VVL可变气门升程技术
- 格式:doc
- 大小:23.00 KB
- 文档页数:1
可变气门升程技术的工作原理
可变气门升程技术是一项有效的提高汽车性能的重要技术,它能够改善汽车发动机的燃油燃烧效率、缩短汽车动力反应时间,从而节约燃料,提高汽车动力表现和排放性能。
本文就可变气门升程技术的工作原理介绍有关的知识。
可变气门升程技术是一项采用气门工作调整技术,应用在汽车发动机上的一种技术,其基本原理是:改变汽车发动机的气门升程,就可以改变发动机在各种转速下的性能表现。
可变气门升程技术的工作原理是:在汽车发动机上安装一个可变气门升程装置,这个装置可以调节气门升程,从而控制汽车发动机所释放的气体空间,从而改变汽车发动机的性能。
可变气门升程技术的具体实现是:在汽车发动机上安装一个装置,该装置由控制电路、传感器和拉杆组成。
通过拉杆可以改变气门在开启和关闭时的时间,从而改变汽车发动机的性能。
可变气门升程技术有助于改善汽车发动机的工作性能,有效地控制发动机的怠速时的燃油消耗,缩短汽车动力反应时间,改善汽车动力学性能,从而提高汽车的性能和油耗。
此外,采用可变气门升程技术的汽车发动机可以做到简单高效,减少发动机故障可能,提高发动机维护的可靠性,降低汽车使用成本,由此可见,采用可变气门升程技术后,可以有效地提高汽车的安全性、经济性和环保性。
综上所述,可变气门升程技术是一项有效的提高汽车性能的重要
技术,它的工作原理是:通过控制汽车发动机气门升程,从而改变汽车发动机的性能。
可变气门升程技术在节约燃料、提高汽车动力性能、改善节气门工作性能、延长发动机使用寿命、改善环保等方面都具有重要作用。
关于汽车发动机的VVT、CVVT、DVVT、
VVTI、VVL技术类型
这些技术都是让电脑控制发动机进排气门在不同工况下正确的开启时间,发动机在增大功率的同时也降低了油耗,现在许多品牌的汽车都使用了这种技术;只是名字取得不同而已,因为厂家都已经注册了各自的这个技术,不能使用一样的名字!
CVVT是英文Continue Variable Valve Timing的缩写,翻译成中文就是连续可变气门正时机构,它是近些年来被逐渐应用于现代轿车上的众多可变气门正时技术中的一种。
例如:宝马公司叫做Vanos,丰田叫做VVTI,本田叫做VTEC,但不管叫做什么,他们的目的都是给不同的发动机工作状况下匹配最佳的气门重叠角(气门正时),只不过所实现的方法是不同的。
VVT:是可变气门正时;
CVVT :连续可变气门正时;
DVVT:双可变气门正时;
VVTI:智能可变气门正时系统;
VTEC:可变气门相位及升程控制系统;
VVL:为可变气门升程系统。
传统的汽油发动机的气门升程是固定不可变的,VVL的采用使发动机在高速区和低速区都能得到满足需求的气门升程。
从而改善发动机高速功率和低速扭矩。
如果非要说哪个好,本田的I-VTEC表现最好,其次是丰田的VVT-I,现代的CVVT就不怎么样了!其实这个技术奔驰、宝马、大众早就有了!只是他们不象丰田本田那样贴个标在车尾大肆宣传!他们的做法很低调,不信你可以看一下奔驰和宝马的发动机!。
VETC发动机介绍VETC发动机是指可变汽门正时(VVT)与电控可变气门升程(ETC)技术相结合的发动机,VETC即Variable Valve Timing and Electronic lift Control。
该发动机通过对气门的开启时间和升程进行灵活控制,以达到更高的燃烧效率和动力输出。
VVT技术是指通过调整进气和排气气门的开启时间,来实现最佳气缸充气与排气时机的技术。
VVT技术最早出现在20世纪70年代末,它通过改变气门正时,可以实现在不同转速和负荷条件下的最佳气缸充气效果,从而提高燃烧效率和动力输出。
