鸡兔同笼应用题及答案
- 格式:doc
- 大小:335.00 KB
- 文档页数:5
五年级数学下册鸡兔同笼应用题答案1、笼子里有数量相同的鸡和兔,两种动物的腿加起来共有54条.鸡和兔各有多少只?2、鸡兔同笼,共有51个头,172只腿.鸡兔各有多少只?3、一个足球60元,一个篮球15元,王老师买回足球和篮球共25个,用去825元.王老师买回多少个篮球?4、有25名同学一共植了145棵树,男生平均每人植7棵,女生平均每人植4棵,参加植树的男生有多少人?女生有多少人?5、现有100kg油,共装满了大、小油壶32个,大壶每壶装4kg,小壶每壶装2kg.问:大、小油壶各有多少个?6、鸡兔同笼,鸡兔只数相同,腿加起来共有60条.鸡和兔各有多少只?(用算术和方程两种方法解答)7、鸡兔同笼,鸡比兔多20只,共有256条腿,问鸡多少只?兔多少只?8、螃蟹和青蛙共11只,共有56条腿,螃蟹和青蛙各有多少只?假设全是青蛙:56﹣4×11=12(只),8﹣4=4(只),9、光明学校车棚存放着自行车和小汽车共16辆,共有轮子50个,那么有几辆小汽车?有几辆自行车?10、鸡兔同笼,从上数,有18个头,从下数有46条腿,你知道笼里的鸡和兔各有多少只吗?11、学校秋游共用20辆客车,已知大客车每辆坐50人,小客车每辆坐30人,大客车和小客车共坐了720人,大、小客车各用了几辆?12、笼子里有鸡和兔40个头,有112只脚.鸡和兔各有多少只?假设全是兔子,则鸡就有:13、鸡兔同笼,有8个头,20只脚.笼里有多少只鸡?有多少只兔?设鸡有x只,则兔有(8﹣x)只,14、小明家共养鸡和兔29只,它们共有100只脚.鸡和兔各有多少只?15、一只蚂蚱6条腿,一只蜘蛛8条腿.现有蚂蚱和蜘蛛共14只,100条腿.蚂蚱和蜘蛛各有几只?16、一个车棚里有自行车和四轮车,自行车比四轮车多15辆,数一下轮子共有282个,自行车和四轮车各有多少辆?17、有龟和鹤共50只,龟的腿鹤和鹤的腿共有180条.龟鹤各有几只?18、鸡兔同笼共有28只,共有脚86只,那么共有几只鸡?几只兔?兔子的只数是:19、李明和王刚进行口算比赛,两人做题的总时间是12分钟,共做了l95道题,做完后统计发现:李明每分钟做15道口算题,王刚每分钟做了l8道口算题.你知道李明和王刚各做了几分钟吗?20、停车场一共停放了自行车和小汽车36辆,共有126个轮子,自行车和小汽车各停放了多少辆?21、六年级同学制做了200件蝴蝶标本,分别在13块展板上展出.每块小展板贴8件,每块大展板贴20件.两种展板各有多少块?22、小英和小刚分别从相距5公里的两家去学校,学校在两家之间,两人共走了55分钟,已知小英每分钟走0.08公里,小刚每分钟走0.12公里,小英和小刚各走了多少分钟?23、动物100米赛跑比赛,羚羊和鸵鸟分在第一组,它们的编号从001到018,它们共有52条腿.羚羊和鸵鸟各有多少只?24、学校文体活动中心有象棋和跳棋共32副.2人下一副象棋,6人下一副跳棋,恰好可供120名学生进行活动,象棋与跳棋各有多少副?25、一个军队行军,晴天能走30千米,雨天每天只能走25千米.10天一共走了280千米,问晴天和雨天各有多少天?假设10天全是晴天,则雨天有:26、有一队猎人后面跟着一队猎狗,数头有23个,数腿有68条;人、狗各站多少?27、鸡兔一共有腿110条,若交换鸡和兔的数量,则腿变成100条,问鸡兔各多少只?28、10张乒乓球桌上一共有32个同学在比赛.正在单打和双打的球桌各有几张?29、鸡兔一共有腿130条,若交换鸡和兔的数量,则腿变成110条,问鸡兔各有几只?30、李师傅开车从甲地到乙地送货,晴天每天可往返l0次,雨天只能往返6次,他连续几天共往返了48次,平均每天往返8次,这几天中晴天和雨天各几天?