相关性判定定理4与5的证明
- 格式:pptx
- 大小:35.55 KB
- 文档页数:6
对函数一致连续性的讨论Discussion of the uniform continuityof the function函数的一致连续性概念是数学分析中的一个重要概念,但是由于它没有像连续函数、可导函数那样直观的几何意义,所以对一致连续概念只是从字面上掌握了其抽象定义,对其实质则很难透彻理解.本文从一致连续的定义、几何意义两个方面进行了详细阐述,希望能加深对一致连续性概念的理解.1、对定义的理解首先给出连续与一致连续的概念【1】:定义1 函数()f x 在区间I 上连续是指:0x I " ,0e ">,0d $>,当x I " : 0x x d -<时,有0()()f x f x e -<.定义2 函数()f x 在区间I 上一致连续是指:0e ">,0d $>,当12x x I " 、: 12x x d -<时,有12()()f x f x e -<.(1)由定义可知,在区间I 上一致连续的函数一定是连续的.事实上,由一致连续性定义将1x 固定,令2x 变化,即知函数()f x 在1x 连续,又1x 是区间I 的任意一点,从而函数()f x 在I 连续.但反之则不成立,即在区间I 上连续的函数不一定一致连续.(2)比较两个定义可知:函数连续定义中的d 不仅与e 有关,还与0x 有关,即对于不同的0x ,d 一般是不同的,这表明只要函数在区间内每一点都连续,函数就在该区间连续;而一致连续定义中的d 只与e 有关,与0x 的选取无关,即对于不同的0x ,d 是相同的,这表明函数在区间上的一致连续性,不仅要求函数在这个区间的每一点都连续,而且要求在每点的连续要具有“一致性”,即对不同的0x ,能找到共同的d ,使得当0x x d -<时,有0()()f x f x e -<.而所谓共同的d ,就是所有d 的最小值,当最小值不存在时,函数就非一致连续.(3)函数一致连续的实质就是,当这个区间的任意两个彼此充分靠近的点上函数值的差的绝对值可以任意小,即12x x I " 、,当12x x d -<时,有12()()f x f x e-<【5】.(4)要注意函数一致连续的否定叙述一致连续的否定叙述就是非一致连续,即设函数()f x 在区间I 有定义,若00e $>,0d ">,12,x x I $ :12x x d -<,有()120()f x f x e - ,则称函数()f x 区间I 上非一致连续.总的来说,函数的连续性反映了函数的局部性质,而函数的一致连续性反映了函数在整个区间上的整体性质,两者之间既有区别又有联系。
3.抽象向量组线性相关性的判定与证明对于抽象给出的向量组,判断或证明其线性相关与线性无关常采用以下方法.方法1 定义法:先设,然后对其作恒等变形,如用某个矩阵同乘该式两边,或对该式拆项重新组合等. 究竟用什么方法应当从已知条件去寻找信息,通过一次或多次恒等变形来分析能够不全为零还是必须全为零,从而得知是线性相关还是线性无关.方法2 求秩法:要论证线性相关或线性无关,可将其构成矩阵,利用或来说明.方法3 利用有关结论,如“等价的向量组有相同的秩”等. 方法4 反证法.例1 已知向量组线性无关. 设,,讨论的线性相关性 .解法1 利用定义. 设,代入的表达式,有整理得由于线性无关,所以有其系数行列式从而方程组有非零解,即不全为零(或求得方程组的通解任意;取得),故线性相关.法2 利用矩阵的秩. 将看做行向量,令,其中因为线性无关,所以,又可求得,从而. 又知因此,故线性相关.注上题中,如将看做列向量,则有其余证明同法2.例2 已知向量组,令,,证明:(1) 当为偶数时,向量组线性相关;(2) 当为奇数时,向量组与同时线性相关或线性无关.证(1) 法1 当为偶数时,由于所以线性相关.法2 设数组,使得(*)代入的表达式并整理得令,则上式成立. 该齐次方程组的系数行列式(两条线行列式)故有非零解,即存在不全为零的数使(*)式成立,从而线性相关.(2) 当为奇数时,将看做列向量,则有其中由于,所以可逆,从而这表明向量组与可以互相线性表出,即它们等价,从而有相同的秩. 故当向量线性无关,即秩为时,向量组的秩也是,即线性无关;而当线性相关时,也线性相关.注上题中,如将看做行向量,则有例3 向量组线性无关,则下列线性无关的向量组是.(A) ,,,;(B) ,,,;(C) ,,,;(D) ,,,应填:(B).分析法1.观察可知(A)线性相关;(C)线性相关;(D) 线性相关.由排除法可知应选(B).法2 .对(B),设拆项重组为由线性无关知,系数行列式所以方程组只有零解,,从而(B)线性无关.用此法可知(A),(C),(D)均线性相关.法3 .对(B),设。