选修三_配位化合物
- 格式:ppt
- 大小:789.50 KB
- 文档页数:39
配位化合物理论简介【学习目标】1、认识配位键,知道简单配合物的基本组成和形成条件。
2、记住常见配位化合物,了解配合物的结构与性质之间的关系;认识配合物在生产生活和科学研究方面的重要应用。
【回顾旧知】1.孤电子对:分子或离子中, 的电子对。
2.共价键:。
【新知预习】共价键里还有一类特殊的叫配位键,与一般共价键的形成过程不同。
四、配合物理论简介一、配位键:一种特殊的共价键1、概念:成键的两个原子一方提供,一方提供而形成的共价键。
以NH4+的形成为例说明配位键的形成:NH3分子的电子式中,N原子上有一对孤电子对,而H+的核外没有电子,1s是空轨道。
因此当NH3分子与H+靠近时,NH3分子中N原子上的进入H+的,与H+共用。
H+与N原子间的共用电子由N原子单方面提供,不同于一般的共价键,是一种特殊的共价键,叫配位键。
2、形成条件:其中一个原子提供。
另一原子提供空轨道。
可用电子式表示NH4+的形成过程: + H+为了区别普通共价键与配位键,可用“→”表示配位键,箭头指向接受电子(提供空轨道)的原子,因此的结构式可表示为:从形成过程看,尽管一个N-H键与其它的三个不同,但形成NH4+后,这四个共价键的、、三个参数是完全相同的,表现的化学性质也完全相同,所以NH4+空间结构为,与CH4、CCl4相似。
〖自学检测〗1.分析H3O+中的配位键成键情况(用电子式表示H3O+的形成过程)2.气态氯化铝(Al2Cl6)中具有配位键,分解原子间的共价键关系如图所示,将图中的配位键标上箭头。
二、配合物理论简介离子(或原子)与某些分子或离子以结合形成的化合物称为配位化合物,简称配合物,又叫络合物。
目前已知配合物的品种超过数百万,是一个庞大的化合物家族。
1、有关配合物(配位化合物)的几个概念如:[ Cu (NH3) 4 ] SO4名称:硫酸四氨合铜(Ⅱ)中心原子配体配位数内界外界理解要点:①配合物中的配体,提供孤电子对,可为中性分子或阴离子。
一般来说, 在配合物中, 中心原子( 或离子) 配位数偶数居多,如 2 ,4 ,6 ,8 ,其中最常见的为 4 和 6 。
中心原子( 或离子) 配位数的大小取决于中心离子和配体的如下性质:一、配位体相同,中心离子不同时的情况1. 中心离子的电荷数越高, 配位数越大。
可以按配位数等于中心离子电荷数的二倍来计算一般配合物的配位数。
2. 相同电荷的中心离子的半径越大, 其周围可容纳的配体就越多, 配位数就越大。
如Al3+和F-可以形成配位数为 6 的[ AlF 6 ]3 -, 而半径小的B3 +就只能形成配位数为4 的[BF 4 ]-。
二、中心离子相同,配位体不同时的情况1. 对于同一种中心离子来说,配位数随着配体半径的增加而减少。
如半径较大的Cl-和Al3 +配合时,只能形成配位数为 4 的[ AlCl4]-,而Al3 +和F-可以形成配位数为6的[ AlF 6 ]3 -。
2. 对于同一种中心离子来说, 配位数随着配体电荷数的增加而减小,如NH 3 和Zn2 +可以形成配位数为 6 的[ Zn (NH 3)6]2 +, 而CN-只能与Zn2 +形成配位数为4 的[ Zn ( CN)4 ]2-。
三、中心原子的核外电子排布情况1. 对于电子构型为d0、d5、d10的中心离子, 当配体体积较大时, 多数形成配位数为4 的配合物,例如[ FeCl4 ]-、[ HgI 4 ]2 -、[MnO 4 ]-等。
