相关性判定定理4与5的证明
- 格式:pptx
- 大小:35.55 KB
- 文档页数:6
对函数一致连续性的讨论Discussion of the uniform continuityof the function函数的一致连续性概念是数学分析中的一个重要概念,但是由于它没有像连续函数、可导函数那样直观的几何意义,所以对一致连续概念只是从字面上掌握了其抽象定义,对其实质则很难透彻理解.本文从一致连续的定义、几何意义两个方面进行了详细阐述,希望能加深对一致连续性概念的理解.1、对定义的理解首先给出连续与一致连续的概念【1】:定义1 函数()f x 在区间I 上连续是指:0x I " ,0e ">,0d $>,当x I " : 0x x d -<时,有0()()f x f x e -<.定义2 函数()f x 在区间I 上一致连续是指:0e ">,0d $>,当12x x I " 、: 12x x d -<时,有12()()f x f x e -<.(1)由定义可知,在区间I 上一致连续的函数一定是连续的.事实上,由一致连续性定义将1x 固定,令2x 变化,即知函数()f x 在1x 连续,又1x 是区间I 的任意一点,从而函数()f x 在I 连续.但反之则不成立,即在区间I 上连续的函数不一定一致连续.(2)比较两个定义可知:函数连续定义中的d 不仅与e 有关,还与0x 有关,即对于不同的0x ,d 一般是不同的,这表明只要函数在区间内每一点都连续,函数就在该区间连续;而一致连续定义中的d 只与e 有关,与0x 的选取无关,即对于不同的0x ,d 是相同的,这表明函数在区间上的一致连续性,不仅要求函数在这个区间的每一点都连续,而且要求在每点的连续要具有“一致性”,即对不同的0x ,能找到共同的d ,使得当0x x d -<时,有0()()f x f x e -<.而所谓共同的d ,就是所有d 的最小值,当最小值不存在时,函数就非一致连续.(3)函数一致连续的实质就是,当这个区间的任意两个彼此充分靠近的点上函数值的差的绝对值可以任意小,即12x x I " 、,当12x x d -<时,有12()()f x f x e-<【5】.(4)要注意函数一致连续的否定叙述一致连续的否定叙述就是非一致连续,即设函数()f x 在区间I 有定义,若00e $>,0d ">,12,x x I $ :12x x d -<,有()120()f x f x e - ,则称函数()f x 区间I 上非一致连续.总的来说,函数的连续性反映了函数的局部性质,而函数的一致连续性反映了函数在整个区间上的整体性质,两者之间既有区别又有联系。
3.抽象向量组线性相关性的判定与证明对于抽象给出的向量组,判断或证明其线性相关与线性无关常采用以下方法.方法1 定义法:先设,然后对其作恒等变形,如用某个矩阵同乘该式两边,或对该式拆项重新组合等. 究竟用什么方法应当从已知条件去寻找信息,通过一次或多次恒等变形来分析能够不全为零还是必须全为零,从而得知是线性相关还是线性无关.方法2 求秩法:要论证线性相关或线性无关,可将其构成矩阵,利用或来说明.方法3 利用有关结论,如“等价的向量组有相同的秩”等. 方法4 反证法.例1 已知向量组线性无关. 设,,讨论的线性相关性 .解法1 利用定义. 设,代入的表达式,有整理得由于线性无关,所以有其系数行列式从而方程组有非零解,即不全为零(或求得方程组的通解任意;取得),故线性相关.法2 利用矩阵的秩. 将看做行向量,令,其中因为线性无关,所以,又可求得,从而. 又知因此,故线性相关.注上题中,如将看做列向量,则有其余证明同法2.例2 已知向量组,令,,证明:(1) 当为偶数时,向量组线性相关;(2) 当为奇数时,向量组与同时线性相关或线性无关.证(1) 法1 当为偶数时,由于所以线性相关.法2 设数组,使得(*)代入的表达式并整理得令,则上式成立. 该齐次方程组的系数行列式(两条线行列式)故有非零解,即存在不全为零的数使(*)式成立,从而线性相关.(2) 当为奇数时,将看做列向量,则有其中由于,所以可逆,从而这表明向量组与可以互相线性表出,即它们等价,从而有相同的秩. 故当向量线性无关,即秩为时,向量组的秩也是,即线性无关;而当线性相关时,也线性相关.注上题中,如将看做行向量,则有例3 向量组线性无关,则下列线性无关的向量组是.(A) ,,,;(B) ,,,;(C) ,,,;(D) ,,,应填:(B).分析法1.观察可知(A)线性相关;(C)线性相关;(D) 线性相关.由排除法可知应选(B).法2 .对(B),设拆项重组为由线性无关知,系数行列式所以方程组只有零解,,从而(B)线性无关.用此法可知(A),(C),(D)均线性相关.法3 .对(B),设。
