2020年高考物理考点
- 格式:doc
- 大小:14.22 KB
- 文档页数:9
2020年高考物理专题复习:能量守恒定律的应用技巧考点精讲1. 对能量守恒定律的理解(1)转化:某种形式的能量减少,一定存在其他形式的能量增加,且减少量和增加量一定相等。
(2)转移:某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量相等。
2. 运用能量守恒定律解题的基本流程典例精讲例题1 如图所示,一物体质量m=2kg,在倾角θ=37°的斜面上的A点以初速度v0=3m/s下滑,A点距弹簧上端B的距离AB=4m。
当物体到达B点后将弹簧压缩到C点,最大压缩量BC=0.2m,然后物体又被弹簧弹上去,弹到的最高位置为D点,D点距A点的距离AD=3m。
挡板及弹簧质量不计,g取10m/s2,sin37°=0.6,求:(1)物体与斜面间的动摩擦因数μ。
(2)弹簧的最大弹性势能E pm。
【考点】能量守恒定律的应用【思路分析】(1)物体从开始位置A 点运动到最后D 点的过程中,弹性势能没有发生变化,动能和重力势能减少,机械能的减少量为ΔE =ΔE k +ΔE p =21mv 20+mgl AD sin37° ① 物体克服摩擦力产生的热量为Q =F f x ① 其中x 为物体运动的路程,即x =5.4m ① F f =μmg cos37°① 由能量守恒定律可得ΔE =Q①由①②③④⑤式解得μ≈0.52。
(2)由A 到C 的过程中,动能减少ΔE k =21mv 20 ① 重力势能减少ΔE p ′=mgl AC sin37° ① 摩擦生热Q ′=F f l AC =μmg cos37°l AC①由能量守恒定律得弹簧的最大弹性势能为 ΔE pm =ΔE k +ΔE p ′-Q ′①联立⑥⑦⑧⑨解得ΔE pm ≈24.46J 。
【答案】(1)0.52 (2)24.46J【规律总结】应用能量守恒定律解题的基本思路1. 分清有多少种形式的能(如动能、势能(包括重力势能、弹性势能、电势能)、内能等)在变化。
2020届高考物理必考经典专题专题2: 共点力的平衡考点一平衡条件的应用1.解决平衡问题的常用方法合成法物体受三个共点力的作用而平衡,则任意两个力的合力一定与第三个力大小相等,方向相反物体受三个共点力的作用而平衡,将某一个力按力的效果分解,则其分力和其他两个力满足平效果分解法衡条件物体受到三个或三个以上力的作用时,将物体所受的力分解为相互垂直的两组,每组力都满足正交分解法平衡条件对受三力作用而平衡的物体,将表示力的矢量平移使三力组成一个首尾依次相接的矢量三角力的三角形法形,然后根据数学知识求解未知力考点二“死结”与“活结”“动杆”与“定杆”问题1.“死结”可理解为把绳子分成两段,且不可以沿绳子移动的结点.“死结”两侧的绳因结而变成了两根独立的绳,因此由“死结”分开的两段绳子上的弹力不一定相等.2.“活结”可理解为把绳子分成两段,且可以沿绳子移动的结点.“活结”一般是由绳跨过滑轮或者绳上挂一光滑挂钩而形成的.绳子虽然因“活结”而弯曲,但实际上是同一根绳,所以由“活结”分开的两段绳子上弹力的大小一定相等,两段绳子合力的方向一定沿这两段绳子夹角的平分线.3.“动杆”:轻杆用转轴或铰链连接,可以绕轴自由转动.当杆处于平衡时,杆所受到的弹力方向一定沿着杆,否则会引起杆的转动.4.“定杆”:轻杆被固定不发生转动.则杆所受到的弹力方向不一定沿杆的方向.杆所受到的弹力方向可以沿着杆,也可以不沿杆.考点三动态平衡问题1.动态平衡平衡物体所受某力发生变化,使得其他力也发生变化的平衡问题.2.基本思路化“动”为“静”,“静”中求“动”.3.分析动态平衡问题的两种方法方法步骤解析法(1)列平衡方程求出未知量与已知量的关系表达式(2)根据已知量的变化情况来确定未知量的变化情况图解法(1)根据已知量的变化情况,画出力的平行四边形(或三角形)边、角的变化(2)确定未知量大小、方向的变化考点四平衡中的临界极值问题1.“临界状态”:可理解为“恰好出现”和“恰好不出现”某种现象的状态.2.三种临界条件(1)两接触物体脱离与不脱离的临界条件:相互作用力为0(主要体现为两物体间的弹力为0).(2)绳子断与不断的临界条件:绳中的张力达到最大值;绳子绷紧与松弛的临界条件为绳中的张力为0.(3)存在摩擦力作用的两物体间发生相对滑动或相对静止的临界条件:静摩擦力达到最大静摩擦力. 3.突破临界和极值问题的三种方法解析法根据物体的平衡条件列方程,在解方程时采用数学知识求极值.通常用到的数学知识有二次函数求极值、讨论分式求极值、三角函数求极值以及几何法求极值等图解法根据物体的平衡条件作出力的矢量关系图,作出平行四边形或者矢量三角形进行动态分析,确定最大值或最小值极限法是指通过恰当选取某个变化的物理量将问题推向极端(“极大”“极小”“极右”“极左”等),从而把比较隐蔽的临界现象暴露出来,使问题明朗化,便于分析求解.典例精析★考点一:平衡条件的应用◆典例一:【2019·新课标全国Ⅲ卷】用卡车运输质量为m 的匀质圆筒状工件,为使工件保持固定,将其置于两光滑斜面之间,如图所示。
专题5.3 机械能守恒定律1.掌握重力势能、弹性势能的概念,并能计算。
2.掌握机械能守恒的条件,会判断物体的机械能是否守恒。
3.掌握机械能守恒定律的三种表达形式,理解其物理意义,并能熟练应用。
知识点一重力做功与重力势能1.重力做功的特点(1)重力做功与路径无关,只与初末位置的高度差有关。
(2)重力做功不引起物体机械能的变化。
2.重力势能(1)公式:E p=mgh。
(2)特性:①标矢性:重力势能是标量,但有正、负,其意义是表示物体的重力势能比它在参考平面上大还是小,这与功的正、负的物理意义不同。
②系统性:重力势能是物体和地球所组成的“系统”共有的。
③相对性:重力势能的大小与参考平面的选取有关。
重力势能的变化是绝对的,与参考平面的选取无关。
3.重力做功与重力势能变化的关系(1)定性关系:重力对物体做正功,重力势能就减少;重力对物体做负功,重力势能就增加。
(2)定量关系:重力对物体做的功等于物体重力势能的减少量。
即W G=E p1-E p2=-ΔE p。
知识点二弹性势能1.定义:物体由于发生弹性形变而具有的能.2.弹力做功与弹性势能变化的关系:弹力做正功,弹性势能减小;弹力做负功,弹性势能增加,即W =-ΔE P.知识点三机械能守恒定律及其应用1.机械能:动能和势能统称为机械能,其中势能包括重力势能和弹性势能.2.机械能守恒定律(1)内容:在只有重力或弹力做功的物体系统内,动能与势能可以相互转化,而总的机械能保持不变.(2)守恒条件:只有重力或系统内弹力做功.(3)常用的三种表达式:①守恒式:E1=E2或E k1+E P1=E k2+E P2.(E1、E2分别表示系统初末状态时的总机械能)②转化式:ΔE k=-ΔE P或ΔE k增=ΔE P减.(表示系统势能的减少量等于动能的增加量)③转移式:ΔE A=-ΔE B或ΔE A增=ΔE B减.(表示系统只有A、B两物体时,A增加的机械能等于B减少的机械能)考点一机械能守恒的理解与判断【典例1】(2019·浙江选考)奥运会比赛项目撑杆跳高如图所示,下列说法不正确的是()A.加速助跑过程中,运动员的动能增加B.起跳上升过程中,杆的弹性势能一直增加C.起跳上升过程中,运动员的重力势能增加D.越过横杆后下落过程中,运动员的重力势能减少动能增加【答案】B【解析】加速助跑过程中速度增大,动能增加,A正确;撑杆从开始形变到撑杆恢复形变时,先是运动员部分动能转化为杆的弹性势能,后弹性势能转化为运动员的动能与重力势能,杆的弹性势能不是一直增加,B错误;起跳上升过程中,运动员的高度在不断增大,所以运动员的重力势能增加,C正确;当运动员越过横杆下落的过程中,他的高度降低、速度增大,重力势能被转化为动能,即重力势能减少,动能增加,D正确。
重难点05 天体运动与人造航天器【知识梳理】考点一 天体质量和密度的计算1.解决天体(卫星)运动问题的基本思路(1)天体运动的向心力来源于天体之间的万有引力,即ma r mv r T m r m rMm G ====2222)2(πω(2)在中心天体表面或附近运动时,万有引力近似等于重力,即2R MmG mg =(g 表示天体表面的重力加速度).(2)利用此关系可求行星表面重力加速度、轨道处重力加速度: 在行星表面重力加速度:2R Mm Gmg =,所以2R MG g = 在离地面高为h 的轨道处重力加速度:2)(h R Mm G g m +=',得2)(h R MG g +=' 2.天体质量和密度的计算(1)利用天体表面的重力加速度g 和天体半径R .由于2R Mm G mg =,故天体质量GgR M 2=天体密度:GRgV M πρ43==(2)通过观察卫星绕天体做匀速圆周运动的周期T 和轨道半径r .①由万有引力等于向心力,即r T m rMm G 22)2(π=,得出中心天体质量2324GT r M π=;②若已知天体半径R ,则天体的平均密度3233RGT r V M πρ== ③若天体的卫星在天体表面附近环绕天体运动,可认为其轨道半径r 等于天体半径R ,则天体密度23GTV M πρ==.可见,只要测出卫星环绕天体表面运动的周期T ,就可估算出中心天体的密度. 【重点归纳】 1.黄金代换公式(1)在研究卫星的问题中,若已知中心天体表面的重力加速度g 时,常运用GM =gR 2作为桥梁,可以把“地上”和“天上”联系起来.由于这种代换的作用很大,此式通常称为黄金代换公式. 2. 估算天体问题应注意三点(1)天体质量估算中常有隐含条件,如地球的自转周期为24 h ,公转周期为365天等. (2)注意黄金代换式GM =gR 2的应用. (3)注意密度公式23GTπρ=的理解和应用. 考点二 卫星运行参量的比较与运算 1.卫星的动力学规律由万有引力提供向心力,ma r mv r T m r m rMm G ====2222)2(πω2.卫星的各物理量随轨道半径变化的规律r GM v =;3r GM =ω;GMr T 32π=;2r GM a = (1)卫星的a 、v 、ω、T 是相互联系的,如果一个量发生变化,其它量也随之发生变化;这些量与卫星的质量无关,它们由轨道半径和中心天体的质量共同决定.(2)卫星的能量与轨道半径的关系:同一颗卫星,轨道半径越大,动能越小,势能越大,机械能越大.3.极地卫星和近地卫星(1)极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖. (2)近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可近似认为等于地球的半径,其运行线速度约为7.9 km/s. (3)两种卫星的轨道平面一定通过地球的球心. 【重点归纳】1.利用万有引力定律解决卫星运动的一般思路 (1)一个模型天体(包括卫星)的运动可简化为质点的匀速圆周运动模型. (2)两组公式卫星运动的向心力来源于万有引力:ma r mv r T m r m rMm G ====2222)2(πω在中心天体表面或附近运动时,万有引力近似等于重力,即:2R MmGmg = (g 为星体表面处的重2.