时间t(天)的关系如表:时间t(天)136102040⋯日销售量()y kg1181141081008040⋯(1)已知y与t之间的变化规律符合一次函数关系,试求在第30天的日销售量是多少?(2)问哪一天的销售利润最大?最大日销售利润为多少?(3)在实际销售的前24天中,公司决定每销售1kg 水果就捐赠n 元利润(9)n <给“精准扶贫”对象.现发现:在前24天中,每天扣除捐赠后的日销售利润随时间t 的增大而增大,求n 的取值范围.【解答】解:(1)设y kt b =+,把1t =,118y =;3t =,114y =代入得到: 1183114k b k b +=⎧⎨+=⎩解得2120k b =-⎧⎨=⎩, 2120y t ∴=-+.将30t =代入上式,得:23012060y =-⨯+=. 所以在第30天的日销售量是60kg .(2)设第t 天的销售利润为w 元.当124t 时,由题意211(2120)(3020)(10)125042w t t t =-++-=--+,10t ∴=时,w 最大值为1250元.当2548t 时,21(2120)(4820)11633602w t t t t =-+-+-=-+,对称轴58t =,10a =>,∴在对称轴左侧w 随t 增大而减小,25t ∴=时,w 最大值1085=,综上所述第10天利润最大,最大利润为1250元. (3)设每天扣除捐赠后的日销售利润为m 元.由题意211(2120)(3020)(2120)(102)120012042m t t t n t n t n =-++---+=-+++-,在前24天中,每天扣除捐赠后的日销售利润随时间t 的增大而增大, t 为整数,图像是孤立的点, 10223.512()2n+∴->⨯-,(见图中提示) 6.75n ∴>.又9n <,n ∴的取值范围为6.759n <<.28.如图,抛物线214y x bx c =++的顶点为M ,对称轴是直线1x =,与x 轴的交点为(3,0)A -和B .将抛物线214y x bx c =++绕点B 逆时针方向旋转90︒,点1M ,1A 为点M ,A 旋转后的对应点,旋转后的抛物线与y 轴相交于C ,D 两点. (1)写出点B 的坐标及求抛物线214y x bx c =++的解析式; (2)求证:A ,M ,1A 三点在同一直线上;(3)设点P 是旋转后抛物线上1DM 之间的一动点,是否存在一点P ,使四边形1PM MD 的面积最大?如果存在,请求出点P 的坐标及四边形1PM MD 的面积;如果不存在,请说明理由.【解答】(1)解:抛物线214y x bx c =++的顶点为M ,对称轴是直线1x =,与x 轴的交点为(3,0)A -和B ,∴点B 的坐标为(5,0),21124(3)304b bc ⎧-=⎪⨯⎪⎨⎪-⎪-+=⎩解得12154b c ⎧=-⎪⎪⎨⎪=-⎪⎩,∴抛物线解析式为21115424y x x =--.(2)证明:由题意可得:把1x =代入抛物线解析式21115424y x x =--, 得:4y =-则点M 的坐标为(1,4)-,根据旋转和图象可得:点1M 的坐标为(9,4)-, 点1A 的坐标为(5,8)-,设直线AM 的表达式为y kx m =+. 则有034k mk m =-+⎧⎨-=+⎩,解得13k m =-⎧⎨=-⎩,则直线AM 的表达式为3y x =--. 把5x =代入3y x =--,得8y =-. 即直线AM 经过点1A .故A ,M ,1A 三点在同一直线上.(3)解:存在点P 使四边形1PM MD 的面积最大.连接1M D , 1M MDS是定值,∴要使四边形1PM MD 的面积最大,只要1M PDS最大,将△1M PD 绕点B 顺时针旋转90︒,则点1M 与点M 重合, 点P 与点Q 重合,点D 与点F 重合.点Q ,F 都在抛物线21115424y x x =--, ∴点F 的坐标为(5,5)-,过点Q 作//QR y 轴交FM 于点R ,设点Q 的坐标为21115(,)424n n n --,设直线MF 的表达式为y px q =+,则有455p qp q+=-⎧⎨-+=⎩,解得3252pq⎧=-⎪⎪⎨⎪=-⎪⎩,则直线MF的表达式为35 22y x=--,设直线MF上有一点35(,)22R m m--,则2113511156()222424M PDS m m m=⨯⨯---++,2315344m m=--+,2327(2)44m=-++,∴当2m=-时,1274M PDS=最大,若2m=-时,2111574244m m--=-,所以,点7(2,)4Q--,故点P的坐标为27(4,7)-,点M的坐标为(1,4)-,点1M的坐标为(9,4)-,1DM MS∴的面积为168242⨯⨯=,四边形1PM MD的面积为271232444+=,∴存在点27(4P,7)-使四边形1PM MD的面积最大,面积最大值为1234.。
江苏省扬州市2021版九年级上学期数学期末考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2019·温州模拟) 一元二次方程的解为()A .B . x1=0,x2=4C . x1=2,x2=-2D . x1=0,x2=-42. (2分) (2020九下·无锡期中) 已知点A(1,m)与点B(3,n)都在反比例函数y= (k>0)的图象上,那么m与n的关系是()A .B .C .D . 不能确定3. (2分)某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元.若设商场3月份到5月份营业额的月平均增长率为x,则下面列出的方程中正确的是()A . 633.6(1+x)2=400(1+10%)B . 633.6(1+2x)2=400×(1010%)C . 400×(1+10%)(1+2x)2=633.6D . 400×(1+10%)(1+x)2=633.64. (2分)方程的解是()A .B .C . 或D . 或5. (2分)(2018·防城港模拟) 如图是几何体的三视图,该几何体是()A . 圆锥B . 圆柱C . 三棱柱D . 三棱锥6. (2分)(2019·石家庄模拟) 如图,在平行四边形ABCD中,AD=2AB , F是AD的中点,作CE⊥AB ,垂足E在线段AB上,连接EF、CF ,则下列结论中一定成立的是()①∠DCF=∠BCD②S△BEC=2S△CEF:③∠DFE=3∠AEF;④当∠AEF=54°时,则∠B=68°A . ①③B . ②③④C . ①④D . ①③④7. (2分) (2015八下·龙岗期中) 已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为()A . 20°或100°B . 120°C . 20°或120°D . 36°8. (2分)(2017·泾川模拟) 如图,已知正△ABC的边长为2,E,F,G分别是AB,BC,CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,则y关于x的函数图象大致是()A .B .C .D .9. (2分)小刚掷一枚质地匀的正方体体骰子,骰子的六个面分别刻有1到6的点数,则这个骰子向上一面点数大于3的概率为().A .B .C .D .10. (2分)如图,在四边形ABCD中,E是BC边的中点,连结DE并延长,交AB的延长线于F点,AB=BF。
扬州市2021版九年级上学期数学期末考试试卷B卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列说法正确的有几个()(1)任何一个有理数的平方都是正数(2)一个数的绝对值越大,表示它的点在数轴上越靠右(3)0既不是正数也不是负数(4)符号相反的两个数互为相反数.A . 1B . 2C . 3D . 42. (2分) (2019八上·洛宁期中) 下列运算错误的是()A .B .C .D .3. (2分)某几何体的三种视图分别如下图所示,那么这个几何体可能是().A . 长方体B . 圆柱C . 圆锥D . 球4. (2分)某篮球队12名的年龄如下表所示:年龄(岁)18192021人数5421则这12名队员年龄的众数和中位数分别是()A . 18,19B . 19,19C . 18,19.5D . 19,19.55. (2分)如果是二次根式,那么a的取值范围是()A . a≥﹣4B . a≤﹣4C . a≠﹣4D . a>46. (2分)如图,有四张不透明的卡片除正面的算式不同外,其余完全相同,将它们背面朝上洗匀后,从中随机抽取一张,则抽到得卡片上算式正确的概率是()A .B .C .D . 17. (2分)如图,每个正方形网格的边长为1个单位长度,将△ABC的三边分别扩大一倍得到△A1B1C1(顶点均在格点上),若它们是以点P为位似中心的位似图形,则点P的坐标是()A . (-4,-4)B . (-3,-3)C . (-4,-3)D . (-3,-4)8. (2分)(2020·上虞模拟) 如图,线段AB经过⊙O的圆心,AC,BD分别与⊙O相切于点C,D。