2. 对于d8电子构型的中心离子,在强场配位体中,易形成配位数为 4 的配合物,而在其它弱场配体的作用下, 可形成配位数为 6 的配合物, 如Ni2 +与CN-形成配位数为4 的[ Ni ( CN)4 ]2 -, 与NH 3形成配位数为6 的[ Ni (NH 3)6 ]2 +。
3. 电子构型为d6和d3的中心离子多形成配位数为 6 的配合物, 如[ Co ( CN )6 ]3 -和[ Cr(NH 3)6 ]3 +。
【人教版】高中化学选修3知识点总结:第三章晶体结构与性质第一篇:【人教版】高中化学选修3知识点总结:第三章晶体结构与性质第三章晶体结构与性质课标要求1.了解化学键和分子间作用力的区别。
2.理解离子键的形成,能根据离子化合物的结构特征解释其物理性质。
3.了解原子晶体的特征,能描述金刚石、二氧化硅等原子晶体的结构与性质的关系。
4.理解金属键的含义,能用金属键理论解释金属的一些物理性质。
5.了解分子晶体与原子晶体、离子晶体、金属晶体的结构微粒、微粒间作用力的区别。
要点精讲一.晶体常识 1.晶体与非晶体比较2.获得晶体的三条途径①熔融态物质凝固。
②气态物质冷却不经液态直接凝固(凝华)。
③溶质从溶液中析出。
3.晶胞晶胞是描述晶体结构的基本单元。
晶胞在晶体中的排列呈“无隙并置”。
4.晶胞中微粒数的计算方法——均摊法如某个粒子为n个晶胞所共有,则该粒子有1/n属于这个晶胞。
中学中常见的晶胞为立方晶胞立方晶胞中微粒数的计算方法如下:注意:在使用“均摊法”计算晶胞中粒子个数时要注意晶胞的形状二.四种晶体的比较2.晶体熔、沸点高低的比较方法(1)不同类型晶体的熔、沸点高低一般规律:原子晶体>离子晶体>分子晶体。
金属晶体的熔、沸点差别很大,如钨、铂等熔、沸点很高,汞、铯等熔、沸点很低。
(2)原子晶体由共价键形成的原子晶体中,原子半径小的键长短,键能大,晶体的熔、沸点高.如熔点:金刚石>碳化硅>硅(3)离子晶体一般地说,阴阳离子的电荷数越多,离子半径越小,则离子间的作用力就越强,相应的晶格能大,其晶体的熔、沸点就越高。
(4)分子晶体①分子间作用力越大,物质的熔、沸点越高;具有氢键的分子晶体熔、沸点反常的高。
②组成和结构相似的分子晶体,相对分子质量越大,熔、沸点越高。
③组成和结构不相似的物质(相对分子质量接近),分子的极性越大,其熔、沸点越高。
④同分异构体,支链越多,熔、沸点越低。
(5)金属晶体金属离子半径越小,离子电荷数越多,其金属键越强,金属熔、沸点就越高。
高中化学选修3物质结构与性质知识点总结主要知识要点:1、原子结构2、元素周期表和元素周期律3、共价键4、分子的空间构型5、分子的性质6、晶体的结构和性质(一)原子结构1、能层和能级(1)能层和能级的划分①在同一个原子中,离核越近能层能量越低。
②同一个能层的电子,能量也可能不同,还可以把它们分成能级s、p、d、f,能量由低到高依次为s、p、d、f。
③任一能层,能级数等于能层序数。
④s、p、d、f……可容纳的电子数依次是1、3、5、7……的两倍。
⑤能层不同能级相同,所容纳的最多电子数相同。
(2)能层、能级、原子轨道之间的关系每能层所容纳的最多电子数是:2n2(n:能层的序数)。
2、构造原理(1)构造原理是电子排入轨道的顺序,构造原理揭示了原子核外电子的能级分布。
(2)构造原理是书写基态原子电子排布式的依据,也是绘制基态原子轨道表示式的主要依据之一。
(3)不同能层的能级有交错现象,如E(3d)>E(4s)、E(4d)>E(5s)、E (5d)>E(6s)、E(6d)>E(7s)、E(4f)>E(5p)、E(4f)>E(6s)等。
原子轨道的能量关系是:ns<(n-2)f <(n-1)d <np(4)能级组序数对应着元素周期表的周期序数,能级组原子轨道所容纳电子数目对应着每个周期的元素数目。