传统的发动机由于气门正时固定,无法充分适应各种工况要求,导致燃烧效率和动力输出受限。
而VVT技术能够实时调整气门正时,提高燃烧效率,增加动力输出,同时降低油耗和排放。
ETC技术是指通过电子控制气门升程的技术。
传统的发动机气门升程是通过凸轮来控制的,气门升程是固定的,难以满足不同工况下的要求。
而ETC技术则通过电子控制,可以灵活调整气门升程,实现最佳气缸充气效果,提高燃烧效率和动力输出。
ETC技术的引入使汽车发动机的性能和经济性得到了双重提升。
VETC发动机将VVT和ETC两种技术相结合,通过精确的电子控制,实现对气门的开启时间和升程的精确调整。
这种综合技术的应用,使发动机在不同的转速和负荷条件下,能够实现最佳气缸充气和排气效果,充分发挥发动机的动力潜能。
1.提高燃烧效率:VETC发动机通过精确调整气门的开启时间和升程,使气缸能够获得最佳的充气和排气效果,提高了燃烧效率,降低了能源浪费,从而减少了燃油消耗。
2.增加动力输出:通过VETC发动机的精确控制,可以获得更大的动力输出,提高汽车的加速性能和行驶稳定性。
3.减少排放:VETC发动机的燃烧效率提高,燃烧反应更加充分,燃烧产物中的有害物质减少,减少了对环境的污染。
4.提高发动机性能:VETC发动机能够根据不同工况需求进行灵活调整,使其在低转速时提供较大扭矩,在高转速时具有较大的马力输出,大大提高了发动机的综合性能。
vvl的原理及应用1. 简介VVL(Variable Valve Lift)是指可变气门升程技术,该技术根据发动机负荷与转速的不同,调整发动机气门的升程,以提高燃烧效率和动力输出。
VVL技术在汽车发动机领域发展迅速,被广泛应用于各类汽车中。
2. 原理VVL技术的核心原理是通过控制发动机气门升程的变化,实现燃烧效率和动力输出的优化。
主要原理如下:•可变气门升程:普通发动机的气门升程是固定的,而VVL技术可以根据实际需要改变气门的升程。
通过控制气门的开闭时间和升程,可以调整进气量和排气量,从而提高发动机的效率和性能。
•电控系统:VVL技术依赖于高精度的电子控制系统。
通过传感器采集发动机负荷和转速等参数,并实时反馈给控制系统。
控制系统根据实时参数进行计算,控制气门的开闭时间和升程。
•液压驱动:VVL技术使用液压驱动系统来控制气门的升程。
驱动系统通过控制液压缸的工作状态,改变气门的升程。
液压驱动系统需要与电控系统进行密切配合,以实现精确的气门控制。
3. 应用VVL技术在汽车发动机领域有广泛的应用,主要包括以下几个方面:•燃油经济性提升:通过调整气门的开闭时间和升程,VVL技术可以使发动机在不同负荷和转速下都能高效运行。
这样可以降低燃油消耗,提升燃油经济性。
•低速动力输出:在低速行驶时,发动机往往需要更多的扭矩输出。
通过调整气门升程,VVL技术可以增加气门的开启时间,提高进气量,从而提升低速动力输出。
•高速驱动性能:在高速行驶时,发动机需要更多的功率输出。
通过调整气门升程,VVL技术可以减小气门的开启时间,减少排气阻力,从而提高高速驱动性能。
•排放控制:VVL技术也可以在一定程度上减少发动机的排放。
通过控制气门升程,可以改变燃烧过程中的侵入气、残余气和排气阀之间的混合比例,从而减少有害气体的生成。
4. 总结VVL技术是一项重要的发动机技术,通过调整气门的升程,可以实现发动机燃烧效率和动力输出的优化。
该技术在汽车行业有广泛的应用,可以提升燃油经济性、低速动力输出和高速驱动性能,同时也有助于减少发动机的排放。