若AC=BD=2,∠A=30°,则的长度为()A . πB . πC . πD . 2π9. (2分)(2018·义乌) 如图,一个函数的图象由射线、线段、射线组成,其中点,,,,则此函数()A . 当时,随的增大而增大B . 当时,随的增大而减小C . 当时,随的增大而增大D . 当时,随的增大而减小10. (2分)(2019·保定模拟) 如图4,点A,B,C在正方形网格中的格点上,每个小正方形的边长为1,则下列关于△A BC边长的说法,正确的是()A . AB,BC长均为有理数,AC长为无理数B . AC长是有理数,AB,BC长均为无理数C . AB长是有理数,AC,BC长均为无理数D . 三边长均为无理数二、填空题 (共8题;共8分)11. (1分) (2018九上·成都期中) 如图,在平面直角坐标系中,直角梯形OABC的边OA,OC分别在x轴和y轴上,反比例函数的图象经过AB的中点D,和BC相交于点E,连接OE,OD,DE,若,则________.12. (1分)因式分解:9a2﹣12a+4=________.13. (1分)如图,直线,等边△ABC的顶点C在直线上,若边AB与直线的夹角,则边AC与直线的夹角∠2=________ .14. (1分)如图,在等腰三角形ABC中,AB=2,∠A=90°,点E为腰AB的中点,点F在底边BC上,且FE⊥CE,则△BEF的面积________.15. (1分)如图,在边长为2的菱形ABCD中,∠DAB=60°,对角线AC、BD交于点O,以点A为圆心,以AO 为半径画弧,交边AD于点E,交边AB于点F.则图中阴影部分的面积是________(结果保留根号和 ).16. (1分)(2020·徽县模拟) 把函数的图象向右平移2个单位长度,再向下平移1个单位长度,得到函数的关系式是________.17. (1分)菱形ABCD在平面直角坐标系中的位置如图所示,A(0,6),D(4,0),将菱形ABCD先向左平移5个单位长度,再向下平移8个单位长度,然后在坐标平面内绕点O旋转90°,则边AB中点的对应点的坐标为________18. (1分) (2020八下·高新期末) 关于x的方程x(x-1)+3(x-1)=0的解是________。
江苏省扬州市2021年九年级上学期期末数学试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列图形是中心对称图形的是()A .B .C .D .2. (2分)下列事件中,属于必然事件的是().A . 男生一定比女生高B . 掷一枚均匀的骰子,落地后偶数点朝上C . 在操场上抛出的篮球会下落D . 天气一天比一天冷3. (2分) (2018九上·铜梁期末) 抛物线的顶点坐标是()A . (2,3)B . (-2,3)C . (2,-3)D . (-2,-3)4. (2分)若关于x的多项式x2-px-6 含有因式x-3,则实数p的值为()A . -5B . 5C . -1D . 15. (2分)(2018·福田模拟) 下列命题错误的是()A . 经过三个点一定可以作圆B . 同圆或等圆中,相等的圆心角所对的弧相等C . 三角形的外心到三角形各顶点的距离相等D . 经过切点且垂直于切线的直线必经过圆心6. (2分)已知P1(a,﹣2)和P2(3,b)关于原点对称,则(a+b)2015的值为()A . 1B . -1C . ﹣52015D . 520157. (2分)不透明的布袋中,装有红、黄、白三种只有颜色不同的小球,其中红色小球有8个,黄、白色小球的数目相同。
为估计袋中黄色小球的数目,每次将袋中小球搅匀后摸出一个小球记下颜色,再次搅匀……多次试验发现摸到红球的频率是,则估计黄色小球的数目是()A . 2个B . 20个C . 40个D . 48个8. (2分)一元二次方程ax2+bx+c=0中,若a>0,b<0,c<0,则这个方程根的情况是()A . 有两个正根B . 有两个负根C . 有一正根一负根且正根绝对值大D . 有一正根一负根且负根绝对值大9. (2分)二次函数y=kx2-6x+3的图象与x轴有交点,则k的取值范围是()A . k<3B . k<3,且k≠0C . k≤3D . k≤3,且k≠010. (2分)如图,矩形纸片ABCD中,G、F分别为AD、BC的中点,将纸片折叠,使D点落在GF上,得到△HAE ,再过H点折叠纸片,使B点落在直线AB上,折痕为PQ.连接AF、EF ,已知HE=HF.下列结论:①△MEH为等边三角形;②AE⊥EF;③△PHE∽△HAE;④,其中正确的结论是A . ①②③B . ①②④C . ①③④D . ①②③④二、填空题 (共6题;共6分)11. (1分) (2020八下·南康月考) 在中,,,,则a的值是________.12. (1分)△ABC中,AB=, AC=8,∠ACB=30°,则BC的长为________13. (1分)请写出一个开口向上,并且与y轴交于点(0,1)的抛物线的解析式________。
江苏省扬州市2021年九年级上学期数学期末考试试卷C卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)若实数a,b,c满足a+b+c=0,且a<b<c,则函数y=cx+a的图象可能是()A .B .C .D .2. (2分)如图,AB是⊙O的直径,∠ADC=30°,OA=2,则AC的长为()A . 2B . 4C .D .3. (2分)若在“正三角形、平行四边形、菱形、正五边形、正六边形”这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率是()A .B .C .D .4. (2分)(2014·遵义) 已知抛物线y=ax2+bx和直线y=ax+b在同一坐标系内的图象如图,其中正确的是()A .B .C .D .5. (2分) (2017八下·港南期中) 直角三角形斜边上的中线长是6.5,一条直角边是5,则另一直角边长等于()A . 13B . 12C . 10D . 56. (2分)(2017·黑龙江模拟) 下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .7. (2分)把抛物线向左平移1个单位,然后向上平移3个单位,则平移后抛物线的表达式为()A .B .C .D .8. (2分)方程2x2+4x+3=0的根的情况是()A . 有两个相等的实数根B . 有两个互为相反数的实数根C . 只有一个实数根D . 没有实数根9. (2分)如图所示,原点O为三同心圆的圆心,大圆直径AB=8cm,则图中阴影部分的面积为()A . 4cm2B . 1cm2C . 4πcm2D . πcm210. (2分)如图,AB是⊙O的直径,弧BC=弧BD,∠A=25°,则∠BOD的度数为()A . 25°B . 50°C . 12.5°D . 30°二、填空题 (共8题;共9分)11. (1分) (2016九上·思茅期中) 点A(﹣2,1)关于原点对称点为点B,则点B的坐标为________.12. (1分)(2017·娄底模拟) 若抛物线y=x2﹣2x﹣3与x轴分别交于A,B两点,则A,B的坐标为________13. (1分)(2019·广西模拟) 从点A(-2,3),B(1,-6),C(-2,-4)中任取一个点,在y=- 的图象上的概率是________14. (1分)如果抛物线y= x2+(m﹣1)x﹣m+2的对称轴是y轴,那么m的值是________.15. (1分)如图,正九边形ABCDEFGHI中,AE=1,那么AB+AC的长是________ .16. (1分)(2017·郯城模拟) 如图,以△ABC的三边为边分别作等边△ACD、△ABE、△BCF,则下列结论::①△EBF≌△DFC;②四边形AEFD为平行四边形;③当AB=AC,∠BAC=120°时,四边形AEFD是正方形.其中正确的结论是________.(请写出正确结论的序号).17. (1分)(2019·中山模拟) 如图,将半径为4,圆心角为90°的扇形BAC绕A点逆时针旋转60°,点B、C的对应点分别为点D、E且点D刚好在上,则阴影部分的面积为________.18. (2分)(2018·金华模拟) 如图,点A是反比例函数图象第一象限上一点,过点A作轴于B点,以AB为直径的圆恰好与y轴相切,交反比例函数图象于点C,在AB的左侧半圆上有一动点D,连结CD 交AB于点记的面积为,的面积为,连接BC,则是________三角形,若的值最大为1,则k的值为________.三、解答题 (共8题;共85分)19. (10分) (2018九上·渭滨期末) 计算或解方程(1)(2)20. (10分) (2020九上·汽开区期末) 如图,AB是⊙O的直径,点C、D均在⊙O上,∠ACD=30°,弦AD =4cm .(1)求⊙O的直径.(2)求的长.21. (5分) (2018九下·扬州模拟) 初三年(4)班要举行一场毕业联欢会,主持人同时转动下图中的两个转盘,由一名同学在转动前来判断两个转盘上指针所指的两个数字之和是奇数还是偶数,如果判断错误,他就要为大家表演一个节目;如果判断正确,他可以指派别人替自己表演节目.现在轮到小明来选择,小明不想自己表演,于是他选择了偶数.小明的选择合理吗?从概率的角度进行分析(要求用树状图或列表方法求解)22. (10分)(2017·惠阳模拟) 某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3210元.问第一次降价后至少要售出该种商品多少件?23. (10分) (2019八下·长沙期末) 如图,⊙O为△ABC的外接圆,D为OC与AB的交点,E为线段OC延长线上一点,且∠EAC=∠ABC.(1)求证:直线AE是⊙O的切线;(2)若D为AB的中点,CD=3,AB=8.①求⊙O的半径;②求△ABC的内心I到点O的距离.24. (15分)(2018·广水模拟) 某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x (元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)求出y与x的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?25. (10分) (2018八上·汪清期末) 已知△ABC中,AB=AC=BC=6.点P射线BA上一点,点Q是AC的延长线上一点,且BP=CQ,连接PQ,与直线BC相交于点D.(1)如图①,当点P为AB的中点时,求CD的长;(2)如图②,过点P作直线BC的垂线,垂足为E,当点P,Q分别在射线BA和AC的延长线上任意地移动过程中,线段BE,DE,CD中是否存在长度保持不变的线段?请说明理由.26. (15分)(2020·乐东模拟) 如图,已知抛物线y=ax2+ x+c与x轴交于A,B两点,与y轴交于点C,且A(2,0),C(0,﹣4),直线l:y=﹣ x﹣4与x轴交于点D,点P是抛物线y=ax2+ x+c上的一动点,过点P作PE⊥x轴,垂足为E,交直线l于点F.(1)试求该抛物线表达式;(2)如图(1),若点P在第三象限,四边形PCOF是平行四边形,求P点的坐标;(3)如图(2),过点P作PH⊥y轴,垂足为H,连接AC.①求证:△ACD是直角三角形;②试问当P点横坐标为何值时,使得以点P、C、H为顶点的三角形与△ACD相似?参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共9分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共85分)19-1、19-2、20-1、20-2、21-1、22-1、22-2、23-1、23-2、24-1、24-2、24-3、25-1、25-2、26-1、26-2、26-3、。