第四章 向量组的线性相关性§1 n 维向量概念一、向量的概念定义1 n 个有次序的数12,,,n a a a 所组成的数组称为n 维向量,这n 个数称为该向量的n 个分量,第i 个数i a 称为第i 个分量.注1分量全为实数的向量称为实向量.分量不全为实数的向量称为复向量. 注2 n 维向量可以写成一行的形式()12,,,n a a a a =,出可以写成一列的形式12n a a a a ⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭,前者称为行向量,而后者称为列向量.行向量可看作是一个1n ⨯矩阵,故又称行矩阵;而列向量可看作一个1n ⨯矩阵,故又称作列矩阵.因此它们之间的运算就是矩阵之间的运算,从而符合矩阵运算的一切性质.向量之间的运算只涉及到线性运算和转置运算.为叙述方便,特别约定:在不特别声明时说到的向量均为列向量,行向量视为列向量的转置.注3 用小写黑体字母,,,a b αβ 等表示列向量,用,,,T T T T a b αβ表示行向量. 例1 设123(1,1,0),(0,1,1),(3,4,0)T T T v v v ===,求12v v -及12332v v v +-.解 12v v -(1,1,0)(0,1,1)T T =-(10,11,01)T =---(1,0,1)T =-12332v v v +-3(1,1,0)2(0,1,1)(3,4,0)T T T =+-(31203,31214,30210)T =⨯+⨯-⨯+⨯-⨯+⨯-(0,1,2)T =定义 设v 为n 维向量的集合,如果集合v 非空,且集合v 对于加法与数乘两种运算封闭(即若α∈v,β∈v ,有α+β∈v ;若α∈v, k ∈R ,有k α∈v ),称v 为向量空间。
§2 向量组的线性相关性一、向量组的线性组合 定义3 给定向量组A :12,,,m a a a ,对于任何一组实数12,,,m k k k ,称向量1122m m a a a k k k +++ 为向量组A 的一个线性组合,12,,,m k k k 称为这个线性组合的系数.定义4 给定向量组A :12,,,m a a a 和向量b ,若存在一组实数12,,,m λλλ,使得1122m m a a a b λλλ=+++则称向量b 是向量组A 的一个线性组合,或称向量b 可由向量组A 线性表示.注1任一个n 维向量12n a a a a ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭都可由n 维单位向量组12,,,n e e e 线性表示:1122n n a a a a e e e =+++ .注2向量b 可由向量组A :12,,,n a a a 线性表示(充要条件)⇔方程组1122n n a a a x x x b +++=有解m n A x b ⨯⇔=有解()(,)R A R A b ⇔=注3 由于线性方程组的解分为:无解,有唯一解,有无穷多解三种情况,所以向量β由向量12,,,n a a a 线性表示的情形也分为三种:不能线性表示,唯一线性表示,无穷多种线性表示,且线性表示式中的系数就是对应线性方程组的解。
郑州航空工业管理学院毕业论文设计2011届数学与应用数学专业0711061 班题目向量组线性相关的几种证明方法姓名王守玉学号071106128 指导教师刘燕职称讲师2011 年 4 月19 日内容提要向量组的线性相关性在线性代数中是一块基石在它的基础上我们可以推导和衍生出其他许多理论.所以熟练地掌握向量组线性相关性的判定方法可以帮助我们更好的理解其他理论知识.本文从介绍向量组线性相关性的定义着手论述了若干种判定证明向量组线性相关的方法例如利用线性相关的定义、行列式的值、矩阵的秩、齐次线性方程组的解等知识运用于向量组的线性相关性的判定并比较了不同判定方法的适用条件及范围. 向量组线性相关性的证明理论作为数学知识中的基础理论在现实世界中有着深入的广泛应用.所以熟练地掌握向量组线性相关性的证明方法是很重要的. 