卫星的线速度、角速度、周期与轨道半径的关系⎪⎪⎩⎪⎪⎨⎧⇒⇒⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫====减小增大减小减小增大时当半径a T v r r GM a GM r T r GM r GM v ωπω2332 考点三 宇宙速度 卫星变轨问题的分析1.第一宇宙速度v 1=7.9 km/s ,既是发射卫星的最小发射速度,也是卫星绕地球运行的最大环绕速度.2.第一宇宙速度的两种求法:(1)r mv r Mm G 212=,所以r GMv =1 (2)rmv mg 21=,所以gR v =1.3.第二、第三宇宙速度也都是指发射速度.4.当卫星由于某种原因速度突然改变时(开启或关闭发动机或空气阻力作用),万有引力不再等于向心力,卫星将变轨运行:(1)当卫星的速度突然增加时,r mv rMm G 22<,即万有引力不足以提供向心力,卫星将做离心运动,脱离原来的圆轨道,轨道半径变大,当卫星进入新的轨道稳定运行时由rGMv =可知其运行速度比原轨道时减小.(2)当卫星的速度突然减小时,r mv rMm G 22>,即万有引力大于所需要的向心力,卫星将做近心运动,脱离原来的圆轨道,轨道半径变小,当卫星进入新的轨道稳定运行时由rGMv =可知其运行速度比原轨道时增大.卫星的发射和回收就是利用这一原理.1.处理卫星变轨问题的思路和方法(1)要增大卫星的轨道半径,必须加速;(2)当轨道半径增大时,卫星的机械能随之增大.2.卫星变轨问题的判断:(1)卫星的速度变大时,做离心运动,重新稳定时,轨道半径变大.(2)卫星的速度变小时,做近心运动,重新稳定时,轨道半径变小.(3)圆轨道与椭圆轨道相切时,切点处外面的轨道上的速度大,向心加速度相同.3.特别提醒:“三个不同”(1)两种周期——自转周期和公转周期的不同(2)两种速度——环绕速度与发射速度的不同,最大环绕速度等于最小发射速度(3)两个半径——天体半径R和卫星轨道半径r的不同【限时检测】(建议用时:30分钟)1.(2019·新课标全国Ⅰ卷)在星球M上将一轻弹簧竖直固定在水平桌面上,把物体P轻放在弹簧上端,P由静止向下运动,物体的加速度a与弹簧的压缩量x间的关系如图中实线所示。
基础复习课第三讲机械能守恒定律及其应用[小题快练]1.判断题(1)重力势能的变化与零势能参考面的选取无关.( √ )(2)克服重力做功,物体的重力势能一定增加.( √ )(3)弹力做正功,弹性势能一定增加.( × )(4)物体所受的合外力为零,物体的机械能一定守恒.( × )(5)物体的速度增大时,其机械能可能减小.( √ )(6)物体除受重力外,还受其他力,但其他力不做功,则物体的机械能一定守恒.( √ ) 2.关于重力势能,下列说法中正确的是( D )A.物体的位置一旦确定,它的重力势能的大小也随之确定B.物体与零势能面的距离越大,它的重力势能也越大C.一个物体的重力势能从-5 J变化到-3 J,重力势能减少了D.重力势能的减少量等于重力对物体做的功3.如图所示,在光滑水平面上有一物体,它的左端连接着一轻弹簧,弹簧的另一端固定在墙上,在力F作用下物体处于静止状态,当撤去力F后,物体将向右运动,在物体向右运动的过程中,下列说法正确的是( D )A.弹簧的弹性势能逐渐减少B.物体的机械能不变C.弹簧的弹性势能先增加后减少D.弹簧的弹性势能先减少后增加4.(多选)如图所示,下列关于机械能是否守恒的判断正确的是( CD )A.甲图中,物体A将弹簧压缩的过程中,A机械能守恒B.乙图中,A置于光滑水平面上,物体B沿光滑斜面下滑,物体B机械能守恒C.丙图中,不计任何阻力和定滑轮质量时A加速下落,B加速上升过程中,A、B系统机械能守恒D.丁图中,小球沿水平面做匀速圆锥摆运动时,小球的机械能守恒考点一机械能守恒的判断(自主学习)1.对机械能守恒条件的理解(1)只受重力作用,例如不考虑空气阻力的各种抛体运动,物体的机械能守恒.(2)除重力外,物体还受其他力,但其他力不做功或做功代数和为零.(3)除重力外,只有系统内的弹力做功,并且弹力做的功等于弹性势能变化量的负值,那么系统的机械能守恒,注意并非物体的机械能守恒,如与弹簧相连的小球下摆的过程机械能减少.2.机械能是否守恒的三种判断方法(1)利用机械能的定义判断:若物体动能、势能之和不变,机械能守恒.(2)利用守恒条件判断.(3)利用能量转化判断:若物体系统与外界没有能量交换,物体系统内也没有机械能与其他形式能的转化,则物体系统机械能守恒.1-1.[机械能守恒的判断]在如图所示的物理过程示意图中,甲图一端固定有小球的轻杆,从右偏上30°角释放后绕光滑支点摆动;乙图为末端固定有小球的轻质直角架,释放后绕通过直角顶点的固定轴O无摩擦转动;丙图为轻绳一端连着一小球,从右偏上30°角处自由释放;丁图为置于光滑水平面上的带有竖直支架的小车,把用细绳悬挂的小球从图示位置释放,小球开始摆动,则关于这几个物理过程(空气阻力忽略不计),下列判断中正确的是()A.甲图中小球机械能守恒B.乙图中小球A机械能守恒C.丙图中小球机械能守恒D.丁图中小球机械能守恒解析:甲图过程中轻杆对小球不做功,小球的机械能守恒,A正确;乙图过程中轻杆对A 的弹力不沿杆的方向,会对小球做功,所以小球A的机械能不守恒,但两个小球组成的系统机械能守恒,B错误;丙图中小球在绳子绷紧的瞬间有动能损失,机械能不守恒,C 错误;丁图中小球和小车组成的系统机械能守恒,但小球的机械能不守恒,这是因为摆动过程中小球的轨迹不是圆弧,细绳会对小球做功,D错误.答案:A1-2.[机械能守恒的判断]把小球放在竖立的弹簧上,并把球往下按至A位置,如图甲所示.迅速松手后,球升高至最高位置C(图丙),途中经过位置B时弹簧正处于原长(图乙).忽略弹簧的质量和空气阻力.则小球从A运动到C的过程中,下列说法正确的是()A.经过位置B时小球的加速度为0B.经过位置B时小球的速度最大C.小球、地球、弹簧所组成系统的机械能守恒D.小球、地球、弹簧所组成系统的机械能先增大后减小答案:C考点二单个物体的机械能守恒(师生共研)1.机械能守恒定律的表达式2.求解单个物体机械能守恒问题的基本思路(1)选取研究对象——物体.(2)根据研究对象所经历的物理过程,进行受力、做功分析,判断机械能是否守恒.(3)恰当地选取参考平面,确定研究对象在过程的初、末状态时的机械能.(4)选取方便的机械能守恒定律的方程形式进行求解.[典例]如图所示,水平传送带的右端与竖直面内的用内壁光滑钢管弯成的“9”形固定轨道相接,钢管内径很小.传送带的运行速度为v0=6 m/s,将质量m=1.0 kg的可看作质点的滑块无初速地放在传送带A端,传送带长度L=12.0 m,“9”形轨道全高H=0.8 m,“9”形轨道上半部分圆弧半径为R=0.2 m,滑块与传送带间的动摩擦因数为μ=0.3,重力加速度g=10 m/s2,求:(1)滑块从传送带A端运动到B端所需要的时间;(2)滑块滑到轨道最高点C时受到轨道的作用力大小;(3)若滑块从“9”形轨道D点水平抛出后,恰好垂直撞在倾角θ=45°的斜面上P点,求P、D两点间的竖直高度h(保留两位有效数字).[审题指导]第一步:抓关键点(1)判断滑块在传送带上的运动时,若滑块与传送带同速时没有到达B 点,则剩余部分将做匀速直线运动.(2)在轨道的C 点,根据F N +mg =m v 2CR 求滑块受轨道的作用力时,应先求出滑块到C 点的速度v C .(3)滑块由D 点到P 点做平抛运动,故滑块在P 点的速度v P 在水平方向的分速度与在D 点的速度相等,即v D =v P sin θ.解析:(1)滑块在传送带运动时,由牛顿运动定律得 μmg =ma 得a =μg =3 m/s 2加速到与传送带共速所需要的时间t 1=v 0a =2 s 前2 s 内的位移x 1=12at 21=6 m之后滑块做匀速运动的位移x 2=L -x 1=6 m 时间t 2=x 2v 0=1 s故t =t 1+t 2=3 s.(2)滑块由B 到C 运动,由机械能守恒定律得 -mgH =12m v 2C-12m v 2在C 点,轨道对滑块的弹力与其重力的合力为其做圆周运动提供向心力,设轨道对滑块的弹力方向竖直向下,由牛顿第二定律得F N +mg =m v 2CR 解得F N =90 N.(3)滑块由B 到D 运动的过程中,由机械能守恒定律得12m v 20=12m v 2D +mg (H -2R ) 滑块由D 到P 运动的过程中,由机械能守恒定律得12m v 2P=12m v 2D +mgh 又v D =v P sin 45°由以上三式可解得h =1.4 m. 答案:(1)3 s (2)90 N (3)1.4 m [反思总结]应用机械能守恒定律的两点注意事项1.列方程时,选取的表达角度不同,表达式不同,对参考平面的选取要求也不一定相同. 2.应用机械能守恒能解决的问题,应用动能定理同样能解决,但其解题思路和表达式有所不同.2-1.[与平抛运动相结合] (2015·海南卷)如图,位于竖直平面内的光滑轨道由四分之一圆弧ab 和抛物线bc 组成,圆弧半径Oa 水平,b 点为抛物线顶点.已知h =2 m ,s = 2 m .取重力加速度大小g =10 m/s 2.(1)一小环套在轨道上从a 点由静止滑下,当其在bc 段轨道运动时,与轨道之间无相互作用力,求圆弧轨道的半径;(2)若环从b 点由静止因微小扰动而开始滑下,求环到达c 点时速度的水平分量的大小. 解析:(1)一小环套在bc 段轨道运动时,与轨道之间无相互作用力,则说明下落到b 点时的速度,使得小环套做平抛运动的轨迹与轨道bc 重合,故有s =v b t ,h =12gt 2, 从ab 滑落过程中,根据机械能守恒定律可得mgR =12m v 2b ,联立三式可得R =s 24h =0.25 m. (2)环由b 处静止下滑过程中机械能守恒,设环下滑至c 点的速度大小为v ,有mgh =12m v 2 环在c 点的速度水平分量为v x =v cos θ式中,θ为环在c 点速度的方向与水平方向的夹角,由题意可知,环在c 点的速度方向和以初速度v b 做平抛运动的物体在c 点速度方向相同,而做平抛运动的物体末速度的水平分量为v x ′=v b ,竖直分量v y ′为v y ′=2gh 因为cos θ=v bv 2b +v y ′2 联立可得v x =2103 m/s.答案:(1)0.25 m (2)2103 m/s2-2.[与圆周运动相结合] (2016·全国卷Ⅱ)轻质弹簧原长为2l ,将弹簧竖直放置在地面上,在其顶端将一质量为5m 的物体由静止释放,当弹簧被压缩到最短时,弹簧长度为l .现将该弹簧水平放置,一端固定在A 点,另一端与物块P 接触但不连接.AB 是长度为5l 的水平轨道,B 端与半径为l 的光滑半圆轨道BCD 相切,半圆的直径BD 竖直,如图所示.物块P 与AB 间的动摩擦因数μ=0.5.用外力推动物块P ,将弹簧压缩至长度l ,然后放开,P 开始沿轨道运动,重力加速度大小为g .(1)若P 的质量为m ,求P 到达B 点时速度的大小,以及它离开圆轨道后落回到AB 上的位置与B 点之间的距离;(2)若P 能滑上圆轨道,且仍能沿圆轨道滑下,求P 的质量的取值范围.