一、选择题1.有一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是 ( )A .415B .15C .13D .2152.汉代数学家赵爽在注解(周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝,如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边分别是2和3.现随机向该图形内掷一枚飞镖,则飞镖落在小正方形内(非阴影区域)的概率为( )A .1B .1213C .112D .1133.如图所示,小明、小刚利用两个转盘进行游戏,规则为小明将两个转盘各转一次,如配成紫色(红与蓝),小明胜,否则小刚胜,此规则( )A .公平B .对小明有利C .对小刚有利D .公平性不可预测4.四张质地、大小相同的卡片上,分别画上如图所示的四种汽车标志,在看不到图形的情况下从中任意抽出一张,则抽出的卡片既是中心对称图形,又是轴对称图形的概率是( )A .12B .14 C .34D .1 5.如图,A ,B ,C 三点在O 上,若120ACB ∠=︒,则AOB ∠的度数是( )A .60︒B .90︒C .100︒D .120︒6.如图,在⊙O 中,AB 是直径,弦AC=5,∠BAC=∠D .则AB 的长为( )A .5B .10C .52D .102 7.下列命题中,正确的是( )A .平面上三个点确定一个圆B .等弧所对的圆周角相等C .三角形的外心在三角形的外面D .与某圆一条半径垂直的直线是该圆的切线8.如图,AB 为⊙O 的直径,,C D 为⊙O 上的两点,若7OB BC ==.则BDC ∠的度数是( )A .15︒B .30C .45︒D .60︒9.如图,等边△OAB 的边OB 在x 轴上,点B 坐标为(2,0),以点O 为旋转中心,把△OAB 逆时针转90︒,则旋转后点A 的对应点A '的坐标是( )A .(-1,3)B .(3,-1)C .(31-,)D .(-2,1) 10.下列图形既是轴对称图形,又是中心对称图形的是( )A .B .C .D .11.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a﹣b+c>0;②3a+b=0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根.其中正确结论的个数是()A.1个B.2个C.3个D.4个12.用配方法解方程x2﹣4x﹣7=0,可变形为()A.(x+2)2=3 B.(x+2)2=11 C.(x﹣2)2=3 D.(x﹣2)2=11二、填空题13.在边长为1的小正方形组成的网格中,有如图所示的,A B两点,在格点上任意放置点C(不与A、B重合,且A、B、C三点不在同一条直线上),恰好能使得ABC的面积为1的概率是__________.14.一只小狗在如图所示的地板上走来走去,地板是由大小相等的小正方形铺成的.最终停在黑色方砖上的概率是_______.15.从口号“我爱学习,学习使我妈快乐,我妈快乐,全家快乐”中随机抽取一个字,抽到“乐”字的概率是_______.16.如图,把边长为12的正三角形ABC纸板剪去三个小正三角形(阴影部分),得到正六边形DEFGHK,则剪去的小正三角形的边长为__________________.17.如图,点O 是等边△ABC 内一点,∠AOB =112°.将△BOC 绕点C 按顺时针方向旋转60°得△ADC ,连接OD .当α为______________度时,△AOD 是等腰三角形?18.如图,在⊙O 中,弦AC 、BD 相交于点E ,且AB BC CD ==,若∠BEC=130°,则∠ACD 的度数为_____19.将二次函数 ()2213y x =-+ 的图象先向左平移2个单位,再向下平移4个单位,则所得图象的函数表达式为________.20.一元二次方程22(1)210a x x a +++-=,有一个根为零,则a 的值为________. 三、解答题21.一个不透明的口袋里装有分别标有汉字“我”、“爱”、“中”、“国”的四个小球,除汉字不同之外,小球没有任何区别.每次摸球前先搅拌均匀.先从中任取一球,不放回,再从中任取一球,请用树状图或列表的方法,求取出的两个球上的汉字能组成“中国”的概率. 22.中华文化源远流长,文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查,根据调查结果绘制成如下尚不完整的统计图.请根据以上信息,解决下列问题:(1)本次调查所得数据的众数是________部,中位数是________部;(2)扇形统计图中“4部”所在扇形的圆心角为________度;(3)请将条形统计图补充完整;(4)没有读过四大古典名著的两名学生准备从中各自随机选择一部来阅读,请用列表或画树状图的方法求他们恰好选中同一名著的概率.23.如图,四边形ABCD为菱形,且120BAD∠=,以AD为直径作O,与CD交于点P.请仅用无刻度的直尺按下列要求画图.(保留作图痕迹)(1)在图1中,过点O作AB边的平行线OE;(2)在图2中,过点C作AB边上的高CF.24.已知在平面直角坐标系中,A(﹣2,0)、B(3,﹣1)、C(2,2),格中每一格表示一个单位长度,请解答以下问题:(1)求作出△ABC;(2)将△ABC平移,使得平移后点C的对应点为原点,A、B的对应点分别为A1,B1,请作出平移后的△A1B1O,并直接写出平移的距离为;(3)将△ABC绕点A逆时针旋转90°,得到△AB2C2,B、C的对应点分别为B2、C2,请作出△AB2C2,并求出B2、C2点的坐标.25.如图用长为30m的篱笆围成一个一边靠墙的矩形养鸡场ABCD,已知墙长14m,设边AB的长为xm,矩形ABCD的面积为ym2.(1)求y与x之间的函数关系式,并求出函数y的最大值.(2)当y=108时,求x的值.26.已知关于x的一元二次方程x2-2x+k=0.(1)若方程有实数根,求k的取值范围;(2)在(1)的条件下,如果k是满足条件的最大的整数,且方程x2-2x+k=0一根的相反数是一元二次方程(m-1)x2-3mx-7=0的一个根,求m的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】先求出黑色方格在整个方格中所占面积的比值,再根据其比值即可得出结论.【详解】解:∵图中共有15个方格,其中黑色方格5个,∴黑色方格在整个方格中所占面积的比值=515=13,∴最终停在阴影方砖上的概率为13.故选:C.【点睛】本题考查的是几何概率,熟知概率公式是解答此题的关键.2.D解析:D【分析】根据勾股定理先求出大正方形的边长,再求出小正方形的边长,从而得出两个正方形的面积,然后根据概率公式即可得出答案.【详解】解:∵两直角边分别是2和3,∴131,∴S大正方形=13,S小正方形=1,∴飞镖落在小正方形内(非阴影区域)的概率为113; 故选D .【点睛】 此题主要考查了几何概率问题,用到的知识点为:概率=相应的面积与总面积之比. 3.C解析:C【分析】根据题意画树形图即可判断.【详解】解:如图:根据树形图可知:所有等可能的情况有8种,其中配成紫色(红与蓝)的有3种,所以3588P P (小明胜)(小刚胜)=,= 所以此规则对小刚有利.故选:C .【点睛】本题考查的是用列表法或画树状图法求概率,列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件, 树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比. 4.B解析:B【分析】从四个图形中找到中心对称图形的个数,然后利用概率公式求解即可.【详解】∵四种汽车标志中,既是中心对称图形,又是轴对称图形的有1个,∴既是中心对称图形,又是轴对称图形的概率为14; 故选B .【点睛】本题考查概率的求法与运用,一般方法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率()P A =m n.5.D解析:D【分析】在优弧AB 上取一点D ,连接AD 、BD ,根据圆内接四边形的性质计算可得∠D ,然后根据圆周角定理即可求解.【详解】解:在优弧AB 上取一点D ,连接AD 、BD ,∵四边形ADBC 是⊙O 的内接四边形,∴∠D+∠ACB=180°,∵120ACB ∠=︒∴∠D=60°∴∠AOB=120°,故选:D .【点睛】本题考查的是圆内接四边形的性质和圆周角定理,掌握圆内接四边形的对角互补是解题的关键.6.C解析:C【分析】根据圆周角定理得出∠D=∠B ,得出△ABC 是等腰直角三角形,进而解答即可.【详解】∵AC=AC ,∴∠D=∠B ,∵∠BAC=∠D ,∴∠B=∠BAC ,∴△ABC 是等腰三角形,∵AB 是直径,∴△ABC 是等腰直角三角形,∵AC=5,∴AB=52故选:C .