关键词向量组线性相关行列式判定方法矩阵线性方程组等. Several Methods for Judging the Related Linearity of Vectors Group AuthorWang shou yu The guidance of teachersLiu yan Abstract The Related Linearity of Vectors Group in Linear Algebra is one cornstonethe basis of its derivation and derived from our many other theories.So skilled master linear vector to determine the relevance of the method helps us to better understand the other theories.This article from the Vector Groupintroduced the definition of a linear correlation to proceedand discussed a number of Vector Group to determine the method of linear correlation.For examplethe definition of the use of linear correlationthe value of the determinantrank of matrixhomogeneous solution of linear equations applied to vector groupssuch as knowledge of the linear correlation found.And compare different methods to determine the conditions and scope of the application. Vector Group to determine the linear correlation of theoretical knowledge as the basis of mathematical theoryin the real world with extensive use of depth.So it is very important to hold the methods for judging the related linearity of vectors group masterly. Key wordsVectors group Related dependence Determinant Judging method Matrix Solution of system of linear equations 目录第一章绪论……………………………………………………………1 第二章向量组线性相关性的定义及性质.…………………………2 第三章向量组线性相关性的证明方法…….……….………………6 3.1 利用定义法证明..………….……….…….……………….…6 3.2 利用向量组内向量之间的线性关系证明………….……………6 3.3 利用齐次线性方程组的解证明……………….………………7 3.4 利用矩阵的秩证明向量组线性相关性…………………………7 3.5 利用行列式的值来证明向量组线性相关性……………………9 3.6 方程组法………………………………………….…………11 3.7反正法…………………………………………….………12 第四章向量组线性相关的具体应用…………………………….……….13 结论与展望…………………………………………………..………16 致谢………………………………………………………………….…17 参考文献………………………………………………………………18 1 向量组线性相关的几种证明方法作者071106128 王守玉指导教师刘燕讲师第1章绪论线性相关性这个概念在数学专业许多课程中都有体现如解析几何、高等代数和常微分方程中等等.它是线性代数理论的基本概念它与向量空间包括基、微数、子空间等概念有密切关系同时在解析几何以及常微分方程中都有广泛的应用.因此掌握线性相关性这个概念有着非常重要的意义也是解决问题的重要的理论根据.向量组的线性相关与线性无关实际上可以推广到函数组的线性相关与线性无关. 在线性代数中向量组的线性相关性占到了举足轻重的作用.它可以将线性代数中的行列式、矩阵、二次型等知识联系在一起.若能熟练地掌握向量组的线性相关性则能更好的理解线性代数的各部分知识理清线性代数的框架做到融会贯通. 本文主要研究的是向量组线性相关性的判定方法从定义及性质下手熟悉了一些重要理论从而能在各领域中得到更好的运用.