解析:(1)依题意,当弹簧竖直放置,长度被压缩至l 时,质量为5m 的物体的动能为零,其重力势能转化为弹簧的弹性势能.由机械能守恒定律,弹簧长度为l 时的弹性势能为 E p =5mgl ①设P 的质量为M ,到达B 点时的速度大小为v B ,由能量守恒定律得 E p =12M v 2B +μMg ·4l ② 联立①②式,取M =m 并代入题给数据得 v B =6gl ③若P 能沿圆轨道运动到D 点,其到达D 点时的向心力不能小于重力,即P 此时的速度大小v 应满足 m v 2l -mg ≥0④设P 滑到D 点时的速度为v D ,由机械能守恒定律得 12m v 2B =12m v 2D +mg ·2l ⑤联立③⑤式得 v D =2gl ⑥v D 满足④式要求,故P 能运动到D 点,并从D 点以速度v D 水平射出.设P 落回到轨道AB 所需的时间为t ,由运动学公式得2l =12gt 2⑦P 落回到AB 上的位置与B 点之间的距离为 s =v D t ⑧ 联立⑥⑦⑧式得 s =22l ⑨(2)为使P 能滑上圆轨道,它到达B 点时的速度不能小于零.由①②式可知 5mgl >μMg ·4l ⑩要使P 仍能沿圆轨道滑回,P 在圆轨道的上升高度不能超过半圆轨道的中点C .由机械能守恒定律有 12M v 2B ≤Mgl ⑪ 联立①②⑩⑪式得 53m ≤M <52m .答案:(1)6gl 22l (2)53m ≤M <52m考点三 多个物体的机械能守恒 (自主学习)1.多物体机械能守恒问题的分析方法(1)对多个物体组成的系统要注意判断物体运动过程中,系统的机械能是否守恒. (2)注意寻找用绳或杆相连接的物体间的速度关系和位移关系. (3)列机械能守恒方程时,一般选用ΔE k =-ΔE p 的形式. 2.多物体机械能守恒问题的三点注意 (1)正确选取研究对象. (2)合理选取物理过程.(3)正确选取机械能守恒定律常用的表达形式列式求解.3-1.[弹簧连接] (2015·天津卷)如图所示,固定的竖直光滑长杆上套有质量为m 的小圆环,圆环与水平状态的轻质弹簧一端连接,弹簧的另一端连接在墙上,且处于原长状态,现让圆环由静止开始下滑,已知弹簧原长为L ,圆环下滑到最大距离时弹簧的长度变为2L (未超过弹性限度),则在圆环下滑到最大距离的过程中( )A.圆环的机械能守恒B.弹簧弹性势能变化了3mgLC.圆环下滑到最大距离时,所受合力为零D.圆环重力势能与弹簧弹性势能之和保持不变答案:B3-2.[轻杆连接](多选)(2015·全国卷Ⅱ)如图,滑块a、b的质量均为m,a套在固定竖直杆上,与光滑水平地面相距h,b放在地面上.a、b通过铰链用刚性轻杆连接,由静止开始运动.不计摩擦,a、b可视为质点,重力加速度大小为g.则()A.a落地前,轻杆对b一直做正功B.a落地时速度大小为2ghC.a下落过程中,其加速度大小始终不大于gD.a落地前,当a的机械能最小时,b对地面的压力大小为mg答案:BD3-3.[轻绳连接](多选)(2018·康杰中学模拟)如图所示,将质量为2m的重物悬挂在轻绳的一端,轻绳的另一端系一质量为m的小环,小环套在竖直固定的光滑直杆上,光滑定滑轮与直杆的距离为d.现将小环从与定滑轮等高的A处由静止释放,当小环沿直杆下滑距离也为d时(图中B处),下列说法正确的是(重力加速度为g)()A.环与重物组成的系统机械能守恒B.小环到达B处时,重物上升的高度也为dC.小环在B处的速度与重物上升的速度大小之比等于2 2D.小环在B处时的速度为(3-22)gd解析:由于小环和重物只有重力做功,系统机械能守恒,故A项正确;结合几何关系可知,重物上升的高度h=(2-1)d,故B项错误;将小环在B处的速度分解为沿着绳子方向和垂直于绳子方向的两个分速度,其中沿着绳子方向的速度即为重物上升的速度,则v物=v环cos45°,环在B处的速度与重物上升的速度大小之比为2∶1 ,故C项错误;小环和重物系统机械能守恒,则mgd-2mgh=12m v2环+122m v2物,且v物=v环cos 45°,解得:v环=(3-22)gd,故D正确.答案:AD1. (2018·聊城一中检测)如右图所示,半径为R的光滑半圆轨道固定在竖直面内,半圆的圆心为O.将一只小球从半圆轨道左端无初速度释放,恰好能到达右端与圆心O等高的位置.若将该半圆轨道的右半边去掉,换上直径为R的光滑圆轨道,两个轨道在最低点平滑连接.换上的圆轨道所含圆心角如下图所示,依次为180°、120°、90°和60°.仍将小球从原半圆轨道左端无初速度释放,哪种情况下小球能上升到与O点等高的高度( C )解析:由能量守恒定律可知,小球若能上升到与O点等高的高度,则速度为零;图A中到达O点的速度至少为gr,则A错误;B中小球从轨道斜上抛后到达最高点的速度也不为零,则B错误;C图中小球从轨道上竖直上抛后,到达最高点的速度为零,则C正确;D图中小球从轨道斜上抛后到达最高点的速度也不为零,则D错误.2. (多选)(2019·阜阳三中模拟)一质量不计的直角形支架两端分别连接质量为m和2m的小球A和B.支架的两直角边长度分别为2l和l,支架可绕固定轴O在竖直平面内无摩擦转动,如图所示.开始时OA边处于水平位置.由静止释放,则( BC )A.A球的最大速度为2glB.A球的速度最大时,两小球的总重力势能最小C.A球第一次转动到与竖直方向的夹角为45°时,A球的速度为8(2-1)gl3D.A、B两球的最大速度之比v A∶v B=3∶1解析:由机械能守恒可知,A球的速度最大时,二者的动能最大,此时两球总重力势能最小,所以B正确;根据题意知两球的角速度相同,线速度之比为v A∶v B=ω·2l∶ω·l=2∶1,故D错误;当OA与竖直方向的夹角为θ时,由机械能守恒得:mg·2l cos θ-2mg·l(1-sin θ)=12m v2A+12·2m v2B,解得:v2A=83gl(sin θ+cos θ)-83gl,由数学知识知,当θ=45°时,sin θ+cos θ有最大值,最大值为:v A=8(2-1)gl3,所以A错误,C正确.3. (2018·海南矿区中学模拟)如图所示,质量m=50 kg的跳水运动员从距水面高h=10 m 的跳台上以v0=5 m/s 的速度斜向上起跳,最终落入水中.若忽略运动员的身高.取g =10m /s2,求:(1)运动员在跳台上时具有的重力势能(以水面为参考平面);(2)运动员起跳时的动能;(3)运动员入水时的速度大小.解析:(1)取水面为参考平面,人的重力势能是E p=mgh=5 000 J;(2)由动能的公式得:E k=12m v2=625 J;(3)在整个过程中,只有重力做功,机械能守恒mgh=12m v2-12m v2,解得v=15 m/s .答案:(1)5 000 J(2)625 J(3)15 m/s[A组·基础题]1. 如图所示为跳伞爱好者表演高楼跳伞的情形,他们从楼顶跳下后,在距地面一定高度处打开伞包,最终安全着陆,则跳伞者( A )A.机械能一直减小B.机械能一直增大C.动能一直减小D.重力势能一直增大2. 质量均为m,半径均为R的两个完全相同的小球A、B在水平轨道上以某一初速度向右冲上倾角为θ的倾斜轨道,两轨道通过一小段圆弧平滑连接.若两小球运动过程中始终接触,不计摩擦阻力及弯道处的能量损失,在倾斜轨道上运动到最高点时两球机械能的差值为( C )A.0B.mgR sin θC.2mgR sin θD.2mgR3. (2016·全国卷Ⅱ)小球P和Q用不可伸长的轻绳悬挂在天花板上,P球的质量大于Q球的质量,悬挂P球的绳比悬挂Q球的绳短.将两球拉起,使两绳均被水平拉直,如图所示.将两球由静止释放.在各自轨迹的最低点( C )A.P球的速度一定大于Q球的速度B.P球的动能一定小于Q球的动能C.P球所受绳的拉力一定大于Q球所受绳的拉力D.P球的向心加速度一定小于Q球的向心加速度4.如图所示,在下列不同情形中将光滑小球以相同速率v射出,忽略空气阻力,结果只有一种情形小球不能到达天花板,则该情形是( B )A.A B.BC .CD .D5.(多选) 如图所示,一轻质弹簧竖直固定在水平地面上,O 点为弹簧原长时上端的位置,一个质量为m 的物体从O 点正上方的A 点由静止释放落到弹簧上,物体压缩弹簧到最低点B 后向上运动,不计空气阻力,不计物体与弹簧碰撞时的动能损失,弹簧一直在弹性限度范围内,重力加速度为g ,则以下说法正确的是( CD )A .物体落到O 点后,立即做减速运动B .物体从O 点运动到B 点,物体机械能守恒C .在整个过程中,物体与弹簧组成的系统机械能守恒D .物体在最低点时的加速度大于g6.(多选) (2019·景德镇一中月考)如图所示,一根不可伸长的轻绳两端各系一个小球a 和b ,跨在两根固定在同一高度的光滑水平细杆上,a 球置于地面上,质量为m 的b 球从水平位置静止释放.当b 球第一次经过最低点时,a 球对地面压力刚好为零.下列结论正确的是( BD )A .a 球的质量为2mB .a 球的质量为3mC .b 球首次摆动到最低点的过程中,重力对小球做功的功率一直增大D .b 球首次摆动到最低点的过程中,重力对b 球做功的功率先增大后减小解析:b 球在摆动过程中,a 球不动,b 球做圆周运动,则绳子拉力对b 球不做功,b 球的机械能守恒,则有:m b gL =12m b v 2;当b 球摆过的角度为90°时,a 球对地面压力刚好为零,说明此时绳子张力为:T =m a g ;b 通过最低点时,根据牛顿运动定律和向心力公式得:m a g -m b g =m b v 2L ,解得:m a =3m b ,故A 错误、B 正确.在开始时b 球的速度为零,则重力的瞬时功率为零;当到达最低点时,速度方向与重力垂直,则重力的功率也为零,可知b 球首次摆动到最低点的过程中,重力对b 球做功的功率先增大后减小,选项C 错误,D正确.7.(多选) 如图所示,某极限运动爱好者(可视为质点)尝试一种特殊的高空运动.他身系一定长度的弹性轻绳,从距水面高度大于弹性轻绳原长的P点以水平初速度v0跳出.他运动到图中a点时弹性轻绳刚好拉直,此时速度与竖直方向的夹角为θ,轻绳与竖直方向的夹角为β,b为运动过程的最低点(图中未画出),在他运动的整个过程中未触及水面,不计空气阻力,重力加速度为g.下列说法正确的是( BD )A.极限运动爱好者从P点到b点的运动过程中机械能守恒B.极限运动爱好者从P点到a点时间的表达式为t=v0 g tan θC.极限运动爱好者到达a点时,tan θ=tan βD.弹性轻绳原长的表达式为l=v20g sin β tan θ[B组·能力题]8.(多选) (2019哈尔滨六中月考)如图所示,在距水平地面高为0.4 m处,水平固定一根长直光滑杆,在杆上P点固定一光滑的轻质定滑轮,滑轮可绕水平轴无摩擦转动,在P 点的右边,杆上套有一质量m= 2 kg的滑块A.半径R=0.3 m的光滑半圆形细轨道竖直地固定在地面上,其圆心O在P点的正下方,在轨道上套有一质量m= 2 kg的小球B.用一条不可伸长的柔软细绳,通过定滑轮将小球与滑块连接起来.杆和半圆形轨道在同一竖直面内,滑块、小球均可看作质点,且不计滑轮大小的影响,取g=10m /s2.现给滑块A一个水平向右的恒力F=60 N,则( ABC )A.