全球可变气门正时vvt技术大比拼自然吸气引擎篇---可变气门正时(VVT)技术大比拼目前国内汽车市场中,涡轮(TUBRO)引擎已经凭借大众奥迪等厂商的多年努力有了相当程度的推广,但制造维护成本更低、更可靠的自然吸气(NA)引擎却依然占领着大部分市场。
而提到自然吸气引擎我们就不得不习惯性的提起三个字母--VVT,这也是本篇文章介绍的重点。
在这之前我们有必要简单了解一些汽车引擎的基本知识。
以我们在初中物理中学到的内燃机知识为基础,平时大家常说发动机的排气量是一个最大值。
发动机实际工作效率取决于进气效率,即进入气缸的混合气与排气量的比。
气门正时,尤其是进气迟闭角,对发动机充气效率有直接影响。
当发动机高转速时,增大进气迟闭角,有利于提高充气效率、提高最大功率。
而当发动机处于低转速时,减小进气迟闭角,能防止气体被推回进气管,有利于提高最大扭矩,但降低了最大功率。
传统的气门机构调整,也就无法进一步提高发动机性能。
20世纪60年代起,工程师们开始致力于VVT(Variable Valve Timing)可变气门正时的研究。
最早开发出成型技术的是菲亚特和通用,但受技术和成本的限制并没有量产。
1982年的阿尔法·罗密欧Spider 2.0是最早采用VVT技术的量产车。
厂商总吹嘘自己的可变气门正时技术多么先进,事实真是如此吗?在答案揭晓之前,先卖个关子,介绍一下VVT技术的相关知识,以及VVT的几个关键词解惑。
VVT对比CVVTCVVT(连续可变气门正时)就是拥有“Coutinous”连续能力的VVT,是众多VVT中的一个种类。
目前绝大多数厂商都拥有CVVT技术,一般通过一个凸轮轴位置调节机构来实现(本田的i-VTEC是个异类)。
从性能上看,CVVT与VVT的最大功率与最大扭矩并无太大区别,但在中间转速时,CVVT的扭矩更大,且扭矩曲线更为平滑。
气门升程气门升程的作用就像一个水龙头,直接决定了发动机的进气速度。
简述可变气门正时系统的控制原理可变气门正时系统(Variable Valve Timing,简称VVT)是一种用于控制发动机气门开闭时间和持续时间的技术。
它通过调整气门的开启和关闭时间,以适应不同工况下发动机的需求,从而实现提高燃烧效率、降低排放和提升动力性能的目的。
本文将从控制原理的角度对VVT进行简述。
VVT的控制原理主要涉及到几个关键的技术,包括电控可变气门正时系统(Electronically Controlled Variable Valve Timing,简称ECVVT)、液压可变气门正时系统(Hydraulic Variable Valve Timing,简称HCVVT)和可变气门升程系统(Variable Valve Lift,简称VVL)等。
我们来看一下ECVVT的控制原理。
ECVVT通过电控方式实现气门正时的调整。
它使用了一套由电子控制单元(ECU)、凸轮轴位置传感器、气门位置传感器和执行机构等组成的系统。
ECU通过凸轮轴位置传感器和气门位置传感器等传感器获取发动机工况和气门状态等信息,并根据预设的控制策略来控制执行机构调整气门的开闭时间。
在不同的工况下,ECU会根据发动机的负荷、转速和温度等参数来计算出最佳的气门正时,然后通过控制执行机构来实现气门的精确控制。
我们来了解一下HCVVT的控制原理。
HCVVT通过液压控制方式实现气门正时的调整。
它使用了一个由凸轮轴、凸轮轴相位调节器、油压控制阀和油液供给系统等组成的系统。
凸轮轴相位调节器通过改变凸轮轴的相位来实现气门正时的调整。
当需要调整气门正时时,油压控制阀会根据控制信号调整凸轮轴的相位,从而改变气门的开闭时间。
通过控制油压的大小和相位调节器的位置,可以实现气门正时的精确控制。
我们来介绍一下VVL的控制原理。