本文的第二章就是介绍了向量组线性相关的定义以及相关理论熟悉定义就能更清晰的掌握向量组线性相关性的本质.而本文的第三章主要给出了向量组线性相关的若干种判定方法比较了不同判定方法的优劣及适用范围并给出了一些详细证明附带了一些证明题和例题2 从而能更深刻地熟悉这些理论知识.第四章主要给出了向量组线性相关性的具体应用.而后面的就是结论与展望及一些参考文献还有一些附录关于引用的具体文献. 第2章向量组线性相关性的定义及性质定义2.1 给定向量组12:mAaaa如果存在不全为零的数12mkkk使1122mmkakaka0 则称向量组是线性相关的否则称它为线性无关. 注1说向量组12maaa线性相关通常是指2m的情形.但上述定义也适用于1m的情形.当1m时向量组只含有一个向量对于只含一个向量a的向量组当a0时是线性相关的当a0时是线性无关的.对于含2个向量12aa的向量组它线性相关的充分必要条件是12aa的分量对应成比例其几何意义是两向量共线.3个向量线性相关的几何意义是三向量共面. 注2向量组12:2mAaaam线性相关也就是在向量组A中至少有一个能由其他1m个向量线性表示.这是因为如果向量组A线性相关则有不全为0的数12mkkk使2-1式成立.因12mkkk不全为0不妨设10k于是便有12211mmakakak 即1a能由2maa线性表示. 如果向量组中有某个向量能由其余1m个向量线性表示不妨3 设ma能由11maa线性表示即有11m使112211mmmaaaa于是11111mmmaaa0 因为111m这m个数不全为0至少10所以向量组是线性相关的. 注3向量组的线性相关与线性无关的概念也可用于线性方程组.当方程组中有某个方程是其余方程的线性组合时这个方程就是多余的这时称方程组是线性相关的当方程组中没有多余方程就称该方程组线性无关. 向量组12:mAaaa构成矩阵12mAaaa向量组A 线性相关就是齐次线性方程组1122mmxaxaxa0即Ax0有非零解. 只有充分理解了向量组线性相关的定义我们才能找到不同的判定方法来判定某组向量是否是线性相关的并比较不同的判定方法的适用条件. 向量组线性相关的性质特征性质1向量组12:mAaaa线性相关的充要条件是向量组中至少有一个向量可以由其余1m个向量线性表示. 性质2对于各分量都给出的向量组12:mAaaa若以123mAaaaa为系数矩阵的齐次线性方程组Ax0有非零解向量则此向量组12:mAaaa是线性相关的.若以123mAaaaa为系数矩阵的齐次线性方程组Ax0只有零解向量则此向量组12:mAaaa 4 是线性无关的. 设向量组12:mAaaa是由m个n维列向量所组成的向量组则向量组的线性相关性可由向量组所构成的矩阵123mAaaaa的秩的大小来判定.即 1 当RAm时则向量组12:mAaaa是线性无关的. 2 当RAm时则向量组12:mAaaa是线性相关的. 这是经常用到的一种判定相关性的方法. 我们将向量12naaa几行排成矩阵12...TTTTnaaABa 为阶梯型矩阵则有定理2.1 向量组12naaa线性相关的充分必要条件是矩阵中出现零行. 证明阶梯型矩阵中出现零行矩阵TA的秩TRAnTRARAn齐次线性方程组1122nnaxaxax0有非零解向量组12naaa线性相关. 推论2.1 向量组12naaa线性无关的充分必要条件是矩阵B中不出现零行. 对矩阵TA进行初等行变换化为阶梯型矩阵B的过程其实就是对12naaa进行向量的线性运算.如果中出现零行则向量组12naaa中一定有某个向量能被其余的1n个向量线性表示从而知向量组12naaa 是线性相关的反之如果B中没有零行则向量组5 12naaa中没有任何一个向量能被其他的1n向量线性表示从而知12naaa是线性无关的. 推论2.2 如果向量组12naaa中含有零向量则向量组12naaa是线性相关的. 推论2.3 如果向量组12naaa中有个部分组12mkkkaaa其中1212iknimmn线性相关则向量组12naaa也一定线性相关. 性质3若向量组12:mAaaa是由m个n维列向量所组成的向量组且向量组A所构成的矩阵123mAaaaa即A为m阶方阵则1当0A时则向量组12:mAaaa是线性相关的. 2当0A时则向量组12:mAaaa是线性无关的. 若向量组12:mAaaa的个数m与维数n不同时则1当mn时则向量组12:mAaaa是线性相关的. 2当mn时转化为上述来进行判定即选取m个向量组成的m维向量组若此m维向量组是线性相关的则添加分量后得到的向量组也是线性相关的. 性质4对于各分量都给出的向量组12s线性相关的充要条件是以12s 的列向量为系数矩阵的齐次线性方程组有非零解若齐次线性方程组只有零解则向量组线性无关. 