根据构造原理,在多电子原子的电子排布中:各能层最多容纳的电子数为2n2 ;最外层不超过8个电子;次外层不超过18个电子;倒数第三层不超过32个电子。
(5)基态和激发态①基态:最低能量状态。
处于最低能量状态的原子称为基态原子。
②激发态:较高能量状态(相对基态而言)。
基态原子的电子吸收能量后,电子跃迁至较高能级时的状态。
处于激发态的原子称为激发态原子。
③原子光谱:不同元素的原子发生电子跃迁时会吸收(基态→激发态)和放出(激发态→较低激发态或基态)不同的能量(主要是光能),产生不同的光谱——原子光谱(吸收光谱和发射光谱)。
利用光谱分析可以发现新元素或利用特征谱线鉴定元素。
分子结构与性质错误!1.(1)分类 共价键电子云的重叠方式σ键(头碰头、轴对称)sp σ键ss σ键pp σ键π键(肩并肩、镜面对称)ppπ键共用电子对是否偏移极性键(X —Y)非极性键(X —X)共用电子对的数目双键单键三键――→一方提供电子对一方提供空轨道配位键(特殊共价键) (2)存在错误!)(3)键参数对分子性质的影响 键长越短,键能越大,分子越稳定。
键长――→决定 分子的稳定性――→决定 分子的 性质键能――→决定 分子的空间构型键角 2.等电子原理(1)概念:原子总数相同,价电子数也相同的分子具有相似的化学键特性,它们的许多性质是相近的。
(2)常见的等电子体类型实例二原子10个价电子N2CO NO+CN-三原子16个价电子CO2CS2N2O NCO-NO+2N-3SCN-BeCl2(g)三原子18个价电子NO-2O3SO2(1)组成:一般包括配离子和其他离子(2)配离子的组成:中心原子或离子+配体及配位数如:说明:配离子一般为难电离的离子,在离子方程式书写时不能拆开。
(2013·广元高二质检)Q、R、X、Y、Z五种元素的原子序数依次递增。
已知:①Z的原子序数为29,其余的均为短周期主族元素;②Y原子价电子(外围电子)排布m s n m p n;③R原子核外L层电子数为奇数;④Q、X原子p轨道的电子数分别为2和4。
请回答下列问题:(1)R形成的单质分子式为________,含________个σ键________个π键。
(2)H2X2分子中含的键有________(填“极性键”、“非极性键”或“极性键和非极性键”)。
(3)Z离子与R的气态氢化物形成的配离子,其结构式为________,配位数是________,配体是________。
(4)Q、R、X、Y的气态氢化物的热稳定性大小顺序为_______________________________(填分子式)。
4.2 协作物是如何形成的生活链接1.血红蛋白中的配位键在血液中氧气的输送是由血红蛋白来完成的。
载氧前,血红蛋白中Fe2+与卟啉中的四个氮原子和蛋白质链上咪唑环的氮原子通过配位链相连,此时,Fe2+的半径大,不能嵌入卟啉环平面,而位于其上方约0.08 nm处。
载氧后,氧分子通过配位键与Fe2+连接,使Fe2+半径缩小而滑入卟啉环中。
由于一氧化碳也能通过配位键与血红蛋白中的Fe2+结合,并且结合力量比氧气与Fe2+的结合力量强得多,从而导致血红蛋白失去载氧力量,所以一氧化碳能导致人体因缺氧而中毒。
2.药物中的协作物美国化学家罗森伯格等人于1969年发觉了第一种具有抗癌活性的金属协作物——顺铂(顺式二氯二氨合铂),它是一种有效的广谱抗癌药物,它对人体的泌尿系统、生殖系统的恶性肿瘤以及甲状腺癌、食道癌等均有显著的治疗效果,但它对肾脏产生的明显损害以及动物试验表明的致畸作用使它难以推广。
20世纪80年月消灭的其次代铂类抗癌药物,如碳铂等已用于临床。