VVL通过调整气门升程来实现气门正时的调整。
它使用了一个由凸轮轴、分段凸轮轴和控制机构等组成的系统。
在不同的工况下,控制机构会根据发动机的负荷、转速和温度等参数来调整凸轮轴的位置,进而改变气门的升程。
可变配气机构按照控制参数的不同,可变配气技术可分为可变气门正时(VVT)和可变气门升程(VVL)两类。
可变气门正时即气门开启与关闭时刻可变,根据气门开启持续期的变化又分为可变气门相位(VP)和可变气门相位与持续期(VET)两类;可变气门升程主要是改变了气门开启的最大升程,按照气门正时与持续期的变化情况又可分为可变气门升程与正时(VLT)和气门升程单独可变两类。
实现可变配气有多种途径,按照有无凸轮轴可分为基于凸轮轴的可变配气机构和无凸轮轴的可变配气机构两类。
基于凸轮轴的可变配气机构主要可分为可变凸轮型线、可变凸轮轴相位角、可变凸轮从动件几类;无凸轮轴的可变配气机构根据气门驱动形式主要可分为电磁驱动气门、电液驱动气门、电气驱动气门、电机驱动气门以及其他气门驱动形式几大类。
可变气门正时(VVT):该系统通过配备的控制及执行系统,对发动机凸轮的相位进行调节,从而使得气门开启、关闭的时间随发动机转速的变化而变化,以提高充气效率,增加发动机功率。
优点是省油,功升比大。
缺点是中段转速扭矩不足。
可变正时气门VVT-i的全称是Variable Value Timing intelligent翻译成中文就是智能可变配气正时,这项技术系统是丰田特有的并且在世界技术上领先的发动机技术系统,可以连续调节气门正时,但是不可以调节气门升程。
它的工作原理是:当发动机由低速向高速转换时,电子计算机就自动地将机油压向进气凸轮轴驱动齿轮内的小涡轮,这样,在压力的作用下,小涡轮就相对于齿轮壳旋转一定的角度,从而使凸轮轴在60度的范围内向前或向后旋转,从而改变进气门开启的时刻,达到连续调节气门正时的目的。
VVT-i是一种控制进气凸轮轴气门正时的装置,它通过调整凸轮轴转角配气正时进行优化,从而提高发动机在所有转速范围内的动力性、燃油经济性,降低尾气的排放。
·VVT-i系统由传感器、ECU和凸轮轴液压控制阀、控制器等部分组成。
ECU储存了最佳气门正时参数值,曲轴位置传感器、进气歧管空气压力传感器、节气门位置传感器、水温传感器和凸轮轴位置传感器等反馈信息汇集到ECU并与预定参数值进行对比计算,计算出修正参数并发出指令到控制凸轮轴正时液压控制阀,控制阀根据ECU指令控制机油槽阀的位置,也就是改变液压流量,把提前、滞后、保持不变等信号指令选择输送至VVT-i控制器的不同油道上。
可变气门升程VVL是英文variable valve lift的简写,意味可变气门升程。
传统的汽油发动机的气门升程是固定不可变的。
也就是凸轮轴的凸轮型线只有一种。
这就造成了该升程不可能使发动机在高速区和低速区都得到优良响应。
传统汽油机发动机的气门升程--凸轮型线制定是对发动机在全工况下的平衡性选择。
其结果是发动机既得不到的高速效率,也得不到的低速扭矩。
但得到了全工况下平衡的性能。
VVL的采纳,使发动机在高速区和低速区都能得到满足必须求的气门升程。
从而改善发动机高速功率和低速扭矩。
可变配气技术在大幅度提升发动机性能的同时,在节能和环保方面也有其独特的优势。
我们知道,EGR(废气再循环)是一套一般的用于降低排放和提升燃烧效率的系统,二可变配气技术则能发挥EGR更大的潜能。
理论上说,进排气的混合必须要依据发动机转速的不同与之相配合。
当汽车在公路上中速行驶的时候,发动机的负荷很小,长时间的叠加角可能会有益于减小燃料消耗和降低废气排放。
排气门延时关闭直到进气门打开,一部分废气同时被引入到气缸中,与新鲜混合气混合燃烧。