第三章向量组线性相关性的证明方法6 3.1 利用定义法证明这是证明向量组的线性相关性的基本方法.定义法既适用于分量没有具体给出的抽象向量组也适用于分量已经给出的具体向量组. 例3.1设112223334baabaabaa441baa证明向量组1234bbbb线性相关. 证明设存在4个数1234kkkk使得11223344kbkbkbkb0 将112223334441baabaabaabaa代入上式有112223334441kaakaakaakaa0 141122233344kkakkakkakka0取132411kkkk则有11223344kbkbkbkb0 由向量组线性相关的定义可知向量组1234bbbb线性相关. 3.2 利用向量组内向量之间的线性关系证明根据上一章讲到的性质1我们带入上一例题中比如取132411kkkk则1234bbbb即1b可由234bbb三个向量线性表示所以向量组1234bbbb线性相关.这种证明方法就是利用向量组内向量之间的线性关系进行证明的. 3.3 利用齐次线性方程组的解证明在应用定义法解一个齐次线性方程组需由该方程组是否有非零7 解来证明向量组的线性相关性.即应用定义法的同时就应用了齐次线性方程组的解进行了判定. 例3.2证明向量组1232105754137411aaa线性相关. 证明以123aaa为系数向量的齐次线性方程组是112233xaxaxa0即1231232312327305704405110xxxxxxxxxxx 利用矩阵的谐醯缺浠唤 匠套榈南凳 卣驛化为行阶梯型矩阵即1212122527315715727304404451115111rrrrrrA23324421171412415715715701717011 01104401100002424011000rrrrrrr 由行阶梯型矩阵可知23RA即齐次线性方程组有非零解所以向量组123aaa线性相关. 3.4 利用矩阵的秩证明向量组线性相关性上一章讲到的定理2.1和推论2.1推论2.2推论2.3充分的告诉了我们如何根据矩阵的秩证明向量组的线性相关性. 例3.3证明向量组123134752453246753aaa的线性无关. 证明将123aaa以行排成矩阵8 1231347513475245320231184675300001aAaa 矩阵A化为阶梯型矩阵后没有出现零行则123aaa中每个向量都不能被剩下的向量线性表示故由推论知向量组123aaa是线性无关的. 我们注意到定理中的矩阵TA 在初等行变换的过程中不论是否化成了阶梯型矩阵一旦出现零行就可以断定12naaa中必有一个向量能被其余剩下的n-1个向量线性表示从而知向量组12naaa线性相关. 例3.4证明向量组123413215224691127413595aaaa的线性相关. 证明将1234aaaa以行排成矩阵12341321513215224690408111274000001359513595aaAaa 所以矩阵A经过初等行变换后出现了零行则1234aaaa中必有一向量可以由其余的向量线性表示氏蛄孔?234aaaa是线性相关的. 例3.5设12311112313TTTaaat问当t为何值时向量组123aaa 线性相关并将3a表示为1a和2a的线性组合. 解利用矩阵的秩有123Aaaa11111111112301201213021005ttt 可见当5t时向量组123aaa线性相关并且有9 111101012012000000A所以3122aaa 利用矩阵的秩与利用齐次线性方程组的解进行判定的出发点不同但实质上是一样的都是要利用矩阵的初等行变换将相应的系数矩阵化简为行阶梯形矩阵从而求出向量组的秩即系数矩阵的秩然后再作出判定. 3.5 利用行列式的值来证明向量组线性相关性例3.6已知123111025247TTTaaa试讨论123aaa的线性相关性. 证明令123Aaaa则1021240157A所以123aaa线性相关. 行列式值的判定实质上是根据克莱姆法则判定以向量组作为系数向量的齐次线性方程组是否有非零解然后再对向量组的线性相关性作出判定所以能应用行列式值进行判定的向量组也可以应用矩阵的秩和齐次线性方程组是否有非零解的方法来进行判定. 例3.7已知向量组123:Aaaa是线性无关的且有112223331baabaabaa证明向量组123bbb线性无关. 证明一设有123xxx使得112233bxbxbx0即112223331xaaxaaxaa0整理为131122233xxaxxaxxa0 10 因为123aaa是线性无关的所以131223000xxxxxx由于此方程组的系数行列式10111020011故方程组只有零解1230xxx所以向量组123bbb线性无关. 