把小球B从地面拉到P的正下方时力F做功为24 JB.小球B运动到C处时滑块A的速度大小为0C.小球B被拉到与滑块A速度大小相等时,sin∠OPB=3 4D.把小球B从地面拉到P的正下方时小球B的机械能增加了6 J解析:设PO=H.由几何知识得,PB=H2+R2=0.42+0.32=0.5 m,PC=H-R=0.1 m.F 做的功为W=F(PB-PC)=40×(0.5-0.1)=24 J,A正确;当B球到达C处时,已无沿绳的分速度,所以此时滑块A的速度为零,选项B正确;当绳与轨道相切时滑块A与B球速度相等,由几何知识得:sin ∠OPB=RH=34,C正确.由功能关系,可知,把小球B从地面拉到半圆形轨道顶点C处时小球B的机械能增加量为ΔE=W=24 J,D错误.9.(多选) (2018·深圳宝安区联考)如图所示,一轻质弹簧固定在光滑杆的下端,弹簧的中心轴线与杆重合,杆与水平面间的夹角始终为60°,质量为m的小球套在杆上,从距离弹簧上端O点2x0的A点静止释放,将弹簧压至最低点B,压缩量为x0,不计空气阻力,重力加速度为g.下列说法正确的是( CD )A.小球从接触弹簧到将弹簧压至最低点B的过程中,其加速度一直减小B.小球运动过程中最大动能可能为mgx0C.弹簧劲度系数大于3mg 2x0D.弹簧最大弹性势能为332mgx0解析:小球从接触弹簧到将弹簧压至最低点B的过程中,弹簧对小球的弹力逐渐增大,开始时弹簧的弹力小于小球的重力沿杆向下的分力,小球做加速运动,随着弹力的增大,合力减小,加速度减小,后来,弹簧的弹力等于小球的重力沿杆向下的分力,最后,弹簧的弹力大于小球的重力沿杆向下的分力,随着弹力的增大,合力沿杆向上增大,则加速度增大,所以小球的加速度先减小后增大,A错误;小球滑到O点时的动能为E k=2mgx0 sin 60°=3mgx0,小球的合力为零时动能最大,此时弹簧处于压缩状态,位置在O点下方,所以小球运动过程中最大动能大于3mgx0,不可能为mgx0,B错误;在速度最大的位置有mg sin 60°=kx,得k=3mg2x,因为x<x0,所以k>3mg2x0,C正确;对小球从A到B的过程,对系统,由机械能守恒定律得:弹簧最大弹性势能E pm=3mgx0sin 60°=332mgx0,D正确.10.(多选) (2019·江西丰城九中段考)如图所示,竖直面内半径为R的光滑半圆形轨道与水平光滑轨道相切于D点.a、b、c三个质量相同的物体由水平部分分别向半环滑去,最后重新落回到水平面上时的落点到切点D的距离依次为AD<2R,BD=2R,CD>2R.设三个物体离开半圆形轨道在空中飞行时间依次为t a、t b、t c,三个物体到达地面的动能分别为E a、E b、E c,则下面判断正确的是( AC )A.E a<E b B.E b>E cC.t b=t c D.t a=t b解析:物体若从圆环最高点离开半环在空中做平抛运动,竖直方向上做自由落体运动,则有:2R=12gt2,则得:t=4Rg,物体恰好到达圆环最高点时,有:mg=m v2R,则通过圆轨道最高点时最小速度为:v=gR,所以物体从圆环最高点离开后平抛运动的水平位移最小值为:x=v t=2R,由题知:AD<2R,BD=2R,CD>2R,说明b、c通过最高点做平抛运动,a没有到达最高点,则知t b=t c=4Rg,t a≠t b=t c;对于a、b两物块,通过D点时,a的速度比b的小,由机械能守恒可得:E a<E b.对于b、c两物块,由x=v t 知,t相同,c的水平位移大,通过圆轨道最高点时的速度大,由机械能守恒定律可知,E c>E b,故选项A、C正确.11. 如图所示,在同一竖直平面内,一轻质弹簧一端固定,另一自由端恰好与水平线AB 平齐,静止放于倾角为53°的光滑斜面上.一长为L=9 cm的轻质细绳一端固定在O点,另一端系一质量为m=1 kg的小球,将细绳拉至水平,使小球从位置C由静止释放,小球到达最低点D时,细绳刚好被拉断.之后小球在运动过程中恰好沿斜面方向将弹簧压缩,最大压缩量为x=5 cm.(g取10 m/s2,sin 53°=0.8,cos 53°=0.6)求:(1)细绳受到的拉力的最大值;(2)D点到水平线AB的高度h;(3)弹簧所获得的最大弹性势能E p.解析:(1)小球由C 到D ,由机械能守恒定律得mgL =12m v 21解得v 1=2gL ①在D 点,由牛顿第二定律得F -mg =m v 21L ②由①②解得F =30 N由牛顿第三定律知细绳所能承受的最大拉力为30 N.(2)由D 到A ,小球做平抛运动有v 2y =2gh ③tan 53°=v y v 1④ 联立解得h =16 cm.(3)小球从C 点到将弹簧压缩至最短的过程中,小球与弹簧系统的机械能守恒,即E p =mg (L +h +x sin 53°),代入数据解得E p =2.9 J.答案:(1)30 N (2)16 cm (3)2.9 J。
基础复习课第一讲电场力的性质[小题快练] 1.判断题(1)任何带电体所带的电荷量都是元电荷的整数倍.( √ )(2)点电荷和电场线都是客观存在的.( × )(3)根据F=k q1q2r2,当r→0时,F→∞.( × )(4)电场强度反映了电场力的性质,所以电场中某点的电场强度与试探电荷在该点所受的电场力成正比.( × )(5)电场中某点的电场强度方向即为正电荷在该点所受的电场力的方向.( √ )(6)真空中点电荷的电场强度表达式E=kQr2中,Q就是产生电场的点电荷.( √ )(7)在点电荷产生的电场中,以点电荷为球心的同一球面上各点的电场强度都相同.( × )(8)电场线的方向即为带电粒子的运动方向.( × )2.关于电场强度的概念,下列说法正确的是( C )A.由E=Fq可知,某电场的电场强度E与q成反比,与F成正比B.正、负试探电荷在电场中同一点受到的电场力方向相反,所以某一点电场强度方向与放入试探电荷的正负有关C.电场中某一点的电场强度与放入该点的试探电荷的正负无关D.电场中某一点不放试探电荷时,该点电场强度等于零3.(2015·浙江卷)如图所示为静电力演示仪,两金属极板分别固定于绝缘支架上,且正对平行放置.工作时两板分别接高压直流电源的正负极,表面镀铝的乒乓球用绝缘细线悬挂在两金属板中间,则( D )A.乒乓球的左侧感应出负电荷B.乒乓球受到扰动后,会被吸在左极板上C.乒乓球共受到电场力、重力和库仑力三个力的作用D.用绝缘棒将乒乓球拨到与右极板接触,放开后乒乓球会在两极板间来回碰撞4.(2017·海南卷)关于静电场的电场线,下列说法正确的是( C )A.电场强度较大的地方电场线一定较疏B.沿电场线方向,电场强度一定越来越小C.沿电场线方向,电势一定越来越低D.电场线一定是带电粒子在电场中运动的轨迹考点一库仑力作用下的平衡问题(自主学习)1.解决平衡问题应注意三点(1)明确库仑定律的适用条件;(2)知道完全相同的带电小球接触时电荷量的分配规律;(3)进行受力分析,灵活应用平衡条件.2.在同一直线上三个自由点电荷的平衡问题(1)条件:两个点电荷在第三个点电荷处的合电场强度为零,或每个点电荷受到的两个库仑力必须大小相等,方向相反.(2)规律“三点共线”——三个点电荷分布在同一条直线上;“两同夹异”——正、负电荷相互间隔;“两大夹小”——中间电荷的电荷量最小;“近小远大”——中间电荷靠近电荷量较小的电荷.1-1.[两个点电荷平衡](多选)(2016·浙江卷)如图所示,把A、B两个相同的导电小球分别用长为0.10 m的绝缘细线悬挂于O A和O B两点.用丝绸摩擦过的玻璃棒与A球接触,棒移开后将悬点O B移到O A 点固定.两球接触后分开,平衡时距离为0.12 m.已测得每个小球质量是8.0×10-4kg,带电小球可视为点电荷,重力加速度g=10 m/s2,静电力常量k=9.0×109 N·m2/C2,则()A.两球所带电荷量相等B.A球所受的静电力为1.0×10-2 NC.B球所带的电荷量为46×10-8 CD.A、B两球连线中点处的电场强度为0答案:ACD1-2. [三个点电荷平衡]如图所示,水平天花板下用长度相同的绝缘细线悬挂起来的两个相同的带电小球A、B,带电荷量分别为Q A、Q B,左边放一个带正电的固定球,固定球带电荷量+Q时,两悬线都保持竖直方向,小球A与固定球的距离等于小球A与小球B的距离.下列说法中正确的是()A.A球带正电,B球带正电,+Q<Q AB.A球带正电,B球带负电,+Q>Q AC.A球带负电,B球带负电,+Q<|Q A|D.A球带负电,B球带正电,+Q>|Q A|答案:D1-3.[动态平衡问题](多选)如图所示,带电小球A、B的电荷分别为Q A、Q B,OA=OB,都用长L的丝线悬挂在O点.静止时A、B相距为d.为使平衡时A、B间距离减为d2,可采用以下哪些方法()A.将小球A、B的质量都增大到原来的2倍B.将小球B的质量增大到原来的8倍C.将小球A、B的电荷量都减小到原来的一半D.将小球A、B的电荷量都减小到原来的一半,同时将小球B的质量增大到原来的2倍解析:如图所示,B受重力、丝线的拉力及库仑力,将拉力及库仑力合成,其合力应与重力大小相等、方向相反,由几何关系可知mgL=Fd,而库仑力F=kQ A Q Bd2,即mgL=kQ A Q Bd2d=kQ A Q Bd3,mgd3=kQAQ B L,d=3kQAQ B Lmg,要使d变为d2,可以将小球B的质量增大到原来的8倍而保证上式成立,故B正确;或将小球A、B的电荷量都减小到原来的一半,同时将小球B的质量增大到原来的2倍,也可保证等式成立,故D正确.答案:BD考点二电场强度的叠加与计算(自主学习)1.电场强度三个表达式的比较E=2.(1)叠加原理:多个电荷在空间某处产生的电场为各电荷在该处所产生的电场强度的矢量和.(2)运算法则:平行四边形定则.3.计算电场强度常用的五种方法(1)电场叠加合成法.(2)平衡条件求解法.(3)对称法.(4)补偿法.(5)等效法.(6)微元法2-1. [合成法]一段均匀带电的半圆形细线在其圆心O处产生的电场强度为E,把细线分成等长的圆弧,则圆弧在圆心O处产生的电场强度为()A.E B.E 2C.E3D.E4答案:B2-2.[补偿法](2018·石家庄质检)均匀带电的球壳在球外空间产生的电场等效于电荷集中于球心处产生的电场.如图所示,在半球面AB上均匀分布正电荷,总电荷量为q,球面半径为R,CD为通过半球面顶点与球心O的轴线,在轴线上有M、N两点,OM=ON=2R.已知M点的场强大小为E,则N点的场强大小为()A.kq2R2-E B.kq 4R2C.kq4R2-E D.kq4R2+E解析:左半球面AB上的正电荷产生的电场等效为带正电荷量为2q的整个球面的电场和带电荷量-q的右半球面的电场的合电场,则E=k2q(2R)2-E′,E′为带电荷量-q的右半球面在M点产生的场强大小.带电荷量-q的右半球面在M点的场强大小与带正电荷量为q的左半球面AB在N点的场强大小相等,则E N=E′=k2q(2R)2-E=kq2R2-E,则A正确.