五年级数学下册鸡兔同笼应用题答案1、笼子里有数量相同的鸡和兔,两种动物的腿加起来共有54条.鸡和兔各有多少只?54÷3÷2=9(只);答:鸡和兔各有9只.2、鸡兔同笼,共有51个头,172只腿.鸡兔各有多少只?(172﹣51×2)÷(4﹣2)=35(只)51﹣35=16(只)答:有鸡16只,兔35只.3、一个足球60元,一个篮球15元,王老师买回足球和篮球共25个,用去825元.王老师买回多少个篮球?假设全是买的足球,则篮球买了:(60×25﹣825)÷(60﹣15)=15(个)答:王老师买了15个篮球4、有25名同学一共植了145棵树,男生平均每人植7棵,女生平均每人植4棵,参加植树的男生有多少人?女生有多少人?假设25名同学全是男生,则女生有:(25×7﹣145)÷(7﹣4)=10(人)则男生有:25﹣10=15(人)答:参加植树的男生有15人,女生有10人5、现有100kg油,共装满了大、小油壶32个,大壶每壶装4kg,小壶每壶装2kg.问:大、小油壶各有多少个?设大油壶x个,则小油壶为(32﹣x)个,4x+(32﹣x)×2=100 x=18则小油壶为:32﹣18=14(个)答:大油壶18个,小油壶14个6、鸡兔同笼,鸡兔只数相同,腿加起来共有60条.鸡和兔各有多少只?(用算术和方程两种方法解答)60÷3÷2=10(只)答:鸡和兔各有10只.7、鸡兔同笼,鸡比兔多20只,共有256条腿,问鸡多少只?兔多少只?兔子:(256﹣20×2)÷(4+2)=36(只)鸡:36+20=56(只)答:鸡有56只,兔子有36只8、螃蟹和青蛙共11只,共有56条腿,螃蟹和青蛙各有多少只?假设全是青蛙:56﹣4×11=12(只),8﹣4=4(只),螃蟹:12÷4=3(只),青蛙:11﹣3=8(只)答:螃蟹有3只,青蛙有8只9、光明学校车棚存放着自行车和小汽车共16辆,共有轮子50个,那么有几辆小汽车?有几辆自行车?设自行车有x辆,则汽车有(16﹣x)辆,2x+(16﹣x)×4=50,x=7;小汽车的数量为:16﹣7=9(辆)答:有9辆小汽车,7辆自行车10、鸡兔同笼,从上数,有18个头,从下数有46条腿,你知道笼里的鸡和兔各有多少只吗?兔有:(46﹣18×2)÷(4﹣2)=5(只)鸡有:18﹣5=13(只)答:兔有5只,鸡有13只.11、学校秋游共用20辆客车,已知大客车每辆坐50人,小客车每辆坐30人,大客车和小客车共坐了720人,大、小客车各用了几辆?假设20辆全是大客车,则小客车租了:(20×50﹣720)÷(50﹣30)=14(辆)则大客车租了:20﹣14=6(辆)答:大客车租了6辆,小客车租了14辆.12、笼子里有鸡和兔40个头,有112只脚.鸡和兔各有多少只?假设全是兔子,则鸡就有:(40×4﹣112)÷(4﹣2)=24(只)则兔子有40﹣24=16(只)答:鸡有24只,兔子有16只13、鸡兔同笼,有8个头,20只脚.笼里有多少只鸡?有多少只兔?设鸡有x只,则兔有(8﹣x)只,2x+(8﹣x)×4=20,x=6;兔有:8﹣6=2(只)答:鸡有6只,兔有2只14、小明家共养鸡和兔29只,它们共有100只脚.鸡和兔各有多少只?假设全是鸡,则兔有:(100﹣29×2)÷2=21(只)鸡有:29﹣21=8(只)答:鸡有8只,兔有21只15、一只蚂蚱6条腿,一只蜘蛛8条腿.现有蚂蚱和蜘蛛共14只,100条腿.蚂蚱和蜘蛛各有几只?蜘蛛:(100﹣14×6)÷(8﹣6)=8(只)蚂蚱:14﹣8=6(只)答:蜘蛛有8只,蚂蚱有6只16、一个车棚里有自行车和四轮车,自行车比四轮车多15辆,数一下轮子共有282个,自行车和四轮车各有多少辆?