【点睛】本题考查了圆周角定理,等腰直角三角形的判定和性质,勾股定理的应用,关键是根据圆周角定理得出∠D=∠B.7.B解析:B【分析】根据在一条直线上的三点就不能确定一个圆可以判断A,再利用圆周角定理得出B正确;由不同三角形判断C项,以及利用切线的判定对D进行判定.【详解】A.平面上不共线的三个点确定一个圆,所以A选项错误;B.等弧所对的圆周角相等,所以B选项正确;C.钝角三角形的外心在三角形的外面,锐角三角形的外心在三角形内部,直角三角形的外心为斜边的中点,所以C选项错误;D.过半径的外端与半径垂直的直线为圆的切线,所以D选项错误.故选:B.【点睛】此题主要考查了切线的判断和圆的确定、圆周角定理以及外心等知识,熟练掌握定义是解题关键.8.B解析:B【分析】如图(见解析),先根据圆的性质可得OC OB=,再根据等边三角形的判定与性质可得60BOC∠=︒,然后根据圆周角定理即可得.【详解】如图,连接OC,由同圆半径相等得:OC OB=,7OB BC==,OC OB BC∴==,BOC∴是等边三角形,60BOC∴∠=︒,由圆周角定理得:1230BOCBDC∠=︒=∠,故选:B.【点睛】本题考查了等边三角形的判定与性质、同圆半径相等、圆周角定理,熟练掌握等边三角形的判定与性质是解题关键.9.C解析:C【分析】如图,过点A作AE⊥OB于E,过点A′作A′H⊥x轴于H.利用全等三角形的性质解决问题即可.【详解】解:如图,过点A作AE⊥OB于E,过点A′作A′H⊥x轴于H.∵B(2,0),△AOB是等边三角形,∴OA=OB=AB=2,∵AE⊥OB,∴OE=EB=1,∴2222AO OE2--13==∵A′H⊥OH,∴∠A′HO=∠AEO=∠AOA′=90°,∴∠A′OH+∠AOE=90°,∠AOE+∠OAE=90°,∴∠A′OH=∠OAE,∴△A′OH≌△OAE(AAS),∴A′H=OE=1,3∴A′(31),故选:C.【点睛】本题考查坐标与图形变化-旋转,等边三角形的性质,解直角三角形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.10.D解析:D【解析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,但不是中心对称图形,故本选项错误;C、是轴对称图形,但不是中心对称图形,故本选项错误;D、既是轴对称图形,又是中心对称图形,故本选项正确.故选D .11.C解析:C 【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断. 【详解】解:∵抛物线顶点坐标为(1,n ), ∴抛物线的对称轴为直线x=1,∵与x 轴的一个交点在点(3,0)和(4,0)之间, ∴当x=-1时,y >0,即a-b+c >0,故①正确; ∵抛物线的对称轴为直线x=1,即-2ba=1, ∴2a+b=0, ∵a≠0,∴3a+b≠0,故②错误; ∵抛物线顶点坐标为(1,n ),∴抛物线y=ax 2+bx+c (a≠0)与直线y=n 有唯一一个交点, 即方程ax 2+bx+c=n 有两个相等的实数根, ∴△=b 2-4a (c-n )=0, ∴b 2=4a (c-n ),故③正确; ∵抛物线的开口向下, ∴y 最大=n ,∴直线y=n-1与抛物线有两个交点,∴一元二次方程ax 2+bx+c=n-1有两个不相等的实数根,故④正确; 故选:C . 【点睛】主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.12.D解析:D 【分析】方程常数项移到右边,两边加上4变形得到结果即可. 【详解】解:x 2﹣4x ﹣7=0, 移项得:247x x -=配方得:24474x x -+=+ ,即2()211x -= 故答案为:D . 【点睛】本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解题的关键.二、填空题13.【分析】先从图中找到可以放置C的位置一共有多少个在找出能使的面积为1的位置一共有多少个用后者数目比前者数目即可得到答案;【详解】解:∵C不与重合且三点不在同一条直线上∴C不能放置在第三行第一个位置因解析:4 13【分析】先从图中找到可以放置C 的位置一共有多少个,在找出能使ABC∆的面积为1的位置一共有多少个,用后者数目比前者数目,即可得到答案;【详解】解:∵C不与A、B重合,且A、B、C三点不在同一条直线上∴C不能放置在第三行第一个位置,因此剩下的13个位置都可以放置C,利用三角形的面积公式,要使面积为1,即底和高的乘积为2,刚好找到4个点能使ABC∆的面积为1,分别是:第一行第一个点、第二行第四个点、第三行第三个点、第四行第二个点;因此,概率为:4 13,故答案为4 13.【点睛】题主要考查了随机事件的概率,概率是对随机事件发生之可能性的度量;能正确找出使三角形ABC面积为1的点做对题目的关键,还需要注意,题目中的限制条件,比如A、B、C三点不在同一条直线上才能避免错误.14.【分析】先观察次地板一共有多少块小正方形铺成再把是黑色的小正方块数出来用黑色的小整块数目比总的小正方块即可得到答案【详解】解:由图可知该地板一共有3×5=15块小正方块黑色的小正方块有5块因此停在黑解析:1 3【分析】先观察次地板一共有多少块小正方形铺成,再把是黑色的小正方块数出来,用黑色的小整块数目比总的小正方块即可得到答案.【详解】解:由图可知,该地板一共有3×5=15块小正方块,黑色的小正方块有5块,因此,停在黑色方砖上的概率是51 153=,故答案是1 3 .【点睛】本题主要考查了随机事件的概率,概率是对随机事件发生之可能性的度量;能正确数出黑色的小正方块是做对题目的关键,还需要注意,每个小正方块的大小是否一样,才能避免错误.15.【分析】直接利用概率公式求解可得【详解】由于一共有19个字其中乐字有3个则抽到乐字的概率为故答案为:【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数解析:3 19【分析】直接利用概率公式求解可得.【详解】由于一共有19个字,其中“乐”字有3个,则抽到“乐”字的概率为3 19,故答案为:3 19.【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.16.4【分析】由题意可知剪去的三个三角形是全等的等边三角形可知得到剪去的小正三角的边长为4【详解】解:∵剪去三个三角形∴AD=AE=DEBK=BH=HKCG=CF=GF∵六边形DEFGHK是正六边形∴D解析:4【分析】由题意可知剪去的三个三角形是全等的等边三角形,可知得到剪去的小正三角的边长为4.【详解】解:∵剪去三个三角形∴AD=AE=DE,BK=BH=HK,CG=CF=GF,∵六边形DEFGHK是正六边形,∴DE=DK=HK=GH=GF=EF,∴剪去的三个三角形是全等的等边三角形;∴AD=DK=BK=123=4,∴剪去的小正三角形的边长4.故答案为:4. 【点睛】本题考查了等边三角形以及正六边形的定义,熟练掌握定义是解题的关键.17.112°或124°或136°【分析】由题意可得△COD 是等边三角形进而可得∠CDO =∠COD =60°然后分三种情况根据等腰三角形的性质和三角形的内角和定理建立方程求解即可【详解】解:∵将△BOC 绕点解析:112°或124°或136° 【分析】由题意可得△COD 是等边三角形,进而可得∠CDO =∠COD =60°,然后分三种情况,根据等腰三角形的性质和三角形的内角和定理建立方程求解即可. 【详解】解:∵将△BOC 绕点C 按顺时针方向旋转60°得△ADC , ∴CO =CD ,∠OCD =60°,∠ADC =α, ∴△COD 是等边三角形. ∴∠CDO =∠COD =60°,①若AO =AD ,则∠AOD =∠ADO ,∵∠AOD =360°﹣112°﹣60°﹣α=188°﹣α,∠ADO =α﹣60°, ∴188°﹣α=α﹣60°,解得:α=124°; ②若OA =OD ,则∠OAD =∠ADO .∵∠OAD =180°﹣(∠AOD +∠ADO )=180°﹣(188°﹣α+α﹣60°)=52°, ∴α﹣60°=52°,∴α=112°; ③若OD =AD ,则∠OAD =∠AOD . ∵∠AOD =188°﹣α,∠OAD =()180602α︒--︒=120°﹣2α,∴188°﹣α=120°﹣2α,解得:α=136°. 综上所述:当α为112°或124°或136°时,△AOD 是等腰三角形. 故答案为:112°或124°或136°. 【点睛】本题考查了等边三角形的判定和性质、旋转的性质、等腰三角形的性质以及三角形的内角和定理等知识,全面分类、熟练掌握上述知识是解题的关键.18.105°【分析】根据圆周角定理的推论可得∠BCA =∠CBD =∠CDB 然后根据三角形的内角和定理即可求出∠BCA 与∠CED 再在△CDE 中利用三角形的内角和求解即可【详解】解:∵∴∠BCA =∠CBD =∠解析:105° 【分析】根据圆周角定理的推论可得∠BCA =∠CBD =∠CDB ,然后根据三角形的内角和定理即可求出∠BCA 与∠CED ,再在△CDE 中利用三角形的内角和求解即可解:∵AB BC CD ==, ∴∠BCA =∠CBD =∠CDB , ∵∠BEC =130°,∴∠BCA =∠CBD =25°,∠CED =50°, ∴∠CDB =25°,∴∠ACD =180°﹣50°﹣25°=105°. 故答案为:105°. 【点睛】本题考查了圆周角定理的推论和三角形的内角和定理,熟练掌握上述知识是解题的关键.19.y=2(x+1)2-1【分析】利用二次函数图像平移规律:上加下减左加右减可得平移后的函数解析式【详解】解:将二次函数 的图象先向左平移2个单位再向下平移4个单位则所得图象的函数表达式为:y=2(x解析:y=2(x+1)2-1 【分析】利用二次函数图像平移规律:上加下减,左加右减,可得平移后的函数解析式. 