答案:A2-3. [对称法]如图所示,在x轴上放置两正点电荷Q1、Q2,当空间存在沿y轴负向的匀强电场时,y轴上A点的电场强度等于零,已知匀强电场的电场强度大小为E,两点电荷到A的距离分别为r1、r2,则在y轴上与A点对称的B点的电场强度大小为()A.E B.1 2EC.2E D.4E答案:C2-4. [微元法]如图所示,均匀带电圆环所带电荷量为Q,半径为R,圆心为O,P为垂直于圆环平面中心轴上的一点,OP=L,试求P点的场强.解析:将带电圆环等分成许多微元电荷,每个微元电荷可看成点电荷.先根据库仑定律求出每个微元电荷的场强,再结合对称性和场强叠加原理求出合场强.设想将圆环看成由n个小段组成,当n相当大时,每一小段都可以看成点电荷,其所带电荷量Q′=Qn,由点电荷场强公式可求得每一小段带电体在P处产生的场强为E=kQnr2=kQn(R2+L2).由对称性知,各小段带电体在P处场强E的垂直于中心轴的分量E y相互抵消,而其轴向分量E x之和即为带电环在P处的场强E P ,E P =nE x =nk ·Qn (R 2+L 2)cos θ=kQL(R 2+L 2)32.答案:k QL(R 2+L 2)32考点三 电场线的理解与应用 (自主学习)1.电场线的三个特点(1)电场线从正电荷或无限远处出发,终止于无限远或负电荷处; (2)电场线在电场中不相交;(3)在同一幅图中,电场强度较大的地方电场线较密,电场强度较小的地方电场线较疏. 2.六种典型电场的电场线3.两种等量点电荷的电场3-1.[非匀强电场](多选)某电场的电场线分布如图所示,以下说法正确的是()A.c点电场强度大于b点电场强度B.a点电势高于b点电势C.若将一试探电荷+q由a点释放,它将沿电场线运动到b点D.若在d点再固定一点电荷-Q,将一试探电荷+q由a移至b的过程中,电势能减小答案:BD3-2.[两个点电荷形成的电场]如图所示为两个点电荷在真空中所产生电场的电场线(方向未标出).图中C点为两点电荷连线的中点,MN为两点电荷连线的中垂线,D为中垂线上的一点,电场线的分布关于MN左右对称,则下列说法中正确的是()A.这两点电荷一定是等量异种电荷B.这两点电荷一定是等量同种电荷C.D、C两点的电场强度一定相等D.C点的电场强度比D点的电场强度小答案:A3-3.[三个点电荷形成的电场](多选)(2015·江苏卷)两个相同的负电荷和一个正电荷附近的电场线分布如图所示.c是两负电荷连线的中点,d点在正电荷的正上方,c、d到正电荷的距离相等,则()A.a点的电场强度比b点的大B.a点的电势比b点的高C.c点的电场强度比d点的大D.c点的电势比d点的低答案:ACD1. (2018·抚顺期中)如图所示带正电的金属圆环竖直放置,其中心处有一电子,若电子某一时刻以初速度v0从圆环中心处水平向右运动,则此后电子将( C )A.做匀速直线运动B.做匀减速直线运动C.以圆心为平衡位置振动D.以上选项均不对解析:由场强叠加原理易知,把带电圆环视作由无数个点电荷组成,则圆环中心处的场强为0,沿v0方向所在直线的无穷远处场强也为0,故沿v0方向从圆心到无穷远处的直线上必有一点场强最大.从O点沿v0方向向右的直线上各点的场强方向处处向右.再由对称性知,沿v0方向所在直线上的O点左方也必有一点场强最大,无穷远处场强为零,方向处处向左.故电子在带电圆环所施加的电场力作用下将向右减速至零,再向左运动,当运动到O点处时,速度大小仍为v0,并向左继续运动至速度也为零(这点与O点右方的速度为零处关于O点对称),然后往复运动.在整个运动过程中,F电是个变力,故加速度也是变化的.故选C.2.A、B是一条电场线上的两个点,一带正电的粒子仅在电场力作用下以一定的初速度从A点沿电场线运动到B点,其v-t图象如图所示.则该电场的电场线分布可能是下列选项中的( D )A B C D3.如图所示,MN为很大的不带电薄金属板(可认为无限大),金属板接地.在金属板的左侧距离为2d 的位置固定一电荷量为Q的正点电荷,由于静电感应产生了如图所示的电场.过正点电荷Q所在的点作MN的垂线,P为垂线段的中点,已知P点电场强度的大小为E0,则金属板上感应电荷在P点激发的电场强度E的大小为( A )A.E0-kQd2B.kQd2C.E02D.04.如图所示,三个小球a、b、c分别用三根绝缘细线悬挂在同一点O,细线的长度关系为Oa=Ob<Oc,让三球带电后它们能静止在图中所示位置.此时细线Oc沿竖直方向,a、b、c连线恰构成一等边三角形,则下列说法不正确的是( C )A.a、b两球质量一定相等B.a、b两球所带电荷量一定相等C.a、b两球所处位置的电场强度相等D.细线Oa、Ob所受拉力大小一定相等[A组·基础题]1. 实际问题中有时需要同时考虑万有引力和库仑力.现有一质量分布均匀的星球带有大量负电荷且电荷也均匀分布,将一个带电微粒在离该星球表面一定高度处无初速度释放,发现微粒恰好能静止.若给微粒一个如图所示的初速度,不计阻力作用,则下列说法正确的是( C )A.微粒将做圆周运动B.微粒将做平抛运动C.微粒将做匀速直线运动D.微粒将做匀变速直线运动2.如图甲所示,在x轴上有一个点电荷Q(图中未画出),O、A、B为轴上三点.放在A、B两点的检验电荷受到的电场力与其所带电荷量的关系如图乙所示.以x轴的正方向为电场力的正方向,则( B )A.点电荷Q一定为正电荷B.点电荷Q在A、B之间C.A点的电场强度大小为5×103 N/CD.A点的电势比B点的电势高3. 如图所示,等量异种点电荷A、B固定在同一水平线上,竖直固定的光滑绝缘杆与AB的中垂线重合,C、D是绝缘杆上的两点,ACBD构成一个正方形,一带负电的小球(可视为点电荷)套在绝缘杆上自C点无初速度释放,由C运动到D的过程中,下列说法正确的是( D )A.小球的速度先减小后增大B.小球的速度先增大后减小C.杆对小球的作用力先减小后增大D.杆对小球的作用力先增大后减小4.如图甲所示,直线上固定两个正点电荷A与B,其中B带+Q的电荷量,C、D两点将AB连线三等分,现有一个带负电的粒子从C点开始以某一初速度向右运动,不计粒子所受的重力,并且已知该负电荷在C、D间运动的速度v与时间t的关系图象如图乙所示,则A点电荷的带电荷量可能是( A )A.+5Q B.+3QC.+2Q D.+Q5.如图所示,在真空中的绝缘水平面上,两相距为2L的固定的同种点电荷A、B带电荷量均为+Q,O点为两电荷连线的中点,OP为两电荷连线的中垂线,在中垂线上的a点放有一带电荷量也为+Q的可看成点电荷的小球,小球在大小为F=2kQ22L2(k为静电力常量)的水平恒力作用下处于静止状态,已知力F和OP间夹角为θ=60°,O、a间距离为L,则小球所受的摩擦力大小是( D )A.0 B.kQ2 2L2C.2kQ22L2D.6kQ22L26.(多选)如图所示四个电场空间,A图中ab连线平行于两极板,B、D图中a、b在点电荷(电荷量相同)连线垂直于平分线上.在这四个电场空间里,一带正电粒子(重力不计)可以做匀速圆周运动经过a、b两点的电场是( BC )7.(多选)用细绳拴一个质量为m带正电的小球B,另一个也带正电的小球A固定在绝缘竖直墙上,A、B两球离地面的高度均为h.小球B在重力、拉力和库仑力的作用下静止不动,如图所示.现将细绳剪断后( BCD )A.小球B在细绳剪断瞬间开始做平抛运动B.小球B在细绳剪断瞬间加速度大于gC.小球B落地的时间小于2h gD.小球B落地的速度大于2gh8.(多选) 在竖直平面内固定一半径为R的金属细圆环,质量为m的金属小球(视为质点)通过长为L 的绝缘细线悬挂在圆环的最高点.当圆环、小球都带有相同的电荷量Q(未知)时,发现小球在垂直圆环平面的对称轴上处于平衡状态,如图所示.已知静电力常量为k,则有( AB )A.细线对小球的拉力F=mgL RB.电荷量Q=mgL3 kRC.细线对小球的拉力F=mgL L2-R2D.电荷量Q=mg(L2-R2)32kR[B组·能力题]9. (2018·广东四校联考)如图所示,ABCD为等腰梯形,∠A=∠B=60°,AB=2CD,在底角A、B分别放上一个点电荷,电荷量分别为q A和q B,在C点的电场强度方向沿DC向右,A点的点电荷在C点产生的场强大小为E A,B点的点电荷在C点产生的场强大小为E B,则下列说法正确的是( C )A.放在A点的点电荷可能带负电B.在D点的电场强度方向沿DC向右C.E A>E BD.|q A|=|q B|解析:由于两点电荷在C点产生的合场强方向沿DC向右,由平行四边形定则,可知两点电荷在C点产生的场强方向如图所示,由图中几何关系可知E B<E A,A点所放点电荷为正电荷,B点所放点电荷为负电荷,且A点所放点电荷的电荷量的绝对值大于B点所放点电荷的电荷量的绝对值,选项C正确,A、D错误;对两点电荷在D点产生的场强进行合成,由几何关系,可知其合场强方向为向右偏上,不沿DC方向,选项B错误.10.如图所示,带电体P、Q可视为点电荷,电荷量相同.倾角为θ,质量为M的斜面体放在粗糙水平面上,将质量为m的物体P放在粗糙的斜面体上,当物体Q放在与P等高(PQ连线水平)且与物体P相距为r的右侧位置时,P静止且受斜面体的摩擦力为0,斜面体保持静止,静电力常量为k,则下列说法正确的是( D )A.P、Q所带电荷量为mgk tan θr2B.P对斜面的压力为0C.斜面体受到地面的摩擦力为0D.斜面体对地面的压力为(M+m)g11.(2017·北京卷)如图所示,长l=1 m的轻质细绳上端固定,下端连接一个可视为质点的带电小球,小球静止在水平向右的匀强电场中,绳与竖直方向的夹角θ=37°.已知小球所带电荷量q=1.0×10-6 C,匀强电场的场强E=3.0×103 N/C,取重力加速度g=10 m/s2,sin 37°=0.6,cos 37°=0.8.求:(1)小球所受电场力F的大小;(2)小球的质量m;(3)将电场撤去,小球回到最低点时速度v的大小.解析:(1)根据电场强度定义式可知,小球所受电场力大小为F =qE =1.0×10-6×3.0×103 N =3.0×10-3 N. (2)小球受mg 、绳的拉力T 和电场力F 作用处于平衡状态,如图所示 根据几何关系有Fmg =tan 37°,得m =4.0×10-4 kg.(3)撤去电场后,小球将绕悬点摆动,根据动能定理有mgl (1-cos 37°)=12m v 2得v =2gl (1-cos 37°)=2.0 m/s.答案:(1)3.0×10-3 N (2)4.0×10-4 kg (3)2.0 m/s12. (2018·唐山模拟)如图所示,在A 点固定一正电荷,电荷量为Q ,在A 点正上方离A 高度为h 的B 点由静止释放某带电的液珠,液珠开始运动的瞬间加速度大小为g2(g 为重力加速度).已知静电力常量为k ,两带电物体均可看成点电荷,液珠只能沿竖直方向运动,不计空气阻力.(1)求液珠的比荷(电荷量与质量的比值);(2)若液珠开始释放时的加速度方向向上,要使液珠释放后保持静止,可以加一竖直方向的匀强电场,则所加匀强电场的方向如何?电场强度的大小为多少? 解析:(1)加速度的方向分两种情况: ①加速度向下时,因为mg -k Qq h 2=m ⎝ ⎛⎭⎪⎫12g ,所以q m =gh 22kQ .②加速度向上时,因为k Qq h 2-mg =m ⎝ ⎛⎭⎪⎫12g ,所以q m =3gh 22kQ .(2)因为液珠开始释放时的加速度方向向上,所以液珠带正电.要使液珠释放后保持静止,必须加一方向竖直向下的匀强电场.因为qE-12mg=0,所以E=mq·g2=kQ3h2.答案:(1)gh22kQ或3gh22kQ(2)竖直向下kQ3h2。