设自行车有x辆,则四轮车有x﹣15辆,由题意列方程得:2x+4(x﹣15)=282, x=57则四轮车有:57﹣15=42(辆).答:自行车有57辆,四轮车有42辆.17、有龟和鹤共50只,龟的腿鹤和鹤的腿共有180条.龟鹤各有几只?假设全是龟,(50×4﹣180)÷(4﹣2)=10(只)50﹣10=40(只)答:有龟40只,鹤10只.18、鸡兔同笼共有28只,共有脚86只,那么共有几只鸡?几只兔?兔子的只数是:(86﹣28×2)÷(4﹣2)=15(只)鸡的只数是:28﹣15=13(只).答:共有13只鸡,15只兔.19、李明和王刚进行口算比赛,两人做题的总时间是12分钟,共做了l95道题,做完后统计发现:李明每分钟做15道口算题,王刚每分钟做了l8道口算题.你知道李明和王刚各做了几分钟吗?(195﹣15×12)÷(18﹣15)=5(分钟)12﹣5=7(分钟)答:李明做了7分钟,王刚做了5分钟20、停车场一共停放了自行车和小汽车36辆,共有126个轮子,自行车和小汽车各停放了多少辆?假设全是自行车,则小汽车:(126﹣2×36)÷(4﹣2)=27(辆)自行车:36﹣27=9(辆)21、六年级同学制做了200件蝴蝶标本,分别在13块展板上展出.每块小展板贴8件,每块大展板贴20件.两种展板各有多少块?(200﹣13×8)÷(20﹣8)=8(块)13﹣8=5(块)答:大展板有8块,小展板有5块22、小英和小刚分别从相距5公里的两家去学校,学校在两家之间,两人共走了55分钟,已知小英每分钟走0.08公里,小刚每分钟走0.12公里,小英和小刚各走了多少分钟?假设55分钟全是小英走的,(5﹣55×0.08)÷(0.12﹣0.08)=15(分钟)55﹣15=40(分钟)答:小英走了40分钟,小刚走了15分钟23、动物100米赛跑比赛,羚羊和鸵鸟分在第一组,它们的编号从001到018,它们共有52条腿.羚羊和鸵鸟各有多少只?假设全是鸵鸟,方法一:18×2=36(条) 52﹣36=16(条)羚羊:16÷2=8 (只)鸵鸟:18﹣8=10(只)答:羚羊有8只,鸵鸟有10只24、学校文体活动中心有象棋和跳棋共32副.2人下一副象棋,6人下一副跳棋,恰好可供120名学生进行活动,象棋与跳棋各有多少副?假设全部为跳棋,象棋:(32×6﹣120)÷(6﹣2)=18(副)跳棋:32﹣18=14(副)答:象棋有18副,跳棋有14副.25、一个军队行军,晴天能走30千米,雨天每天只能走25千米.10天一共走了280千米,问晴天和雨天各有多少天?假设10天全是晴天,则雨天有:(30×10﹣280)÷(30﹣25)=4(天)则晴天有:10﹣4=6(天)答:晴天有6天,雨天有4天26、有一队猎人后面跟着一队猎狗,数头有23个,数腿有68条;人、狗各站多少?假设全是狗,则猎人有:(4×23﹣68)÷(4﹣2)=12(人)则猎狗有23﹣12=11(只)答:猎人有12人,猎狗11只27、鸡兔一共有腿110条,若交换鸡和兔的数量,则腿变成100条,问鸡兔各多少只?鸡兔共有:(100+110)÷(4+2)=35(只)假设全是鸡,腿的数量为:35×2=70(条)实际多:110﹣70=40(条)兔有;40÷2=20(只)鸡有:35﹣20=15(只)答:鸡有15只,兔有20只28、10张乒乓球桌上一共有32个同学在比赛.正在单打和双打的球桌各有几张?设正在双打的乒乓球桌有x张,则正在进行单打的乒乓球桌就有10﹣x张,根据题意可得方程:4x+2(10﹣x)=32,x=6;10﹣6=4(张)答:正在进行双打比赛的乒乓球桌有6张,单打比赛的乒乓球桌有4 29、鸡兔一共有腿130条,若交换鸡和兔的数量,则腿变成110条,问鸡兔各有几只?