【详解】解:将二次函数 ()2213y x =-+ 的图象先向左平移2个单位,再向下平移4个单位,则所得图象的函数表达式为:y=2(x-1+2)2+3-4 ∴y=2(x+1)2-1. 故答案为:y=2(x+1)2-1. 【点睛】本题考查了二次函数与几何变换,正确掌握平移规律是解题关键.20.1【分析】根据一元二次方程的解的定义把x=0代入(a+1)x2+2x+a2-1=0再解关于a 的方程然后利用一元二次方程的定义确定a 的值【详解】解:把x=0代入(a+1)x2+2x+a2-1=0得a2解析:1 【分析】根据一元二次方程的解的定义,把x=0代入(a+1)x 2+2x+a 2-1=0,再解关于a 的方程,然后利用一元二次方程的定义确定a 的值. 【详解】解:把x=0代入(a+1)x 2+2x+a 2-1=0得a 2-1=0, 解得a=1或a=-1, 而a+1≠0, 所以a 的值为1. 故答案为:1. 【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次三、解答题21.1 6【分析】根据题意列举出所有的可能,从而得出符合题意的概率.【详解】解:如表所示:∴P(摸出的两个球上的汉字能组成“中国”)16.【点睛】本题考查列表法或树状图法求概率,解题的关键是知道概率=所求情况数与总情况数之比.注意掌握放回试验与不放回实验的区别.22.(1)1,2;(2)72°;(3)见解析;(4)见解析,1 4【分析】(1)先根据调查的总人数,求得2部对应的人数,进而得到本次调查所得数据的众数以及中位数;(2)根据扇形圆心角的度数=部分占总体的百分比×360°,即可得到“4部”所在扇形的圆心角;(3)根据2部对应的人数,即可将条形统计图补充完整;(4)根据列表所得的结果,可判断他们选中同一名著的概率.【详解】解:(1)调查的总人数为:10÷25%=40,∴2部对应的人数为40-2-14-10-8=6,∴本次调查所得数据的众数是1部,∵2+14+10=26>21,2+14<20,∴中位数为2部.故答案为:1,2(2)扇形统计图中“4部”所在扇形的圆心角为:8360?=72? 40⨯故答案为:72°.(3)2部对应的人数为:40-2-14-10-8=6人补全统计图如图所示.(4)将《西游记》、《三国演义》、《水浒传》、《红楼梦》分别记作A,B,C,D,画树状图可得:由图可知,共有16种等可能的结果,其中选中同一名著的有4种,()41 164P∴==选中同一部.故答案为:14.【点睛】此题考查了树状图法与列表法求概率,以及条形统计图与扇形统计图的知识.解题时注意:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.一组数据中出现次数最多的数据叫做众数.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.23.(1)见解析;(2)见解析【分析】(1)连接BD、AC交于点E,连接OE;(2)连接BD,则点P和BD与O的交点的延长线与AB的交点即为F点.【详解】(1)如图所示, ∵四边形ABCD 是菱形, ∴E 是BD 中点, ∵O 是DA 中点, ∴//OE AB ;(2)如图所示, ∵120BAD ∠=, ∴60ADC ∠=︒, ∵AD CD =,∴ACD △是等边三角形, ∵AD 是直径,∴90APD ∠=︒,即AP DC ⊥, ∴P 是CD 中点,通过如图所示找到的点F 是AB 的中点,∵ABC 也是等边三角形, ∴CF AB ⊥.【点睛】本题考查作图,解题的关键是要熟悉各种几何的性质,比如:等边三角形的性质,中位线的性质,菱形的性质,圆的性质.24.(1)作图见解析;(2)2;(3)作图见解析;B 2(﹣4,4),C 2(﹣1,5) 【分析】(1)根据点的坐标作出三角形即可; (2)分别作出A ,B 的对应点A 1,B 1即可; (3)分别作出B ,C 的对应点B 2、C 2即可. 【详解】解:(1)如图,△ABC 即为所求;(2)如图△A 1B 1O 即为所求,平移的距离为2; 故答案为2(3)如图△A B 2C 2即为所求B 2、C 2点的坐标分别为(﹣4,4),(﹣1,5)【点睛】本题考查了作图-旋转变换,平移变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题.25.(1)y=﹣12(x﹣15)2+112.5,y的最大值为112m2;(2)x的值为12【分析】(1)根据长方形的面积等于长乘以宽及墙体长度为14米,即可求出y与x的函数关系式,结合二次函数增减性得出二次函数最值;(2)把y=108代入(1)中的解析式,解方程得出答案.【详解】(1)根据题意可得:AD=12(30﹣x)m,y=12x(30﹣x)=﹣12x2+15x=﹣12(x﹣15)2+112.5,∵墙长为14m,∴0<x≤14,则x≤15时,y随 x 的增大而增大,∴当x=14m,即AB=14m,BC=8m时,长方形的面积最大,最大面积为:14×8=112(m2);∴y的最大值为112m2;(2)当y=108时,108=12x(30﹣x),整理得:x2﹣30x+216=0,解得:x1=12,x2=18(不合题意舍去),答:x的值为12.【点睛】本题考查了二次函数在实际问题中的应用,根据题意正确得出函数关系式并明确二次函数的性质是解题的关键.26.(1)k≤1;(2)2 【分析】(1)结合题意,根据判别式的性质计算,即可得到答案;(2)结合(1)的结论,可得k 的值,从而计算得方程x 2-2x+k=0的根,并代入到()21370m x mx ---=,通过求解一元一次方程方程,即可得到答案.【详解】(1)由题意知:44k ∆=-且0∆≥ 即:4-4k≥0 ∴k≤1(2)k≤1时,k 取最大整数1当k=1时,221x x -+的解为:121x x ==根据题意,1x =是方程()21370m x mx ---=的一个根∴()()()2113170m m -⨯--⨯--=∴m=2. 【点睛】本题考查了一元二次方程、一元一次方程的知识;解题的关键是熟练掌握一元二次方程判别式、一元一次方程的性质,从而完成求解.。
江苏省扬州市2021版九年级上学期数学期末考试试卷C卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) -3的倒数是()A .B .C .D .2. (2分) (2019八上·信阳期末) 下列世界博览会会徽图案中是轴对称图形的是()A .B .C .D .3. (2分)下列运算正确的是()A . (3x2)3=9x6B . a6÷a2=a3C . (a+b)2=a2+b2D . 22014﹣22013=220134. (2分) (2019九上·余杭期中) 已知关于x的二次函数y=-(x-m)2+2,当x>1时,y随x的增大而减小,则实数m的取值范围是()A . m≤0B . 0<m≤1C . m≤1D . m≥15. (2分)若反比例函数y=(2m-1)xm²-2的图象经过第二、四象限,则m为()A . 1B . -1C .D .6. (2分)(2016·巴彦) 如图,直线l经过第一、二、四象限,l的解析式是y=(m﹣3)x+m+2,则m的取值范围在数轴上表示为()A .B .C .D .7. (2分)一根绳子剪去,恰好是米,这根绳子长多少米?正确的列示是()A . ×B . +C . ÷D . ÷8. (2分)如图,如果在阳光下你的身影的方向北偏东60°方向,那么太阳相对于你的方向是()A . 南偏西60°B . 南偏西30°C . 北偏东60°D . 北偏东30°9. (2分)如图,AB∥CD∥EF,则在图中下列关系式一定成立的是()A .B .C .D .10. (2分)抛物线y=x2﹣8x+m的顶点在x轴上,则m等于()A . -16B . -4C . 8D . 16二、填空题 (共9题;共9分)11. (1分) (2018七上·辉南期末) 青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将2 500 000用科学记数法表示应为________平方千米.12. (1分) (2017八上·鞍山期末) 函数y= 的自变量取值范围是________.13. (1分) (2019七下·端州期中) 化简: =________, =________.14. (1分)(2017·锦州) 分解因式:2x3﹣2xy2=________.15. (1分) (2017九上·平房期末) 若扇形的弧长为6πcm,面积为15πcm2 ,则这个扇形所对的圆心角的度数为________.16. (1分)(2017·平川模拟) 点A(2,y1),B(3,y2)是二次函数y=(x﹣1)2+3的图象上两点,则________(填“>”、“<”或“=”)17. (1分)抛物线y=2(x+3)(x-2)与x轴的交点坐标分别为 ________.18. (1分) (2019八下·交城期中) 如图,在Rt△ABC中,∠BAC=90°,AB=3,AC=4,AD⊥BC于点D,则AD 的长为________.19. (1分) (2016八上·萧山期中) 如图,已知△ADC中,∠ADC=90°,AD=DC,AC= ,三角形的顶点在相互平行的三条直线l1 , l2 , l3上,且l2 , l3之间的距离为3,则l1 , l2之间的距离是________.三、解答题 (共7题;共80分)20. (5分) (2017九下·杭州期中) 已知x=﹣2,求的值.21. (10分)(2019·银川模拟) 如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1,平移△ABC,若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(2)若将△A1B1C1绕某一点旋转可以得到△A2B2C2,请直接写出旋转中心的坐标.22. (15分)(2019·郑州模拟) 2018年平昌冬奥会在2月9日到25日在韩国平昌郡举行。