精品基础教育教学资料,仅供参考,需要可下载使用!高考一轮复习知识考点归纳专题01 运动的描述、匀变速直线运动目录第一节描述运动的基本概念 (2)【基本概念、规律】 (2)【重要考点归纳总结】 (2)考点一对质点模型的理解 (2)考点二平均速度和瞬时速度 (3)考点三速度、速度变化量和加速度的关系 (3)【思想方法与技巧】 (3)第二节匀变速直线运动的规律及应用 (4)【基本概念、规律】 (4)【重要考点归纳】 (5)考点一匀变速直线运动基本公式的应用 (5)考点二匀变速直线运动推论的应用 (5)考点三自由落体运动和竖直上抛运动 (5)【思想方法与技巧】 (6)第三节运动图象追及、相遇问题 (6)【基本概念、规律】 (6)【重要考点归纳】 (7)考点一运动图象的理解及应用 (7)考点二追及与相遇问题 (7)【思想方法与技巧】 (8)方法技巧——用图象法解决追及相遇问题 (8)巧解直线运动六法 (8)实验一研究匀变速直线运动 (9)第一节 描述运动的基本概念【基本概念、规律】一、质点、参考系1.质点:用来代替物体的有质量的点.它是一种理想化模型.2.参考系:为了研究物体的运动而选定用来作为参考的物体.参考系可以任意选取.通常以地面或相对于地面不动的物体为参考系来研究物体的运动.二、位移和速度 1.位移和路程(1)位移:描述物体位置的变化,用从初位置指向末位置的有向线段表示,是矢量. (2)路程是物体运动路径的长度,是标量. 2.速度(1)平均速度:在变速运动中,物体在某段时间内的位移与发生这段位移所用时间的比值,即v =xt,是矢量. (2)瞬时速度:运动物体在某一时刻(或某一位置)的速度,是矢量. 3.速率和平均速率(1)速率:瞬时速度的大小,是标量.(2)平均速率:路程与时间的比值,不一定等于平均速度的大小. 三、加速度1.定义式:a =ΔvΔt ;单位是m/s 2.2.物理意义:描述速度变化的快慢.3.方向:与速度变化的方向相同. 【重要考点归纳总结】 考点一 对质点模型的理解1.质点是一种理想化的物理模型,实际并不存在.2.物体能否被看做质点是由所研究问题的性质决定的,并非依据物体自身大小来判断. 3.物体可被看做质点主要有三种情况: (1)多数情况下,平动的物体可看做质点.(2)当问题所涉及的空间位移远大于物体本身的大小时,可以看做质点. (3)有转动但转动可以忽略时,可把物体看做质点.考点二 平均速度和瞬时速度1.平均速度与瞬时速度的区别平均速度与位移和时间有关,表示物体在某段位移或某段时间内的平均快慢程度;瞬时速度与位置或时刻有关,表示物体在某一位置或某一时刻的快慢程度.2.平均速度与瞬时速度的联系(1)瞬时速度是运动时间Δt →0时的平均速度. (2)对于匀速直线运动,瞬时速度与平均速度相等. 考点三 速度、速度变化量和加速度的关系 1.速度、速度变化量和加速度的比较2.物体加、减速的判定(1)当a 与v 同向或夹角为锐角时,物体加速. (2)当a 与v 垂直时,物体速度大小不变. (3)当a 与v 反向或夹角为钝角时,物体减速 【思想方法与技巧】物理思想——用极限法求瞬时物理量1.极限法:如果把一个复杂的物理全过程分解成几个小过程,且这些小过程的变化是单一的.那么,选取全过程的两个端点及中间的极限来进行分析,其结果必然包含了所要讨论的物理过程,从而能使求解过程简单、直观,这就是极限思想方法.极限法只能用于在选定区间内所研究的物理量连续、单调变化(单调增大或单调减小)的情况. 2.用极限法求瞬时速度和瞬时加速度 (1)公式v =ΔxΔt 中当Δt →0时v 是瞬时速度.(2)公式a =ΔvΔt中当Δt →0时a 是瞬时加速度.第二节 匀变速直线运动的规律及应用【基本概念、规律】一、匀变速直线运动的基本规律 1.速度与时间的关系式:v =v 0+at . 2.位移与时间的关系式:x =v 0t +12at 2.3.位移与速度的关系式:v 2-v 20=2ax . 二、匀变速直线运动的推论 1.平均速度公式:v =v t 2=v 0+v2. 2.位移差公式:Δx =x 2-x 1=x 3-x 2=…=x n -x n -1=aT 2. 可以推广到x m -x n =(m -n )aT 2. 3.初速度为零的匀加速直线运动比例式 (1)1T 末,2T 末,3T 末……瞬时速度之比为: v 1∶v 2∶v 3∶…∶v n =1∶2∶3∶…∶n . (2)1T 内,2T 内,3T 内……位移之比为: x 1∶x 2∶x 3∶…∶x n =1∶22∶32∶…∶n 2.(3)第一个T 内,第二个T 内,第三个T 内……位移之比为: x ∶∶x ∶∶x ∶∶…∶x n =1∶3∶5∶…∶(2n -1). (4)通过连续相等的位移所用时间之比为:t 1∶t 2∶t 3∶…∶t n =1∶(2-1)∶(3-2)∶…∶(n -n -1). 三、自由落体运动和竖直上抛运动的规律 1.自由落体运动规律 (1)速度公式:v =gt . (2)位移公式:h =12gt 2.(3)速度—位移关系式:v 2=2gh . 2.竖直上抛运动规律 (1)速度公式:v =v 0-gt . (2)位移公式:h =v 0t -12gt 2.(3)速度—位移关系式:v 2-v 20=-2gh . (4)上升的最大高度:h =v 202g .(5)上升到最大高度用时:t =v 0g.【重要考点归纳】考点一 匀变速直线运动基本公式的应用1.速度时间公式v =v 0+at 、位移时间公式x =v 0t +12at 2、位移速度公式v 2-v 20=2ax ,是匀变速直线运动的三个基本公式,是解决匀变速直线运动的基石.2.匀变速直线运动的基本公式均是矢量式,应用时要注意各物理量的符号,一般规定初速度的方向为正方向,当v 0=0时,一般以a 的方向为正方向.3.求解匀变速直线运动的一般步骤画过程分析图→判断运动性质→选取正方向→选用公式列方程→解方程并讨论4.应注意的问题∶如果一个物体的运动包含几个阶段,就要分段分析,各段交接处的速度往往是联系各段的纽带. ∶对于刹车类问题,当车速度为零时,停止运动,其加速度也突变为零.求解此类问题应先判断车停下所用时间,再选择合适公式求解.∶物体先做匀减速直线运动,速度减为零后又反向做匀加速直线运动,全程加速度不变,可以将全程看做匀减速直线运动,应用基本公式求解.考点二 匀变速直线运动推论的应用1.推论公式主要是指:∶v =v t 2=v 0+v t 2,∶Δx =aT 2,∶∶式都是矢量式,在应用时要注意v 0与v t 、Δx与a 的方向关系.2.∶式常与x =v ·t 结合使用,而∶式中T 表示等时间隔,而不是运动时间. 考点三 自由落体运动和竖直上抛运动1.自由落体运动为初速度为零、加速度为g 的匀加速直线运动. 2.竖直上抛运动的重要特性 (1)对称性 ∶时间对称物体上升过程中从A →C 所用时间t AC 和下降过程中从C →A 所用时间t CA 相等,同理t AB =t BA .∶速度对称物体上升过程经过A 点的速度与下降过程经过A 点的速度大小相等. (2)多解性当物体经过抛出点上方某个位置时,可能处于上升阶段,也可能处于下降阶段,造成双解,在解决问题时要注意这个特点.3.竖直上抛运动的研究方法分段法下降过程:自由落体运动【思想方法与技巧】物理思想——用转换法求解多个物体的运动在涉及多体问题和不能视为质点的研究对象问题时,应用“转化”的思想方法转换研究对象、研究角度,就会使问题清晰、简捷.通常主要涉及以下两种转化形式:(1)将多体转化为单体:研究多物体在时间或空间上重复同样运动问题时,可用一个物体的运动取代多个物体的运动.(2)将线状物体的运动转化为质点运动:长度较大的物体在某些问题的研究中可转化为质点的运动问题.如求列车通过某个路标的时间,可转化为车尾(质点)通过与列车等长的位移所经历的时间.第三节运动图象追及、相遇问题【基本概念、规律】一、匀变速直线运动的图象1.直线运动的x-t图象(1)物理意义:反映了物体做直线运动的位移随时间变化的规律.(2)斜率的意义:图线上某点切线的斜率大小表示物体速度的大小,斜率正负表示物体速度的方向.2.直线运动的v-t图象(1)物理意义:反映了物体做直线运动的速度随时间变化的规律.(2)斜率的意义:图线上某点切线的斜率大小表示物体加速度的大小,斜率正负表示物体加速度的方向.(3)“面积”的意义∶图线与时间轴围成的面积表示相应时间内的位移大小.∶若面积在时间轴的上方,表示位移方向为正方向;若面积在时间轴的下方,表示位移方向为负方向.二、追及和相遇问题1.两类追及问题(1)若后者能追上前者,追上时,两者处于同一位置,且后者速度一定不小于前者速度.(2)若追不上前者,则当后者速度与前者相等时,两者相距最近.2.两类相遇问题(1)同向运动的两物体追及即相遇.(2)相向运动的物体,当各自发生的位移大小之和等于开始时两物体间的距离时即相遇.【重要考点归纳】考点一运动图象的理解及应用1.对运动图象的理解(1)无论是x-t图象还是v-t图象都只能描述直线运动.(2)x-t图象和v-t图象都不表示物体运动的轨迹.(3)x-t图象和v-t图象的形状由x与t、v与t的函数关系决定.2.应用运动图象解题“六看”考点二1.分析追及问题的方法技巧可概括为“一个临界条件”、“两个等量关系”.(1)一个临界条件:速度相等.它往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断问题的切入点.(2)两个等量关系:时间关系和位移关系,通过画草图找出两物体的时间关系和位移关系是解题的突破口.2.能否追上的判断方法(1)做匀速直线运动的物体B追赶从静止开始做匀加速直线运动的物体A:开始时,两个物体相距x0.若v A=v B时,x A+x0<x B,则能追上;若v A=v B时,x A+x0=x B,则恰好不相撞;若v A=v B时,x A+x0>x B,则不能追上.(2)数学判别式法:设相遇时间为t,根据条件列方程,得到关于t的一元二次方程,用判别式进行讨论,若Δ>0,即有两个解,说明可以相遇两次;若Δ=0,说明刚好追上或相遇;若Δ<0,说明追不上或不能相遇.3.注意三类追及相遇情况(1)若被追赶的物体做匀减速运动,一定要判断是运动中被追上还是停止运动后被追上.(2)若追赶者先做加速运动后做匀速运动,一定要判断是在加速过程中追上还是匀速过程中追上.(3)判断是否追尾,是比较后面减速运动的物体与前面物体的速度相等的位置关系,而不是比较减速到0时的位置关系.4.解题思路分析物体运动过程→画运动示意图→找两物体位移关系→列位移方程(2)解题技巧∶紧抓“一图三式”,即:过程示意图,时间关系式、速度关系式和位移关系式.∶审题应抓住题目中的关键字眼,充分挖掘题目中的隐含条件,如“刚好”、“恰好”、“最多”、“至少”等,它们往往对应一个临界状态,满足相应的临界条件. 【思想方法与技巧】方法技巧——用图象法解决追及相遇问题(1)两个做匀减速直线运动物体的追及相遇问题,过程较为复杂.