兔比鸡多:(130﹣110)÷2=10(只)这10只兔子的腿的数量为:10×4=40(条)则鸡的数量为:(130﹣40)÷(4+2)=15(只)兔的只数为:15+10=25(只)30、李师傅开车从甲地到乙地送货,晴天每天可往返l0次,雨天只能往返6次,他连续几天共往返了48次,平均每天往返8次,这几天中晴天和雨天各几天?一共送货的天数:48÷8=6天,假设全是雨天,则晴天的天数为:(48﹣6×6)÷(10﹣6)=3(天)则雨天有:6﹣3=3(天)答:这几天中有3个晴天,3个雨天.。
鸡兔同笼应用题在小镇的边缘,有一位和蔼可亲的老人,大家都叫他老王。
老王有个小小的农场,养着几只鸡和几只兔子。
他总是乐呵呵的,脸上挂着温暖的笑容,仿佛这片土地上的每一寸都承载着他的快乐。
不过,最近村里发生了一件让他头疼的事。
一、谜题的开始1.1 老王的烦恼有一天,老王在收拾鸡舍时,发现兔子和鸡的数量有点混乱。
他心想,鸡和兔子一起放在一个笼子里,真是个令人头疼的事。
尤其是当邻居小孩问他,“老王,你的鸡兔同笼,究竟有多少只鸡和兔子呀?”老王一下子愣住了,心里有点紧张。
他清楚地记得,有多少只鸡,但兔子嘛,具体多少他有些忘了。
1.2 解谜的决心于是,老王决定要弄清楚到底有多少只鸡和兔子。
他坐在草地上,开始用心计算。
他先数了数鸡,心里默念:“五只鸡。
”然后,他又试着数兔子,发现兔子在笼子里蹦来蹦去,根本不安分。
他苦笑着说:“这小家伙们,真是让人头疼啊!”他知道,想要弄明白,得仔细观察。
二、计算的过程2.1 观察和记录老王决定采用最原始的方法,先静静地观察它们。
鸡在地上觅食,兔子则在一旁啃草。
他用小本子把看到的情况记录下来,心里想着:“每只鸡有两只腿,每只兔子有四只腿,利用这些腿的数量,我或许能推算出它们的数量。
”2.2 数量的关系老王开始进行简单的数学推理。
他想:“如果我数一数腿的总数,可能会有新的发现。
”他首先数了鸡的腿,发现五只鸡共有十条腿。
接着,他又计算兔子的腿,感觉眼前的兔子们在一旁欢快地蹦跳,他不禁笑了:“这兔子们可真有活力!”2.3 通过腿数求解老王知道,鸡和兔子的腿总数可以通过一个简单的公式来计算。
他想,假设兔子的数量是x,只要加上鸡的腿数,便能得到腿的总数。
他心里默默算着,设定了一些简单的方程式。
这让他兴奋不已,仿佛自己成了一名小小的侦探。
三、最终的答案3.1 数字的出现经过几个小时的观察与计算,老王终于得出了答案。
他看着自己的记录,觉得这些数字就像是谜语的线索。
经过一番推理,他算出了兔子的数量,心中充满了成就感。
人教版四年级下册数学第九单元数学广角-鸡兔同笼应用题训练1.在学雷锋活动中,同学们共做了240件好事,高年级同学每人做了8件好事,低年级同学每人做了3件好事,他们平均每人做了6件好事,参加这次活动的低年级同学有多少人?2.一个停车场上,停着小汽车和三轮车共6辆,共有20个轮子,小汽车和三轮车各有几辆?3.琳琳买钢笔和圆珠笔共15支,花了150元,每支钢笔12元,每支圆珠笔9元,钢笔和圆珠笔各买了多少支?4.车行里有三轮车和四轮车共22辆,这些车的车轮共73个。
三轮车和四轮车各多少辆?5.小白兔晴天每天可采30朵蘑菇,雨天每天可采18朵蘑菇,一连几天小白兔共采了156朵蘑菇,平均每天采26朵,你知道这些天中共有几天是晴天吗?6.当前我国新冠疫苗分别有一针型、两针型和三针型三种。
阳光学校的老师们完成接种两针型和三针型的有78人,共接种了202针,接种两针型和三针型的老师各有几人?7.全班一共有44人,共租了8条船,每条船都坐满了。