一、选择题1.若函数k y x =的图象经过点A (-1,2),则k 的值为( ) A .1B .-1C .2D .-2 【答案】D【分析】把已知点的坐标代入计算即可.【详解】∵函数k y x =的图象经过点A (-1,2), ∴21k =-, ∴k= -2;故选D .【点睛】 本题考查了反比例函数与点的关系,根据图像过点,点的坐标满足函数的解析式求解是解题的关键.2.如图,在平面直角坐标系中,BC y ⊥轴于点C ,90B ∠=︒,双曲线k y x =过点A ,交BC 于点D ,连接OD ,AD .若34AB OC =,5OAD S =△,则k 的值为( )A .92B .72C .73D .83【答案】D【分析】如详解图:过点A 作AH 垂直于x 轴于点H ,可得四边形OCBH 为矩形,根据34AB OC =,设3,4AB a OC a ==,根据矩形的性质可求AH a =,则可得点A 坐标(,k a a ),点D 的坐标(,44k a a ),4k CD a =,k OH BC a ==,344k k k BD BC CD a a a=-=-=,可求出矩形OCBH 的面积等于44k BC CO a k a ⨯=⨯=,2k =△COD S ,2AOH k S =△,98ABD k S =△,5OAD S =△,则有945228k k k k =+++,即可解出k 的值. 【详解】 如图:过点A 作AH 垂直于x 轴于点H ,设4OC a =34AB OC =, ∴3,AB a = BC y ⊥轴,∴90B C COH ∠=∠=∠=︒ ∴四边形OCBH 为矩形,∴OH=BC ,CO=BH 4a =∴AH=BH-AB=4a-3a=a ,∴点A 坐标(,k a a ),k BC OH a==, 双曲线k y x=与BC 交于点D , ∴点D 的坐标(,44k a a), ∴4k CD a =,344k k k BD BC CD a a a=-=-=, S 矩形COHB 44k CO BC a k a=⨯=⨯=, 1142242k k OC CD a a =⨯⨯=⨯⨯=△COD S , 11222AOH k k S AH OH a a =⨯⨯=⨯⨯=△, 113932248ABD k k S AB BD a a =⨯⨯=⨯⨯=△, 5OAD S =△,S 矩形COHB COD AOH ABD OAD S S S S =+++△△△△, ∴945228k k k k =+++, 整理得:1540k =,解得:83k =, 故选:D .【点睛】本题考查了反比例函数的几何综合,以及矩形的性质和判定,解题关键是利用矩形的面积等于几个三角形的面积之和进行求解.3.如图,函数k y x=与1()0y kx k =-+≠在同一平面直角坐标系中的大致图象是( ) A . B . C . D .【答案】B【分析】根据反比例函数和一次函数的图象与性质即可得.【详解】对于一次函数1()0y kx k =-+≠,当0x =时,1y =,即一次函数1()0y kx k =-+≠一定经过点(0,1),则选项C 、D 不符合题意;选项A 中,由函数k y x=的图象可知,0k <,由一次函数1()0y kx k =-+≠的图象可知,0k -<,即0k >,两者不一致,此项不符题意; 选项B 中,由函数k y x=的图象可知,0k >,由一次函数1()0y kx k =-+≠的图象可知,0k -<,即0k >,两者一致,此项符合题意;故选:B .【点睛】 本题考查了反比例函数和一次函数的图象与性质,熟练掌握反比例函数和一次函数的图象与性质是解题关键.4.如图,几何体由6个大小相同的正方体组成,其俯视图...是( )A.B.C.D.5.如图,长方体的底面是长为4cm、宽为2cm的长方形,如果从左面看这个长方体时看到的图形面积为6cm2,则这个长方体的体积等于( )A.324cm12cm D.38cm C.36cm B.36.由4个小立方体搭成如图所示的几何体,从正面看到的平面图形是()A.B.C.D.7.已知△ABC如图,则下列4个三角形中,与△ABC相似的是()A.B.C.D.8.如图,在矩形ABCD中,E,F分别为BC,CD的中点,线段AE,AF与对角线BD分别交于点G.设矩形ABCD的面积为S,则下列结论不正确的是()A .:2:1AG GE =B .::1:1:1BG GH HD =C .12313S S S S ++=D .246::1:3:4S S S = 9.如图是一个正八边形,向其内部投一枚飞镖,投中阴影部分的概率是( )A .13B .12C .22D .3410.复印纸的型号有0A 、1A 、2A 、3A 、4A 等,它们之间存在着这样一种关系:将其中某一型号(如3A )的复印纸较长边的中点对折后,就能得到两张下一型号(4A )的复印纸,且得到的两个矩形都和原来的矩形相似(如图),那么这些型号的复印纸的宽与长之比为( )A .12B .22C .32D .51211.若一个等腰三角形的一边为4,另外两边为2120x x m -+=的两根,则m 的值为( )A .32B .36C .32或36D .不存在 12.下列图形中,是中心对称图形但不一定是轴对称图形的是( )A .矩形B .菱形C .正方形D .平行四边形 二、填空题13.若反比例函数21a y x+=(a 是常数)的图象的同一支上有两点()11x y ,,()22x y ,,设()()1212b x x y y =--,则一次函数y bx b =-的图象不经过第_______象限.14.如图,四边形OABC 是平行四边形,其面积为8,点A 在反比例函数3y x =的图象上,过点A 作AD //x 轴交BC 于点D ,过点D 的反比例函数图象关系式为k y x=,则k 的值是_____.15.如图,是一个立体图形的三种视图,则这个立体图形的体积为______.16.如图是某几何体的三视图及相关数据,则该几何体的侧面积是_____.17.如图,正方形ABCD 中,点F 在边AB 上,且AF :FB =1:2,AC 与DF 交于点N .(1)当AB =4时,AN =_____.(2)S △ANF :S 四边形CNFB =_____.(S 表示面积)18.四张背面相同的卡片,分别为12,1,2,3,洗匀后背面朝上,先从中抽取一张,把抽到的点数记为a ,再在剩余的卡片中抽取一张点数记为b ,则点(a ,b )恰好落在一次函数y=-2x+4与坐标轴所围成的三角形区域内(含边界)的概率为______________; 19.已知三角形的两边长分别是方程211300x x -+=的两个根,则该三角形第三边m 的取值范围是______.20.如图,在平面直角坐标系中,边长为1的正方形1111D C B A (记为第1个正方形)的顶点1A 与原点重合,点1B 在y 轴上,点1D 在x 轴上,点1C 在第一象限内,以1C 为顶点作等边122C A B ,使得点2A 落在x 轴上,22A B x ⊥轴,再以22A B 为边向右侧作正方形2222A B C D (记为第2个正方形),点2D 在x 轴上,以2C 为顶点作等边233C A B ,使得点3A 落在x 轴上,33A B x ⊥轴,若按照上述的规律继续作正方形,则第2021个正方形的边长为_________.三、解答题21.如图,在直角坐标系中,Rt ABC 的直角边AC 在x 轴上,∠ACB =90°,AC =1,点B(3,2),反比例函数y =k x(k >0)的图象经过BC 边的中点D . (1)求这个反比例函数的表达式; (2)若ABC 与EFG 成中心对称,且EFG 的边FG 在y 轴的正半轴上,点E 在这个函数的图象上,①求OF 的长;②连接AF ,BE ,证明:四边形ABEF 是正方形.22.从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.【答案】见解析【分析】根据从三个不同方向看到的小正方形相对位置画图即可.【详解】解:如图所示:【点睛】此题考查的是画三视图,解决此题的关键是根据从三个不同方向看到的小正方形相对位置画图.23.如图,小明为了测量大树AB 的高度,在离B 点21米的N 处放了一个平面镜,小明沿BN 方向后退1.4米到D 点,此时从镜子中恰好看到树顶的A 点,已知小明的眼睛(点C )到地面的高度CD 是1.6米,求大树AB 的高度.24.在一个密闭的口袋里装有四个除颜色外都相同的小球,其中1个红色,1个黄色,2个白色.(1)小明从口袋中随机模出1个小球,恰好是黄色的概率为______;(2)小明随机一次从口袋中摸出两个小球,试用树状图或表格列出所有可能的结果,并求摸到的两个小球的颜色恰为一红一白的概率为_______;(3)往口袋里再放入一个完全相同的黄色小球,先摸出一个小球放回,摇匀后再随机摸出一个小球,则两次摸到的小球的颜色恰为一红一白的概率是______.25.阅读下列材料:已知实数x ,y 满足()()22221163x y x y +++-=,试求22x y +的值. 解:设22x y a +=,则原方程变为(1)(1)63a a +-=,整理得2163a -=,264a =,根据平方根意义可得8a =±,由于220x y +,所以可以求得228x y +=.这种方法称为“换元法”,用一个字母去代替比较复杂的单项式、多项式,可以达到化繁为简的目的.根据阅读材料内容,解决下列问题:(1)已知实数x ,y 满足(223)(223)27x y x y +++-=,求x y +的值.(2)已知a ,b 满足方程组22223212472836a ab b a ab b ⎧-+=⎨++=⎩;求112a b +的值; (3)填空:已知关于x ,y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是95x y =⎧⎨=⎩,则关于x ,y 的方程组21111122222222a x a x b y c a a x a x b y c a ⎧-+=-⎨-+=-⎩的解是_______. 