疏导引导学问点1:人类对协作物结构的生疏1.协作物的定义协作物是由可以给出孤对电子的离子或分子(称为配体)和接受孤对电子的原子或离子(统称中心原子)以配位键结合所形成的化合物。
当将过量的氨水加到硫酸铜溶液中,溶液渐渐变为深蓝色,用酒精处理后,还可以得到深蓝色的晶体,经分析证明为[Cu(NH3)4]SO4。
CuSO4+4NH3====[Cu(NH3)4]SO4将纯的[Cu(NH3)4]SO4溶于水中,除了水合的-24SO离子和深蓝色的[Cu(NH3)4]2+离子外,几乎检查不出Cu2+和NH3分子的存在。
[Cu(NH3)4]2+的结构示意图争辩表明,在[Cu(NH3)4]2+中,Cu2+位于[Cu(NH3)4]2+的中心,4个NH3分子位于Cu2+的四周。
2.协作物的组成配位化合物[Zn(NH3)4]SO4中,Zn2+空的4s轨道和4p轨道杂化得到4个sp3杂化轨道,NH3分子中N原子有一孤电子对,在形成此协作物时,N原子上的孤电子对进入Zn2+空的sp3杂化轨道形成4个配位键。
第2课时杂化轨道理论配合物理论学业要求素养对接1.能运用杂化轨道理论解释和预测简单分子的立体构型。
2.知道配位键的特点,认识简单的配位化合物的成键特征,了解配位化合物的存在与应用。
微观探析:运用杂化轨道理论、配合物理论。
模型认知:根据杂化轨道理论确定简单分子的立体构型、根据配合物理论模型解释配合物的某些典型性质。
[知识梳理]一、杂化轨道理论简介1.用杂化轨道理论解释甲烷分子的形成在形成CH4分子时,碳原子的一个2s轨道和三个2p轨道发生混杂,形成四个能量相等的sp3杂化轨道。
四个sp3杂化轨道分别与四个H原子的1s轨道重叠成键形成CH4分子,所以四个C—H键是等同的。
可表示为C原子的杂化轨道2.杂化轨道的类型与分子立体构型的关系杂化类型sp sp2sp3参与杂化的原子轨道及数目n s 1 1 1 n p 1 2 3杂化轨道数目 2 3 4 杂化轨道间的夹角180°120°109°28′杂化轨道示意图立体构型直线形平面三角形正四面体形实例BeCl2、CO2、CS2BCl3、BF3、BBr3CF4、SiCl4、SiH4【自主思考】1.用杂化轨道理论分析CH4的杂化类型和呈正四面体形的原因?提示在形成CH4分子时,碳原子的一个2s轨道与三个2p轨道混杂,形成4个能量相等的sp3杂化轨道,分别与四个氢原子的1s轨道重叠成键形成CH4分子,4个σ键之间作用力相等,键角相等形成正四面体形。
二、配合物理论简介1.配位键(1)概念:共用电子对由一个原子单方面提供而跟另一个原子共用的共价键,即“电子对给予-接受键”,是一类特殊的共价键。
(2)实例:在四水合铜离子中,铜离子与水分子之间的化学键是由水分子提供孤电子对给予铜离子,铜离子接受水分子的孤电子对形成的。
(3)表示:配位键可以用A→B来表示,其中A是提供孤电子对的原子,叫做配体;B是接受电子对的原子。
例如:①NH+4中的配位键表示为。
1 物质熔、沸点高低的比较规律一、比较判断晶体熔、沸点的高低时,首先分析物质所属的晶体类型,其次抓住决定同一类晶体熔、沸点高低的决定因素。
1.不同类晶体:一般情况下,原子晶体>离子晶体>分子晶体;金属晶体(除少数外)>分子晶体。
金属晶体的熔、沸点有的很高,如钨、铂等,有的则很低,如汞、铯、镓等。
2.同种类型晶体:构成晶体质点间的作用大,则熔、沸点高,反之则低。
(1)离子晶体:离子所带的电荷数越高,离子半径越小,则其熔、沸点就越高。
例如:NaCl>CsCl;MgO>MgCl2。
(2)分子晶体:①组成和结构相似的分子晶体,一般相对分子质量越大,范德华力越大,则熔、沸点越高。