大船限坐6人,小船限坐4人。
大、小船各租了几条?8.笼子里有若干只鸡和兔,从上面数有8个头,从下面数有26只脚,鸡和兔各有几只?9.某动物园有长、短尾猴共80只,长尾猴每只分给5个桃,短尾猴每只分给3个桃,共分去276个桃,长、短尾猴各几只?10.六年级同学分组参加课外兴趣小组,每人只能参加一个小组。
科技类每5人一组,艺术类每3人一组,共有37名学生报名,正好分成9个组。
参加科技类和艺术类的学生各有多少人?11.希望小学有12人参加植树活动,男生毎人栽了3棵树,女生每人栽了2棵树,一共栽了32棵树,男生、女生各有多少人?12.李老师为学校采购体育器材。
篮球和足球一共买来20个,每个篮球120元,每个足球90元,一共花了2040元。
篮球和足球各买来多少个?13.买4本杂志和1本书,一共花了50元。
买一本书比每本杂志贵10元。
买一本杂志多少钱?14.某电影院有两种电影票,30元的和50元的电影票共24张,价值1000元,两种电影各多少张?15.在一个停车场上,停了汽车和摩托车一共30辆.其中汽车有4个轮子,摩托车有2个轮子,这些车一共有110个轮子.问汽车和摩托车各有多少辆?16.学校停车场内停有共享单车(自行车)和小汽车共20辆,它们共有56个轮子。
小学四年级鸡兔同笼20道典型数学题假设法解题(含答案解析易中难度)1.有一只笼子装着鸡和兔,从上数头有20个,从下数脚64只,问笼中鸡、兔各有多少只?解:①假设笼中全是兔子,共有多少只脚?4×20=80(只)②比原来的总数多多少只脚?80-64=16(只)③一只兔子比一只鸡多多几只脚?4-2=2④(把看多的兔子换成鸡)有几只鸡?16÷2=8⑤兔子有多少只?20-8=12只答:有鸡8只,兔12只。
2.一个商场有两轮摩托车和三轮摩托车共26辆,其中共有轮子67个,问两轮摩托车和三轮摩托车各有多少辆?解:①假设商场全是三轮摩托车,共有多少个轮子?3×26=78(个)②比原来的总数多多少个轮子?78-67=11(个)③一个三轮摩托车比一辆二轮摩托车多几各轮子?3-2=1④(把看多的三轮摩托车换成两轮摩托车)有几辆两轮摩托车?11÷1=11⑤有多少辆三轮摩托车?26-11=15只答:有两轮摩托车11辆,三轮摩托车15辆。
3. 小明家有200千克油,分别装在48个油瓶中,其中大油瓶每瓶装5千克,小油瓶每瓶装3千可,问大、小油瓶各有多少个?解:①假设全部是大油瓶,共装多少千克油?5×48=240(千克)②比原来的总数多多少千克?240-200=40(千克)③一个大油瓶比一个小油瓶多装多少千克油?5-3=2④(把看多的大油瓶换成小油瓶)有几小油瓶?40÷2=20⑤有多少个大油瓶?48-20=28(个)答:有大油瓶28个,小油瓶20个。
4.小亮存钱罐里有42枚硬币,共有32元,分别是硬币1元和5角的,问1元和5角的各有多少枚?解:①假设全部1元的,即10角,共有多少角?10×42=420(角)②比原来的总数多多少角?420-320=100(角)③1元比5角多多少角?10-5=5(角)④(把看多的1元换成5角)有几5角?100÷5=20(枚)⑤有多少个1元?42-20=22(枚)答:有1元的22枚,5角的20枚。