因为废气里主要为不可燃烧的成分,引入新鲜混合气以后,可以降低混合气的浓度,达到减小燃油消耗和降低废气排放的目的。
以上说到的可变配气技术都是汽油机,柴油机很少采纳这种技术。
这主要是因为这种技术主要是在发动机高转速的时候作用显然,柴油机的转速一般比较低,这种技术运用在柴油机上意义不大。
2可变气门升程技术Valvetronic和VVEL的结构相对来说比较复杂,而且复杂的配气机构也会在一定程度上增加制造成本。
然而菲亚特的Multiair电控液压进气系统却采纳了一种相对独特的手段实现了气门升程的无级调节,在技术上可谓另辟蹊径。
Multiair特点就是开创性的使用了电控液压控制系统来驱动气门的正时和升程,虽然发动机为每缸4气门的结构,但是却取消了进气门一侧凸轮轴,排气门侧的凸轮轴通过液压机构来驱动进气门。
vvl工作原理汽车是现代社会中最为普及的交通工具之一,而其中最为基本的组成部分之一就是发动机。
而在发动机的部件中,VVL技术是一项非常重要的进步,可有效提高发动机的燃油效率、动力性能和排放性能。
下面,我将为大家介绍一下VVL工作原理。
一、VVL简介VVL即可变气门升程和可变气门时机技术(Variable Valve Lift and Variable Valve Timing),是在发动机活塞上下运动形成压缩、爆炸、排放、进气等四个工作循环的基础上,通过对气门升程和时机进行可变调节,使得进气口和排气口可以在不同的角度和时间内开放和关闭,从而优化发动机的工作条件,提高其汽车性能。
VVL技术在各大汽车厂商中的应用较为广泛,如本田的i-VTEC、丰田的VVT-L、宝马的VANOS等等。
二、VVL的作用VVL的作用主要有以下几个方面:1、提高燃油效率VVL技术可以有效地优化发动机的燃油效率,提高汽车的里程数。
因为它可以根据行驶的速度和负载大小等条件,调整进气口和排气口的开启时间和角度,从而使得汽车发动机运转更加高效。
2、提高动力性能VVL技术可以进一步增强汽车发动机的动力性能,让汽车更加轻松地应对各种路况和驾驶需求,提高其行驶稳定性和可靠性。
同时,还可以帮助驾驶员更加轻松地进行快速加速和超车等操作。
3、改善排放性能VVL技术在运行时能够更好地控制发动机的燃油燃烧效率,从而减少大气污染和二氧化碳的排放,达到更好的环保效果。
这也是目前汽车厂商越来越注重推广和普及VVL技术的原因之一。
三、VVL的工作原理VVL技术的工作原理比较复杂,可以分为四个阶段:1、低速运行阶段当汽车发动机在低速运行时,VVL技术会调整气门区域(Cam Profile),使得气门开启的时间和角度适合低速运行状态,从而提高发动机的燃油效率和动力性能。
2、高速运行阶段当汽车发动机在高速运行时,VVL技术会自动调整气门区域,使得气门的开启时间和角度适合高速运行状态。
发动机的泵气阻力发动机的泵气阻力(Pumping Loss)是指在吸入和排出燃烧室空气或燃烧产物过程中,由于气体流动而产生的能量损失。
这种损失主要出现在内燃机(尤其是往复式内燃机)中,对发动机的效率和性能有直接影响。
泵气阻力与发动机的设计、工作状态以及控制策略紧密相关,理解和优化泵气阻力是提高发动机效率的重要方面之一。
泵气阻力的成因1. 气阀流动阻力:当气体通过进气阀和排气阀流入或流出燃烧室时,气阀和气道的形状会对气流产生阻力,导致压力损失。
2. 曲轴箱通风阻力:在四冲程发动机中,活塞上下运动会导致曲轴箱内部气压变化,产生额外的气体流动和阻力。
3. 活塞运动阻力:活塞在气缸中上下运动时,必须克服气体压力,特别是在吸气和排气阶段,这些阻力会转化为机械损失。