如I2>Br2>Cl2>F2。
②相对分子质量相等,组成和结构不相似的物质,分子的极性越大,熔、沸点越高。
如CO>N2。
③同分异构体之间一般支链越多,熔、沸点越低。
如沸点:正戊烷>异戊烷>新戊烷。
④若分子间有氢键,则分子间作用力比结构相似的同类晶体大,故熔、沸点较高。
如沸点:HF>HI>HBr>HCl。
(3)原子晶体:一般半径越小,共价键键长越短,键能越大,则熔、沸点越高。
例如:金刚石>二氧化硅>碳化硅>晶体硅。
(4)金属晶体:金属的价层电子数越多,原子半径越小,则金属键越强,熔、沸点越高。
例如:Al>Mg>Na。
二、例题1.比较SiO2、CsCl、SiCl4、SiBr4的熔沸点高低,说明原因。
2.比较二氧化硅和二氧化碳的熔沸点,说明原因。
3.比较NaCl和MgO的熔沸点高低,说明原因。
4.比较CuO和CuS的熔沸点大小,说明原因。
5. 比较CaO和MgO的熔沸点高低,说明原因。
6.比较NaCl和CsCl的熔沸点高低,说明原因。
7.比较CuSO4和Cu(NO3)2的熔点高低,说明原因8. 比较GeCl4、GeBr4、GeI4的熔沸点高低,说明原因。
高中化学选修三判断配合物的配位数技巧与注意事项配合物的配位数是指直接同中心离子(或原子)配位的原子数目。
高中化学配合物的配位数可按如下方法判断:1.配合物的配位数等于配位原子及配位体的数目有两种情况:(1)配位原子数目、配位体数目、中心离子与配位原子形成的配位键键数均相等例如[Ag(NH 3 ) 2 ]NO 3 、[Cu(NH 3 ) 4 ]SO 4 、[Cu(H 2 O) 4 ] 2+ 、[Zn(NH 3 ) 4 ] 2+ 、K 3 [Fe(SCN) 6 ]、[FeF 6 ] 3- 、Ni(CO) 4 、Fe(CO) 5 、[Co(NH 3 ) 4 (H 2 O) 2 ]Cl 2 、[CrCl(H 2 O) 5 ]Cl 2 等配合物或配离子,它们配位体的数目以及中心离子与配位原子形成的配位键键数相等。
其中Ag+ 离子的配位数为2,Cu2+ 离子与Zn2+ 离子的配位数均为4,Fe3+ 离子的配位数为6。
Ni(CO)4 、Fe(CO)5 等羰基化合物中Ni、Fe 原子的配位数分别为4、5,[Co(NH 3 ) 4 (H 2 O) 2 ]Cl 2 、[CrCl(H 2 O) 5 ]Cl 2 中Co 2+ 离子与Cr 3+ 离子的配位数均为6。
(2)配位原子、配位体的数目均不等于中心离子与配位原子形成的配位键键数例如[BF 4 ] - 、[B(OH) 4 ] - 、[AlCl 4 ] - 、[Al(OH) 4 ] - 等配离子中,B、Al原子均缺电子,它们形成的化学键,既有共价键,又有配位键,配位数与配位键的键数不相等,配位数均为4。
又如Al 2 Cl 6 (下图)中Al原子的配位数为4。
再如酞菁钴的结构(下图),钴离子的配位数为4。
2.配位数等于配位原子的数目,但不等于配位体的数目存在多基配体时有这种情况,例如[Cu(en) 2 ]中的en是乙二胺(NH 2 CH 2 CH 2 NH 2 )的简写,属于双基配体,每个乙二胺分子有2个N 原子与Cu 2+ 离子配位,故Cu 2+ 离子的配位数是4而不是2。
高中化学选修三方程式归纳(一)原子结构1、能层和能级(1)能层和能级的划分①在同一个原子中,离核越近能层能量越低。
②同一个能层的电子,能量也可能不同,还可以把它们分成能级s、p、d、f,能量由低到高依次为s、p、d、f。
③任一能层,能级数等于能层序数。
④s、p、d、f……可容纳的电子数依次是1、3、5、7……的两倍。