如果两物体的加速度没有给出具体的数值,并且两个加速度的大小也不相同,如果用公式法,运算量比较大,且过程不够直观,若应用v -t 图象进行讨论,则会使问题简化.(2)根据物体在不同阶段的运动过程,利用图象的斜率、面积、交点等含义分别画出相应图象,以便直观地得到结论.巧解直线运动六法在解决直线运动的某些问题时,如果用常规解法——一般公式法,解答繁琐且易出错,如果从另外角度入手,能够使问题得到快速、简捷解答.下面便介绍几种处理直线运动的巧法.一、平均速度法在匀变速直线运动中,物体在时间t 内的平均速度等于物体在这段时间内的初速度v 0与末速度v 的平均值,也等于物体在t 时间内中间时刻的瞬时速度,即v =x t =v 0+v 2=v t 2.如果将这两个推论加以利用,可以使某些问题的求解更为简捷.二、逐差法匀变速直线运动中,在连续相等的时间T 内的位移之差为一恒量,即Δx =x n +1-x n =aT 2,一般的匀变速直线运动问题,若出现相等的时间间隔,应优先考虑用Δx =aT 2求解.三、比例法对于初速度为零的匀加速直线运动与末速度为零的匀减速直线运动,可利用初速度为零的匀加速直线运动的相关比例关系求解.四、逆向思维法把运动过程的末态作为初态的反向研究问题的方法.一般用于末态已知的情况. 五、相对运动法以系统中的一个物体为参考系研究另一个物体运动情况的方法.六、图象法应用v-t图象,可把较复杂的问题转变为较简单的数学问题解决.尤其是用图象定性分析,可避开繁杂的计算,快速找出答案.实验一研究匀变速直线运动一、实验目的1.练习使用打点计时器,学会用打上点的纸带研究物体的运动情况.2.会利用纸带求匀变速直线运动的速度、加速度.3.利用打点纸带探究小车速度随时间变化的规律,并能画出小车运动的v-t图象,根据图象求加速度.二、实验器材电火花计时器(或电磁打点计时器)、一端附有滑轮的长木板、小车、纸带、细绳、钩码、刻度尺、导线、电源、复写纸片.三、实验步骤1.把附有滑轮的长木板放在实验桌上,并使滑轮伸出桌面,把打点计时器固定在长木板上没有滑轮的一端,连接好电路.2.把一条细绳拴在小车上,细绳跨过滑轮,下边挂上合适的钩码,把纸带穿过打点计时器,并把它的一端固定在小车的后面.实验装置见上图,放手后,看小车能否在木板上平稳地加速滑行.3.把小车停在靠近打点计时器处,先接通电源,后放开小车,让小车拖着纸带运动,打点计时器就在纸带上打下一系列的点,换上新纸带,重复三次.4.从几条纸带中选择一条比较理想的纸带,舍掉开始一些比较密集的点,在后面便于测量的地方找一个开始点,以后依次每五个点取一个计数点,确定好计数始点,并标明0、1、2、3、4、…,测量各计数点到0点的距离x,并记录填入表中.位置编号012345t/sx/mv/(m·s-1)5.计算出相邻的计数点之间的距离x1、x2、x3、….6.利用一段时间内的平均速度等于这段时间中间时刻的瞬时速度求得各计数点1、2、3、4、5的瞬时速度,填入上面的表格中.7.增减所挂钩码数,再做两次实验. 四、注意事项1.纸带、细绳要和长木板平行.2.释放小车前,应使小车停在靠近打点计时器的位置.3.实验时应先接通电源,后释放小车;实验后先断开电源,后取下纸带.一、数据处理1.匀变速直线运动的判断:(1)沿直线运动的物体在连续相等时间T 内的位移分别为x 1、x 2、x 3、x 4、…,若Δx =x 2-x 1=x 3-x 2=x 4-x 3=…则说明物体在做匀变速直线运动,且Δx =aT 2.(2)利用“平均速度法”确定多个点的瞬时速度,作出物体运动的v -t 图象.若v -t 图线是一条倾斜的直线,则说明物体的速度随时间均匀变化,即做匀变速直线运动.2.求速度的方法:根据匀变速直线运动某段时间中间时刻的瞬时速度等于这段时间内的平均速度v n =x n +x n +12T .3.求加速度的两种方法:(1)逐差法:即根据x 4-x 1=x 5-x 2=x 6-x 3=3aT 2(T 为相邻两计数点之间的时间间隔),求出a 1=x 4-x 13T 2,a 2=x 5-x 23T 2,a 3=x 6-x 33T 2,再算出a 1、a 2、a 3的平均值 a =a 1+a 2+a 33=13×⎝⎛⎭⎫x 4-x 13T 2+x 5-x 23T 2+x 6-x 33T 2=x 4+x 5+x 6-x 1+x 2+x 39T 2,即为物体的加速度.(2)图象法:以打某计数点时为计时起点,利用v n =x n +x n +12T 求出打各点时的瞬时速度,描点得v -t 图象,图象的斜率即为物体做匀变速直线运动的加速度.二、误差分析1.纸带上计数点间距测量有偶然误差,故要多测几组数据,以尽量减小误差.2.纸带运动时摩擦不均匀,打点不稳定引起测量误差,所以安装时纸带、细绳要与长木板平行,同时选择符合要求的交流电源的电压及频率.3.用作图法作出的v -t 图象并不是一条直线.为此在描点时最好用坐标纸,在纵、横轴上选取合适的单位,用细铅笔认真描点.4.在到达长木板末端前应让小车停止运动,防止钩码落地,小车与滑轮碰撞. 5.选择一条点迹清晰的纸带,舍弃点密集部分,适当选取计数点.6.在坐标纸上,纵、横轴选取合适的单位(避免所描点过密或过疏,而导致误差过大),仔细描点连线,不能连成折线,应作一条平滑曲线,让各点尽量落到这条曲线上,落不到曲线上的各点应均匀分布在曲线的两侧.精品基础教育教学资料,仅供参考,需要可下载使用!2020年高考一轮复习知识考点归纳专题02 相互作用目录第一节重力弹力摩擦力 (2)【基本概念、规律】 (2)【重要考点归纳】 (3)考点一弹力的分析与计算 (3)考点二摩擦力的分析与计算 (3)考点三摩擦力突变问题的分析 (4)【思想方法与技巧】 (4)物理模型——轻杆、轻绳、轻弹簧模型 (4)第二节力的合成与分解 (5)【基本概念、规律】 (5)【重要考点归纳】 (6)考点一共点力的合成 (6)考点二力的两种分解方法 (6)【思想方法与技巧】 (7)方法技巧——辅助图法巧解力的合成和分解问题 (7)第三节受力分析共点力的平衡 (7)【基本概念、规律】 (7)【重要考点归纳】 (8)考点一物体的受力分析 (8)考点二解决平衡问题的常用方法 (9)考点三图解法分析动态平衡问题 (9)考点四隔离法和整体法在多体平衡中的应用 (9)【思想方法与技巧】 (10)求解平衡问题的四种特殊方法 (10)实验二探究弹力和弹簧伸长的关系 (10)实验三验证力的平行四边形定则 (12)第一节重力弹力摩擦力【基本概念、规律】一、重力1.产生:由于地球的吸引而使物体受到的力.2.大小:G=mg.3.方向:总是竖直向下.4.重心:因为物体各部分都受重力的作用,从效果上看,可以认为各部分受到的重力作用集中于一点,这一点叫做物体的重心.二、弹力1.定义:发生弹性形变的物体由于要恢复原状,对与它接触的物体产生力的作用.2.产生的条件(1)两物体相互接触;(2)发生弹性形变.3.方向:与物体形变方向相反.三、胡克定律1.内容:弹簧发生弹性形变时,弹簧的弹力的大小F跟弹簧伸长(或缩短)的长度x成正比.2.表达式:F=kx.(1)k是弹簧的劲度系数,单位为N/m;k的大小由弹簧自身性质决定.(2)x是弹簧长度的变化量,不是弹簧形变以后的长度.四、摩擦力1.产生:相互接触且发生形变的粗糙物体间,有相对运动或相对运动趋势时,在接触面上所受的阻碍相对运动或相对运动趋势的力.2.产生条件:接触面粗糙;接触面间有弹力;物体间有相对运动或相对运动趋势.3.大小:滑动摩擦力F f=μF N,静摩擦力:0≤F f≤F fmax.4.方向:与相对运动或相对运动趋势方向相反.5.作用效果:阻碍物体间的相对运动或相对运动趋势.【重要考点归纳】考点一弹力的分析与计算1.弹力有无的判断方法(1)条件法:根据物体是否直接接触并发生弹性形变来判断是否存在弹力.此方法多用来判断形变较明显的情况.(2)假设法:对形变不明显的情况,可假设两个物体间弹力不存在,看物体能否保持原有的状态,若运动状态不变,则此处不存在弹力;若运动状态改变,则此处一定有弹力.(3)状态法:根据物体的运动状态,利用牛顿第二定律或共点力平衡条件判断弹力是否存在.2.弹力方向的判断方法(1)根据物体所受弹力方向与施力物体形变的方向相反判断.(2)根据共点力的平衡条件或牛顿第二定律确定弹力的方向.3.计算弹力大小的三种方法(1)根据胡克定律进行求解.(2)根据力的平衡条件进行求解.(3)根据牛顿第二定律进行求解.考点二摩擦力的分析与计算1.静摩擦力的有无和方向的判断方法(1)假设法:利用假设法判断的思维程序如下:(2)状态法:先判明物体的运动状态(即加速度的方向),再利用牛顿第二定律(F=ma)确定合力,然后通过受力分析确定静摩擦力的大小及方向.(3)牛顿第三定律法:先确定受力较少的物体受到的静摩擦力的方向,再根据“力的相互性”确定另一物体受到的静摩擦力方向.2.静摩擦力大小的计算(1)物体处于平衡状态(静止或匀速运动),利用力的平衡条件来判断其大小.(2)物体有加速度时,若只有静摩擦力,则F f=ma.若除静摩擦力外,物体还受其他力,则F合=ma,先求合力再求静摩擦力.3.滑动摩擦力的计算滑动摩擦力的大小用公式F f=μF N来计算,应用此公式时要注意以下几点:(1)μ为动摩擦因数,其大小与接触面的材料、表面的粗糙程度有关;F N为两接触面间的正压力,其大小不一定等于物体的重力.(2)滑动摩擦力的大小与物体的运动速度和接触面的大小均无关.方法技巧:(1)在分析两个或两个以上物体间的相互作用时,一般采用整体法与隔离法进行分析.(2)受静摩擦力作用的物体不一定是静止的,受滑动摩擦力作用的物体不一定是运动的.(3)摩擦力阻碍的是物体间的相对运动或相对运动趋势,但摩擦力不一定阻碍物体的运动,即摩擦力不一定是阻力.考点三摩擦力突变问题的分析1.当物体受力或运动发生变化时,摩擦力常发生突变,摩擦力的突变,又会导致物体的受力情况和运动性质的突变,其突变点(时刻或位置)往往具有很深的隐蔽性.对其突变点的分析与判断是物理问题的切入点.2.常见类型(1)静摩擦力因其他外力的突变而突变.(2)静摩擦力突变为滑动摩擦力.(3)滑动摩擦力突变为静摩擦力.【思想方法与技巧】物理模型——轻杆、轻绳、轻弹簧模型柔软,只能发生微小形既可伸长,也可压缩,弹簧与橡皮筋的弹力特点:(1)弹簧与橡皮筋产生的弹力遵循胡克定律F=kx.(2)橡皮筋、弹簧的两端及中间各点的弹力大小相等.(3)弹簧既能受拉力,也能受压力(沿弹簧轴线),而橡皮筋只能受拉力作用.(4)弹簧和橡皮筋中的弹力均不能突变,但当将弹簧或橡皮筋剪断时,其弹力立即消失.第二节力的合成与分解【基本概念、规律】一、力的合成1.合力与分力(1)定义:如果一个力产生的效果跟几个力共同作用的效果相同,这一个力就叫那几个力的合力,那几个力就叫这个力的分力.(2)关系:合力和分力是一种等效替代关系.2.力的合成:求几个力的合力的过程.3.力的运算法则(1)三角形定则:把两个矢量首尾相连从而求出合矢量的方法.(如图所示)(2)平行四边形定则:求互成角度的两个力的合力,可以用表示这两个力的线段为邻边作平行四边形,这两个邻边之间的对角线就表示合力的大小和方向.二、力的分解1.概念:求一个力的分力的过程.2.遵循的法则:平行四边形定则或三角形定则.3.