泵气阻力的影响降低燃油经济性:泵气阻力会消耗发动机的部分输出功率,导致燃油经济性下降。
减少有效功率:泵气阻力的存在意味着发动机必须投入更多的能量来克服这种阻力,从而减少了用于车辆推进的有效功率。
影响排放:泵气阻力会影响发动机的空气燃料比和燃烧效率,进而影响排放性能。
减少泵气阻力的策略1. 改进气门和进排气道设计:通过优化气门的尺寸、形状和数量,以及进排气道的设计,可以减少气流阻力,降低泵气损失。
2. 可变气门正时(VVT)和可变气门升程(VVL)技术:通过调整气门的开启时刻、关闭时刻和开启幅度,可以根据发动机的工作条件优化气流动态,减少泵气阻力。
3. 涡轮增压和机械增压:通过使用涡轮增压器或机械增压器提高进气效率,可以在一定程度上补偿泵气阻力带来的效率损失。
4. 直接喷射技术:直接向燃烧室内喷射燃料可以提高混合气的均匀性和燃烧效率,间接减少因泵气阻力导致的能量损失。
通过上述措施,可以有效减少泵气阻力,提高发动机的热效率和性能。
在新一代发动机设计中,这些策略被广泛应用,以满足越来越严格的燃油经济性和排放标准。
VVL可变气门升程技术
VVL概述
VVL是英文variable valve lift的简写,意味可变气门升程。
传统的汽油发动机的气门升程是固定不可变的。
也就是凸轮轴的凸轮型线只有一种。
这就造成了该升程不可能使发动机在高速区和低速区都得到良好响应。
传统汽油机发动机的气门升程——凸轮型线设计是对发动机在全工况下的平衡性选择。
其结果是发动机既得不到最佳的高速效率,也得不到最佳的低速扭矩。
但得到了全工况下最平衡的性能。
VVL的采用,使发动机在高速区和低速区都能得到满足需求的气门升程。
从而改善发动机高速功率和低速扭矩。
发动机VVL系统工作原理
VVL不仅可以改变气门开启时间,还能改变气门大小,从而进一步提高燃烧效率。
在高转速时,采用长行程来提高进气效率,让发动机的呼吸更顺畅,在低速时,采用短行程,能产生更大的进气负压及更多的涡流,让空气和燃油充分混合,因而提高低转速时的扭力输出。
可变气门升程种类
可变气门升程按照其控制效果分类:
两可调式可变升程
技术代表就是大名鼎鼎的本田VTEC技术和保时捷的Vairocam技术以及比亚迪473QE发动机所采用的VVl技术。
连续可变升程
技术代表是宝马的“电控气门”技术。
VVL发动机对比VVT发动机
VVT是可变气门正时系统的简称,DVVT是双可变气门正时,而VVL是双升段可变气门升程系统!
VVT和DVVT都只能改变气门开启闭合的时间,而VVL不仅可以改变气门开启时间,还能改变气门大小,从而进一步提高燃烧效率,比VVT更省油!但由于VVL制造成本高,特别是缸盖设计加工难度大,所以采用VVL的车型少,
目前只有本田的VTEC、保时捷Variocam、宝马Valvetronic,日产VVEL发动机大规模采用!比亚迪是自主品牌中,唯一掌握此技术的厂商!
比亚迪VVL
比亚迪公司顺应全球低碳环保的新趋势、响应国家节能减排的号召,在其新推出的BYD473QE 发动机上使用了VVL系统,并将运用在其车型上。
采用VVL技术的发动机,气门行程能随发动机转速的改变而改变。
在高转速时,采用长行程来提高进气效率,让发动机的呼吸更顺畅,在低速时,采用短行程,能产生更大的进气负压及更多的涡流,让空气和燃油充分混合,因而提高低转速时的扭力输出。
使用VVl技术的BYD473QE发动机高效环保、经济节油,搭载全新此发动机的比亚迪L3车型已登录国家工信部229 批汽车产品目录,并在工信部轻型汽车燃油消耗量通告中获百公里综合工况油耗为6.2L。
目前比亚迪L3已经进入新一批的节能惠民补贴车型,这也证明了VVL技术对于经济节油的贡献。