26.有两棵树,一棵高9米,另一棵高4米,两树相距12米. 一只小鸟从一棵树的树梢(最高点)飞到另一棵树的树梢(最高点),问小鸟至少飞行多少米?【参考答案】***试卷处理标记,请不要删除一、选择题1.无2.无3.无4.C解析:C【分析】细心观察图中几何体中正方体摆放的位置,根据俯视图是从上面看到的图形判定则可.【详解】解:从物体上面看,底层是1个小正方形,上层是并排放4个小正方形.故选:C .【点评】本题考查了三视图的知识,俯视图是从物体上面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.5.D解析:D【解析】【分析】根据长方体的体积公式可得.【详解】根据题意,得:6×4=24(cm 3),因此,长方体的体积是24cm3.故选:D.【点睛】此题主要考查了简单几何体的三视图,关键是掌握长方体的体积公式.6.C解析:C【解析】【分析】找到从正面看所得到的图形即可.【详解】解:该几何体的主视图是故选C.【点睛】考查了三视图的知识,主视图是从物体的正面看得到的视图.7.C解析:C【分析】△ABC是等腰三角形,底角是75°,则顶角是30°,看各个选项是否符合相似的条件.【详解】解:∵由图可知,AB=AC=6,∠B=75°,∴∠C=75°,∠A=30°,A、三角形各角的度数分别为75°,52.5°,52.5°,不符合题意;B、三角形各角的度数都是60°,不符合题意;C、三角形各角的度数分别为75°,30°,75°,符合题意;D、三角形各角的度数分别为40°,70°,70°,不符合题意;∴只有C选项中三角形各角的度数与题干中三角形各角的度数相等,故选:C.【点睛】此题主要考查等腰三角形的性质,三角形内角和定理和相似三角形的判定的理解和掌握,解题的关键是熟练掌握相似三角形的判定.8.D解析:D【分析】根据平行线分线段成比例定理和线段中点的定义得:21AG ADGE BE==,可判断选项A正确;同理根据平行线分线段成比例定理得:13BG BD =,13DH BD =即可判断B 选项;设1S x =根据相似三角形面积的比等于相似比的平方,等底同高三角形面积的关系依次用x 表示各三角形的面积,即可判断C 和D 选项.【详解】 ①四边形ABCD 是矩形,//BC AD BC AD ∴=点E 是BC 的中点1122//BE BC AD AD BE∴== ∴21AG AD GE BE == 故选项A 正确;②//BE AD1213BG BE DG AD BG BD ∴==∴= 同理得:13DH BD =::1:1:1BG GH HD BG GH HD ∴==∴=故选项B 正确 ③//BE ADDAG ∴△BEG ∽△ 13453414S S S BG GH HD S S S ∴=+==∴==设1S x =则5342S S S x ===12S x ∴=同理可得:2S x =1231243S S S x x x x S ∴++=++== 故选项C 正确;④由③可知:664S x x x x =--=246::1:2:4S S S ∴=故选项D 错误;故选:D .【点睛】本题考查了矩形的性质,三角形相似的性质和判定,平行线分线段成比例定理,三角形面积等知识,解题的关键是理解题意,掌握等底同高三角形面积相等,相似三角形面积的比等于相似比的平方.9.B解析:B【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.根据正八边形性质求出阴影部分面积占总面积之比,进而可得到答案【详解】解:由正八边形性质可知∠EFB=∠FED=135°,故可作出正方形ABCD .则AEF 是等腰直角三角形,设AE x =,则AF x =,2EF x =,正八边形的边长是2x . 则正方形的边长是(22)x +. 则正八边形的面积是:(2221(22)44122x x x ⎡⎤-=+⎣⎦, 阴影部分的面积是:2212[(22)2]2(21)2x x x x -⨯=. ()2221241122x x++=, 故选:B .【点睛】 本题考查了几何概率的求法:一般用阴影区域表示所求事件(A );首先根据题意将代数关系用面积表示出来;然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A )发生的概率.同时也考查了正多边形的计算,根据正八边形性质构造正方形求面积比是关键.10.B解析:B【分析】设这些型号的复印纸的长、宽分别为b 、a ,根据相似多边形的对应边的比相等列出比例式,计算即可.【详解】解:设这些型号的复印纸的长、宽分别为b 、a ,∵得到的矩形都和原来的矩形相似, ∴2ba a b=,则b 2=2a 2,∴b a= ∴:1,∴宽与长之比为2故选:B .【点睛】本题考查的是相似多边形的性质,相似多边形的性质为:①对应角相等;②对应边的比相等. 11.B解析:B【分析】分为两种情况:①腰长为4,②底边为4,分别求出即可.【详解】分为两种情况:①当腰长是4时,设底边为a ,依题意得:a+4=12,解得:a=8,即三边为4,4,8,不能构成三角形,舍去;②底边为4,设腰长为b ,依题意得:b+b=12,∴腰长为b=6,即三边为4,6,6,∴m=6×6=36;故选:B .【点睛】本题考查了一元二次方程的根与系数的关系,等腰三角形的性质等知识点,掌握根与系数的关系并能进行分类讨论是解此题的关键.涉及等腰三角形的问题容易漏解或多解,要特别注意.12.D解析:D【分析】根据轴对称图形与中心对称图形的概念进行判断即可.【详解】矩形是中心对称图形,也是轴对称,该选项不符合题意;菱形是中心对称图形,也是轴对称,该选项不符合题意;正方形是中心对称图形,也是轴对称,该选项不符合题意;平行四边形中心对称图形,但不一定是轴对称,该选项符合题意,故选:D .【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图形重合.二、填空题13.三【分析】由>(是常数)的图像在第一第三象限在每一象限内随的增大而减小从而可得<所以一次函数的图象不经过第三象限【详解】解:>(是常数)的图像在第一第三象限在每一象限内随的增大而减小而点在函数图像上 解析:三【分析】由21a +>0, 21a y x +=(a 是常数)的图像在第一,第三象限,在每一象限内y 随x 的增大而减小,从而可得()()1212b x x y y =--<0, 所以一次函数y bx b =-的图象不经过第三象限.【详解】解:21a +>0,∴ 21a y x+=(a 是常数)的图像在第一,第三象限,在每一象限内y 随x 的增大而减小,而点()11x y ,,()22x y ,在函数图像上,1212,x x y y ∴--异号,()()1212b x x y y ∴=--<0,∴ 一次函数y bx b =-的图象不经过第三象限.故答案为:三.【点睛】本题考查的是反比例函数的图像与性质,一次函数的图像与性质,掌握以上知识是解题的关键.14.-5【分析】连接根据反比例函数系数的几何意义得到从而得到即可得到解得【详解】解:连接由题意可知解得在第二象限故答案为:【点睛】本题考查了反比例函数系数的几何意义三角形的面积平行四边形的性质明确的面积 解析:-5.【分析】连接OD ,根据反比例函数系数的几何意义得到13322AOE S ∆=⨯=,1||2DOE S k ∆=,从而得到118422AOD ABCO S S ∆==⨯=平行四边形,即可得到3||42k +=,解得5k =-. 【详解】解:连接OD ,由题意可知,13322AOE S ∆=⨯=,1||2DOE S k ∆=, 3||2AOD k S ∆+∴=, 118422AOD ABCO S S ∆==⨯=平行四边形, ∴3||42k +=, 解得||5k =,在第二象限,5k ∴=-.故答案为:5-..【点睛】本题考查了反比例函数系数的几何意义,三角形的面积,平行四边形的性质,明确AOD ∆的面积是平行四边形ABCO 面积的一半是解题的关键.15.【分析】根据该立体图形的三视图可判断该立体图形为圆柱且底面直径为8高为8根据圆柱的体积公式即可得答案【详解】∵该立体图形的三视图为两个正方形和一个圆∴该立体图形为圆柱且底面直径为8高为8∴这个立体图 解析:128π【分析】根据该立体图形的三视图可判断该立体图形为圆柱,且底面直径为8,高为8,根据圆柱的体积公式即可得答案.【详解】∵该立体图形的三视图为两个正方形和一个圆,∴该立体图形为圆柱,且底面直径为8,高为8,∴这个立体图形的体积为π×42×8=128π,故答案为:128π【点睛】本题考查由三视图判断几何体;利用该几何体的三视图得到该几何体底面半径、高是解题的关键.16.15π【解析】试题分析:由三视图可知这个几何体是母线长为5高为4的圆锥∴a=2=6∴底面半径为3∴侧面积为:π×5×3=15π考点:1三视图;2圆锥的侧面积解析:15π.【解析】试题分析:由三视图可知这个几何体是母线长为5,高为4的圆锥,∴a=2=6,∴底面半径为3,∴侧面积为:π×5×3=15π.考点:1.三视图;2.圆锥的侧面积. 17.1∶11【分析】(1)利用平行线分线段成比例定理等腰直角三角形的性质解决问题即可(2)设△ANF 的面积为m 由AF ∥CD 推出△AFN ∽△CDN 推出△ADN 的面积为3m △DCN 的面积为9m 推出△ADC 的 2 1∶11【分析】(1)利用平行线分线段成比例定理,等腰直角三角形的性质解决问题即可.(2)设△ANF 的面积为m ,由AF ∥CD ,推出13AF FN CD DN ==,△AFN ∽△CDN ,推出△ADN 的面积为3m ,△DCN 的面积为9m ,推出△ADC 的面积=△ABC 的面积=12m ,由此即可得S 四边形CNFB =11m ,即可得出答案.