证明二将已知的三个向量等式写成一个矩阵等式123123*********bbbaaa 记作BAK.设Bx0以BAK代入AKx0.因为矩阵A的列向量组线性无关所以可推知Kx0.又因为20K知方程Kx0只有零解0x所以矩阵B的列向量组123bbb线性无关. 证明三将已知条件可以写为123123*********bbbaaa 记做BAK因为0k所以k可逆由矩阵的秩的性质可知RARB且3RA由此3RB所以B的三个列向量线性无关. 例3.8已知3阶矩阵与三维列向量x满足323xxx且向量组2xxx线性无关. 1记2xxx求三阶矩阵使. 2求的值. 解1因为23223xxxxxxx 2000103011xxx然后可以得到000103011使得11 . 2因为得到了且2xxx而向量组2xxx是线性无关的.故P是可逆的.1所以10 3.6方程组法方程组法就是将向量组的线性相关性问题转化为齐次线性方程组的有无非零解的问题. 例3.11 证明向量组123211103202431的线性相关. 证明以123为系数的齐次线性方程组13123123132203402300kkkkkkkkkk 解得之1323kkkk即12311kkk是方程组的一组非零解故123线性相关. 例3.12 讨论12311112313t. 1 当t为何值时向量组123线性无关2 当t为何值时向量组123 线性相关3 当向量组123线性相关性将3表示为1和2的线性组合. 解设有实数123xxx使112233xxx0则得方程组123123123023030xxxxxxxxtx 其系数行列式111123513Dtt 1当5t时0D方程组只有零解1230xxx这时向量组123线性无关. 12 2当5t时0D方程组有非零解即存在不全为0的数123xxx使112233xxx0此时123线性相关. 3当5t时由111101123012135000有1323020xxxx 令31x得11x22x因此有12320从而3122. 3.7 反证法在有些题目中直接证明结论常常比较困难而从结论的反面入手却很容易推出一些与已知条件或已知的定义定理公理相悖的结果从而结论的反面不成立即结论成立.此方法是数学中常用的证明方法欲证命题真先假设命题假导出矛盾从而原命题得证. 例3.9设向量组12:mAaaa中任一向量ia不是它前面1i个向量的线性组合且0ia证明向量组12:mAaaa是线性无关的. 证明反证法假设向量组12:mAaaa线性相关则存在不全为零的m个数123mkkkk使得1122mmkakaka0 由此可知0mk否则由上式可得112121mmmmmmkkkaaaakkk 即ma可由它前面1m个向量线性表示这与题设矛盾因此0mk 112211mmkakaka0. 类似于上面的证明同理可得12320mmkkkk最后得到11ka0 因为ia0所以10k但这又与123mkkkk不全为0相矛盾. 因此向量组12:mAaaa是线性无关的. 13 第四章向量组线性相关的具体应用曲面造型是CAD/CAM、CG、计算机动画、计算机仿真、计算机可视化等众多领域的一项重要内容主要研究在计算机图像系统环境下对曲面的表示、设计、显示和分析.经过30多年的发展它已形成了以有理B样条曲面参数化特征设计和隐式代数曲面表示这两类方法为主体以插值、拟合、逼近这三种手段为骨架的几何理论体系. 在80年代后期参数曲面是CAD/CAM 曲面的主要表示方法尤其形成了NURBS 理论使它成为工业产品几何形状定义的唯一数学描述方法.但随着计算机设计的几何对象不断朝着多样化、特殊化、拓扑结构复杂化方向的发展参数曲面的局限性也越来越明显. 通常用参数曲面构造复杂拓扑结构的物体表面时需要对曲面片进行剪裁或直接在非规则的四边形网格上构造曲面片无论哪种情况都要考虑片与片之间的光滑拼接这是很困难的.对于影视动画领域的活动模型需要采用更加简便的方法来构造任意拓扑结构曲面. 细分方法正是在这种情况下迅速发展起来其基本思想是采用一定的细分规则在给定的初始网格中渐进地插入新的顶点从而不断细化出新的网格.重复运用细分规则在极限时该网格收敛于一个光滑曲面.细分曲面就是由初始控制网格按照一定的细分规则反复迭代而得到的极限曲面它具有以下优点适应任意拓扑结构、仿射不变、算法简洁通用高效、应用规模可大可小. 正是由于细分曲面有着传统参数曲面所不具备的优点现已广泛14 应用于计算机辅助几何设计、计算机动画造型及商业造型软件等领域.Loop细分网格具有局部性质.。