分解的方法(1)按力产生的实际效果进行分解.(2)正交分解.三、矢量和标量1.矢量既有大小又有方向的物理量,相加时遵循平行四边形定则.2.标量只有大小没有方向的物理量,求和时按算术法则相加.【重要考点归纳】考点一共点力的合成1.共点力合成的方法(1)作图法(2)计算法:根据平行四边形定则作出示意图,然后利用解三角形的方法求出合力,是解题的常用方法.2.重要结论(1)二个分力一定时,夹角θ越大,合力越小. (2)合力一定,二等大分力的夹角越大,二分力越大. (3)合力可以大于分力,等于分力,也可以小于分力. 3.几种特殊情况下力的合成(1)两分力F 1、F 2互相垂直时(如图甲所示):F 合=F 21+F 22,tan θ=F 2F1.甲 乙(2)两分力大小相等时,即F 1=F 2=F 时(如图乙所示): F 合=2Fcos θ2.(3)两分力大小相等,夹角为120°时,可得F 合=F.解答共点力的合成时应注意的问题(1)合成力时,要正确理解合力与分力的大小关系:合力与分力的大小关系要视情况而定,不能形成合力总大于分力的思维定势.(2)三个共点力合成时,其合力的最小值不一定等于两个较小力的和与第三个较大的力之差.考点二 力的两种分解方法1.力的效果分解法(1)根据力的实际作用效果确定两个实际分力的方向; (2)再根据两个实际分力的方向画出平行四边形; (3)最后由平行四边形和数学知识求出两分力的大小. 2.正交分解法(1)定义:将已知力按互相垂直的两个方向进行分解的方法.(2)建立坐标轴的原则:一般选共点力的作用点为原点,在静力学中,以少分解力和容易分解力为原则(即尽量多的力在坐标轴上);在动力学中,以加速度方向和垂直加速度方向为坐标轴建立坐标系.(3)方法:物体受到多个力作用F 1、F 2、F 3…,求合力F 时,可把各力沿相互垂直的x 轴、y 轴分解.x 轴上的合力:。
2020年高考物理考点有很多的同学是非常想知道,高中物理知识点有哪些?接下来是小编为大家整理的2020年高考物理考点,希望大家喜欢!2020年高考物理考点一电场1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量}5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}9.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}10.电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的差值}11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值)12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)常见电容器14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/215.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)类平垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)抛运动平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m注:(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;3)常见电场的电场线分布要求熟记;(4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;(5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;(6)电容单位换算:1F=106μF=1012PF;(7)电子伏(eV)是能量的单位,1eV=1.60×10-19J;(8)其它相关内容:静电屏蔽/示波管、示波器及其应用等势面。
恒定电流1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}2.欧姆定律:I=U/R {I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω?m),L:导体的长度(m),S:导体横截面积(m2)}4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}7.纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}9.电路的串/并联串联电路(P、U与R成正比) 并联电路(P、I与R成反比)电阻关系(串同并反) R串=R1+R2+R3+ 1/R并=1/R1+1/R2+1/R3+电流关系 I总=I1=I2=I3 I并=I1+I2+I3+电压关系 U总=U1+U2+U3+ U总=U1=U2=U3功率分配 P总=P1+P2+P3+ P总=P1+P2+P3+10.欧姆表测电阻(1)电路组成 (2)测量原理两表笔短接后,调节Ro使电表指针满偏,得Ig=E/(r+Rg+Ro)接入被测电阻Rx后通过电表的电流为Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)由于Ix与Rx对应,因此可指示被测电阻大小(3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。
(4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。
11.伏安法测电阻电流表内接法:电流表外接法:电压表示数:U=UR+UA 电流表示数:I=IR+IVRx的测量值=U/I=(UA+UR)/IR=RA+Rx>R真 Rx的测量值=U/I=UR/(IR+IV)=RVRx/(RV+R)<r真< p="">选用电路条件Rx>>RA [或Rx>(RARV)1/2] 选用电路条件Rx<<rv p="" 2]<="" [或rx12.滑动变阻器在电路中的限流接法与分压接法限流接法电压调节范围小,电路简单,功耗小电压调节范围大,电路复杂,功耗较大便于调节电压的选择条件Rp>Rx 便于调节电压的选择条件Rp<rx< p="">注1)单位换算:1A=103mA=106μA;1kV=103V=106mA;1MΩ=103kΩ=106Ω(2)各种材料的电阻率都随温度的变化而变化,金属电阻率随温度升高而增大;(3)串联总电阻大于任何一个分电阻,并联总电阻小于任何一个分电阻;(4)当电源有内阻时,外电路电阻增大时,总电流减小,路端电压增大;(5)当外电路电阻等于电源电阻时,电源输出功率最大,此时的输出功率为E2/(2r);(6)其它相关内容:电阻率与温度的关系半导体及其应用超导及其应用〔见第二册P127〕。
磁场1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位T),1T=1N/A?m2.安培力F=BIL;(注:L⊥B) {B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)}3.洛仑兹力f=qVB(注V⊥B);质谱仪{f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)}4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种):(1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0(2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下a)F向=f洛=mV2/r=mω2r=mr(2π/T)2=qVB;r=mV/qB;T=2πm/qB;(b)运动周期与圆周运动的半径和线速度无关,洛仑兹力对带电粒子不做功(任何情况下);?解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。
注:(1)安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒子的正负;(2)磁感线的特点及其常见磁场的磁感线分布要掌握;(3)其它相关内容:地磁场/磁电式电表原理/回旋加速器/磁性材料电磁感应1.[感应电动势的大小计算公式]1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率}2)E=BLV垂(切割磁感线运动) {L:有效长度(m)}3)Em=nBSω(交流发电机最大的感应电动势) {Em:感应电动势峰值}4)E=BL2ω/2(导体一端固定以ω旋转切割) {ω:角速度(rad/s),V:速度(m/s)}2.磁通量Φ=BS {Φ:磁通量(Wb),B:匀强磁场的磁感应强度(T),S:正对面积(m2)}3.感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极}4.自感电动势E自=nΔΦ/Δt=LΔI/Δt{L:自感系数(H)(线圈L有铁芯比无铁芯时要大),ΔI:变化电流,?t:所用时间,ΔI/Δt:自感电流变化率(变化的快慢)}注:(1)感应电流的方向可用楞次定律或右手定则判定,楞次定律应用要点;(2)自感电流总是阻碍引起自感电动势的电流的变化;(3)单位换算:1H=103mH=106μH。
(4)其它相关内容:自感/日光灯。
2020年高考物理考点二一、形变1、形变:物体的形状或体积的改变。
2、形变的种类:弹性形变(撤去使物体发生形变的外力后能恢复原来形状的物体的形变)范性形变(撤去使物体发生形变的外力后不能恢复原来形状的物体的形变)3、弹性限度:若物体形变过大,超过一定限度,撤去外力后,无法恢复原来的形状,这个限度叫弹性限度。
二、弹力1、定义:发生形变的物体,由于要恢复原状,会对跟它接触的物体产生的力的作用,这种力叫弹力。
2、产生条件:1.两物体必须直接接触,2量物体接触处有弹性形变(弹力是接触力)。
3、方向:弹力的方向与施力物体的形变方向相反。
4、弹力方向的判断方法(1)弹簧两端的弹力方向,与弹簧中心轴线重合,指向弹簧恢复原状的方向。
其弹力可为拉力,可为压力;对弹簧秤只为拉力。
(2)轻绳对物体的弹力方向,沿绳指向绳收缩的方向,即只为拉力。
(3)点与面接触时弹力的方向,过接触点垂直于接触面(或接触面的切线方向)而指向受力物体。
(4)面与面接触时弹力的方向,垂直于接触面而指向受力物体。
(5)球与面接触时弹力的方向,在接触点与球心的连线上而指向受力物体。
(6)球与球相接触的弹力方向,沿半径方向,垂直于过接触点的公切面而指向受力物体。
(7)轻杆的弹力方向可能沿杆也可能不沿杆,杆可提供拉力也可提供压力。
(8)根据物体的运动情况,动力学规律判断.说明:①压力、支持力的方向总是垂直于接触面(若是曲面则垂直过接触点的切面)指向被压或被支持的物体。