【详解】解:∵四边形ABCD 是正方形,∴AB ∥CD ,AB=CD ∴AF AN CD CN=, ∵AF :FB =1:2,∴AF :AB =AF :CD =1:3, ∴13AN CN =, ∴14AN AC =, ∵AC 2=, ∴142AB =,∴AN 4=AB ; ∵AB=4 ∴;(2)设△ANF 的面积为m ,∵AF ∥CD , ∴13AF FN CD DN ==,△AFN ∽△CDN , ∴△AFN 和△CDN 高的比=13 ∴△AFN 和△ADN 高的比=13∴△ADN 的面积为3m ,△DCN 的面积为9m ,∴△ADC 的面积=△ABC 的面积=12m ,∴S △ANF :S 四边形CNFB =1:11,【点睛】本题考查正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,学会利用参数解决问题.18.【分析】首先画树状图列出所有可能的点(ab )并求得在y=-2x+4与坐标轴所围成的三角形区域内(含边界)上的点最后利用概率公式即可求得【详解】解:画树状图如下:总共有12种等可能结果其中点(ab )恰 解析:512【分析】首先画树状图列出所有可能的点(a ,b ),并求得在y=-2x+4与坐标轴所围成的三角形区域内(含边界)上的点,最后利用概率公式即可求得.【详解】解:画树状图如下:总共有12种等可能结果,其中点(a ,b )恰好落在一次函数y=-2x+4与坐标轴所围成的三角形区域内(含边界)的可能性有1,12⎛⎫ ⎪⎝⎭,1,22⎛⎫ ⎪⎝⎭,1,32⎛⎫ ⎪⎝⎭,11,2⎛⎫ ⎪⎝⎭,()1,2,共5种,其概率为512, 故答案为:512. 【点睛】 本题考查的是用列表法或树状图法求概率,一次函数上点的坐标特征.注意本题为不放回实验.19.【分析】先根据一元二次方程的根与系数的关系求得两根和与两根积经过变形得到两根差的值即可求得第三边的范围【详解】解:∵三角形两边长是方程x2−11x +30=0的两个根∴x1+x2=11x1x2=30∵解析:111<<m【分析】先根据一元二次方程的根与系数的关系求得两根和与两根积,经过变形得到两根差的值,即可求得第三边的范围.【详解】解:∵三角形两边长是方程x 2−11x +30=0的两个根,∴x 1+x 2=11,x 1x 2=30,∵(x 1−x 2)2=(x 1+x 2)2−4x 1x 2=121−120=1,∴x 1−x 2=1,又∵x 1−x 2<m <x 1+x 2,∴1<m <11.故答案为:1<m <11.【点睛】本题主要考查了三角形的三边关系和一元二次方程的根与系数的关系,要知道第三边大于两边差,小于两边和.20.【分析】根据等边三角形的性质求出第23个正方形的边长发现规律即可求解【详解】依题意可得:第一个正方形的边长为1∴C1D1=1∠C1D1A2=90°∵是等边三角形是正方形∴∠B2A2C1=60°∠B2解析:20202【分析】根据等边三角形的性质求出第2,3个正方形的边长,发现规律即可求解.【详解】依题意可得:第一个正方形的边长为1,∴C 1D 1=1,∠C 1D 1A 2=90°,∵122C A B 是等边三角形,2222A B C D 是正方形,∴∠B 2A 2C 1=60°,∠B 2A 2D 2=90°,∴∠C 1A 2D 1=30°,∴A 2B 2=A 2C 1=2C 1D 1=2,∴正方形2222A B C D 的边长为2=21,同理可得:正方形3333A B C D 的边长=2A 2B 2=4=22,…∴正方形n n n n A B C D 的边长=2n-1,其中n 为正整数,∴第2021个正方形的边长为20202,故答案为:20202.【点睛】此题主要考查图形与坐标规律变化、等边三角形与正方形的性质,解题的关键是根据题意发现边长的变化规律.三、解答题21.(1)见解析;(2)①1;②见解析.【分析】(1)先求出点D 坐标,再代入反比例函数解析式中,即可得出结论;(2)①先判断出△ABC ≌△EFG ,得出GF=BC=2,GE=AC=1,进而得出E (1,3),即可得出结论;②先判断出△AOF ≌△FGE (SAS ),得出∠GFE=∠FAO ,进而得出∠AFE=90°,同理得出∠BAF=90°,进而判断出EF ∥AB ,即可得出结论.【详解】解:(1)∵点B (3,2),BC 边的中点D ,∴点D (3,1),∵反比例函数y =k x(k >0)的图象经过点D (3,1), ∴k=3×1=3, ∴反比例函数表达式为y =3x ; (2)①∵点B (3,2), ∴BC=2,∵△ABC 与△EFG 成中心对称, ∴△ABC ≌△EFG (中心对称的性质), ∴GF=BC=2,GE=AC=1, ∵点E 在反比例函数的图象上, ∴E (1,3),即OG=3, ∴OF=OG-GF=1;②如图,连接AF 、BE ,∵AC=1,OC=3,∴OA=GF=2,在△AOF 和△FGE 中 AO FG AOF FGE OF GE =⎧⎪∠=∠⎨⎪=⎩, ∴△AOF ≌△FGE (SAS ), ∴∠GFE=∠FAO ,∵∠FAO+∠OFA=90°, ∴∠GFE+∠OFA=90°, ∴∠AFE=90°,∵∠EFG=∠FAO=∠ABC , ∵∠BAC+∠ABC=90°, ∴∠BAC+∠FAO=90°, ∴∠BAF=90°,∴∠AFE+∠BAF=180°, ∴EF ∥AB ,∵EF=AB ,∴四边形ABEF 为平行四边形,∴AF=EF,∴四边形ABEF为菱形,∵AF⊥EF,∴四边形ABEF为正方形.【点睛】本题是反比例函数综合题,主要考查了待定系数法,中点坐标公式,正方形的判定,全等三角形的判定和性质,判断出△AOF≌△FGE是解题的关键.22.无23.24米【分析】先证明△CDN∽△ABN,再利用相似三角形对应边成比例,进而可求解线段的长.【详解】解:∵AB⊥DB,DC⊥DB,∴∠CDN=∠ABN=90°,∵∠CND=∠ANB,∴△CDN∽△ABN.∴CD ABDN BN=,即1.61.421AB=,∴AB=1.6×21÷1.4=24(米),答:大树AB的高度为24米.【点睛】此题主要考查了相似三角形的应用,根据已知得出△CDN∽△ABN是解题关键.24.(1)14;(2)13;(3)425.【分析】(1)由概率公式即可得出答案;(2)画出树状图,共有12个等可能的结果,两次摸到小球的颜色恰为一红一白的结果有4个,再由概率公式求解即可;(3)画出树状图,共有25个等可能的结果,两次摸到的小球的颜色恰为一红一白的结果有4个,再由概率公式求解即可.【详解】(1) 小明从口袋中随机模出1个小球,恰好是黄色的概率为1112++=14,故答案为:14;(2)画树状图如图:共有12个等可能的结果,两次摸到小球的颜色恰为一红一白的结果有4个, .两次摸到小球的颜色恰为一红一白的概率为41123=; (3)画树状图如图:共有25个等可能的结果,两次摸到的小球的颜色恰为一红一白的结果有4个, ∴两次摸到的小球的颜色恰为一红一白的概率为425, 故答案为:425. 【点睛】本题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比. 25.(1)±3;(2)54±;(3)45x y =⎧⎨=⎩或25x y =-⎧⎨=⎩【分析】(1)设22x y a +=,则原方程变为(3)(3)27a a +-=,解之求得a 的值,继而可得x y +的值;(2)设a ²+4b ²=x ,ab=y ,可将原方程组变形为二元一次方程组,解出x 、y 的值再代入即可.(3)将原方程组变为21112222(1)(1)a x b y c a x b y c ⎧-+=⎨-+=⎩,由题意得出2(1)95x y ⎧-=⎨=⎩,即可得出答案. 【详解】解:(1)设22x y a +=,则原方程变为(3)(3)27a a +-=,整理,得:2927a -=,即236a =,解得:6a =±,则226x y +=±,3x y ∴+=±;(2)令224a b x +=,ab y =,则原方程变为:3247236x y x y -=⎧⎨+=⎩,解之得:172x y =⎧⎨=⎩, ∴22417a b +=,2ab =,∴()22224417825a b a ab b +=++=+=, ∴25a b +=±, ∴1125224b a a b ab ++==±; (3)由方程组21111122222222a x a x b yc a a x a x b y c a ⎧-+=-⎨-+=-⎩,得21111122222222a x a x a b y c a x a x a b y c ⎧-++=⎨-++=⎩, 整理,得:21112222(1)(1)a x b y c a x b y c ⎧-+=⎨-+=⎩, 方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是95x y =⎧⎨=⎩, ∴方程组21112222(1)(1)a x b y c a x b y c ⎧-+=⎨-+=⎩的解是:2(1)95x y ⎧-=⎨=⎩, 13x ∴-=±,且5y =,解得:45x y =⎧⎨=⎩或25x y =-⎧⎨=⎩. 【点睛】本题主要考查换元法解方程、方程组及因式分解,根据方程和代数式的特点设出合适的新元是解题的关键.26.小鸟至少飞行13米.【分析】先画出图形,再根据矩形的判定与性质、勾股定理可求出AC 的长,然后根据两点之间线段最短可得最短飞行距离等于AC 的长,由此即可得.【详解】画出图形如下所示:由题意得:,,4AB BD CD BD AB ⊥⊥=米,9CD =米,12BD =米,过点A 作AE CD ⊥于点E ,则四边形ABDE 是矩形,12AE BD ∴==米,4DE AB ==米,5CE CD DE ∴=-=米,在Rt ACE △中,13AC ==(米),由两点之间线段最短得:小鸟飞行的最短距离等于AC 的长,即为13米,答:小鸟至少飞行13米.【点睛】本题考查了矩形的判定与性质、勾股定理、两点之间线段最短等知识点,依据题意,正确画出图形是解题关键.。