⑤能层不同能级相同,所容纳的最多电子数相同。
(2)能层、能级、原子轨道之间的关系每能层所容纳的最多电子数是:2n2(n:能层的序数)。
2、构造原理(1)构造原理是电子排入轨道的顺序,构造原理揭示了原子核外电子的能级分布。
(2)构造原理是书写基态原子电子排布式的依据,也是绘制基态原子轨道表示式的主要依据之一。
(3)不同能层的能级有交错现象,如E(3d)>E(4s)、E(4d)>E(5s)、E(5d)>E(6s)、E(6d)>E(7s)、E(4f)>E(5p)、E(4f)>E(6s)等。
原子轨道的能量关系是:ns<(n-2)f <(n-1)d <np(4)能级组序数对应着元素周期表的周期序数,能级组原子轨道所容纳电子数目对应着每个周期的元素数目。
根据构造原理,在多电子原子的电子排布中:各能层最多容纳的电子数为2n2 ;最外层不超过8个电子;次外层不超过18个电子;倒数第三层不超过32个电子。
(5)基态和激发态①基态:最低能量状态。
处于最低能量状态的原子称为基态原子。
②激发态:较高能量状态(相对基态而言)。
基态原子的电子吸收能量后,电子跃迁至较高能级时的状态。
处于激发态的原子称为激发态原子。
③原子光谱:不同元素的原子发生电子跃迁时会吸收(基态→激发态)和放出(激发态→较低激发态或基态)不同的能量(主要是光能),产生不同的光谱——原子光谱(吸收光谱和发射光谱)。
利用光谱分析可以发现新元素或利用特征谱线鉴定元素。
3、电子云与原子轨道(1)电子云:电子在核外空间做高速运动,没有确定的轨道。
因此,人们用“电子云”模型来描述核外电子的运动。
高中化学选修3知识点图示大全第一章原子结构与性质一.原子结构1.能级与能层2.原子轨道3.原子核外电子排布规律(1)能量最低原理现代物质结构理论证实,原子的电子排布遵循构造原理能使整个原子的能量处于最低状态,简称能量最低原理。
构造原理和能量最低原理是从整体角度考虑原子的能量高低,而不局限于某个能级。
(2)泡利(不相容)原理:基态多电子原子中,不可能同时存在4个量子数完全相同的电子。
换言之,一个轨道里最多只能容纳两个电子,且电旋方向相反(用“↑↓”表示),这个原理称为泡利(Pauli)原理。
(3)洪特规则:当电子排布在同一能级的不同轨道(能量相同)时,总是优先单独占据一个轨道,而且自旋方向相同,这个规则叫洪特(Hund)规则。
比如,p3的轨道式为或,而不是。
洪特规则特例:当p、d、f轨道填充的电子数为全空、半充满或全充满时,原子处于较稳定的状态。
即p0、d0、f0、p3、d5、f7、p6、d10、f14时,是较稳定状态。
前36号元素中全空状态的有4Be 2s22p0、12Mg 3s23p0、20Ca 4s23d0;半充满状态的有:7N 2s22p3、15P 3s23p3、24Cr 3d54s1、25Mn 3d54s2、33As 4s24p3;全充满状态的有10Ne 2s22p6、18Ar 3s23p6、29Cu 3d104s1、30Zn 3d104s2、36Kr 4s24p6。
4.基态原子核外电子排布的表示方法(1)电子排布式①用数字在能级符号的右上角表明该能级上排布的电子数,这就是电子排布式,例如K:1s22s22p63s23p64s1。
②为了避免电子排布式书写过于繁琐,把内层电子达到稀有气体元素原子结构的部分以相应稀有气体的元素符号外加方括号表示,例如K:[Ar]4s1。
(2)电子排布图(轨道表示式)每个方框或圆圈代表一个原子轨道,每个箭头代表一个电子。
如基态硫原子的轨道表示式为二.原子结构与元素周期表1.原子的电子构型与周期的关系(1)每周期第一种元素的最外层电子的排布式为ns1。