五年级数学下册鸡兔同笼应用题专项练习与答案1、有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只?2、红铅笔每支0.19元,蓝铅笔每支0.11元,两种铅笔共买了16支,花了2.80元.问红,蓝铅笔各买几支?3、一份稿件,甲单独打字需6小时完成.乙单独打字需10小时完成,现在甲单独打若干小时后,因有事由乙接着打完,共用了7小时.甲打字用了多少小时?4、今年是1998年,父母年龄(整数)和是78岁,兄弟的年龄和是17岁.四年后(2002年)父的年龄是弟的年龄的4倍,母的年龄是兄的年龄的3倍.那么当父的年龄是兄的年龄的3倍时,是公元哪一年?5、蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀.现在这三种小虫共18只,有118条腿和20对翅膀.每种小虫各几只?6、某次数学考试考五道题,全班52人参加,共做对181道题,已知每人至少做对1道题,做对1道的有7人,5道全对的有6人,做对2道和3道的人数一样多,那么做对4道的人数有多少人?7、买一些4分和8分的邮票,共花6元8角.已知8分的邮票比4分的邮票多40张,那么两种邮票各买了多少张?8、一项工程,如果全是晴天,15天可以完成.倘若下雨,雨天一天工程要多少天才能完成?9、鸡与兔共100只,鸡的脚数比兔的脚数少28.问鸡与兔各几只?10、古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字.有一诗选集,其中五言绝句比七言绝句多13首,总字数却反而少了20个字.问两种诗各多少首?11、有一辆货车运输2000只玻璃瓶,运费按到达时完好的瓶子数目计算,每只2角,如有破损,破损瓶子不给运费,还要每只赔偿1元.结果得到运费379.6元,问这次搬运中玻璃瓶破损了几只?12、学校组织新年游艺晚会,用于奖品的铅笔,圆珠笔和钢笔共232支,共花了300元.其中铅笔数量是圆珠笔的4倍.已知铅笔每支0.60元,圆珠笔每支2.7元,钢笔每支6.3元.问三种笔各有多少支?13、商店出售大,中,小气球,大球每个3元,中球每个1.5元,小球每个1元.张老师用120元共买了55个球,其中买中球的钱与买小球的钱恰好一样多.问每种球各买几个?14、某人去时上坡速度为每小时走3千米,回来时下坡速度为每小时走6千米,求他的平均速度是多少?15、从甲地至乙地全长45千米,有上坡路,平路,下坡路.李强上坡速度是每小时3千米,平路上速度是每小时5千米,下坡速度是每小时6千米.从甲地到乙地,李强行走了10小时;从乙地到甲地,李强行走了11小时.问从甲地到乙地,各种路段分别是多少千米?16、某种考试已举行了24次,共出了426题.每次出的题数,有25题,或者16题,或者20题.那么,其中考25题的有多少次?17、有50位同学前往参观,乘电车前往每人1.2元,乘小巴前往每人4元,乘地下铁路前往每人6元.这些同学共用了车费110元,问其中乘小巴的同学有多少位?五年级数学下册鸡兔同笼应用题专项练习与答案1、有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只?设想88只都是兔子,那么就有4×88只脚,比244只脚多了88×4-244=108(只).每只鸡比兔子少(4-2)只脚,所以共有鸡(88×4-244)÷(4-2)= 54(只).2、红铅笔每支0.19元,蓝铅笔每支0.11元,两种铅笔共买了16支,花了2.80元.问红,蓝铅笔各买几支?蓝笔数=(19×16-280)÷(19-11)=3(支)红笔数=16-3=13(支).答:买了13支红铅笔和3支蓝铅笔.3、一份稿件,甲单独打字需6小时完成.乙单独打字需10小时完成,现在甲单独打若干小时后,因有事由乙接着打完,共用了7小时.甲打字用了多少小时?(30-3×7)÷(5-3)=4.57-4.5=2.5答:甲打字用了4小时30分4、今年是1998年,父母年龄(整数)和是78岁,兄弟的年龄和是17岁.四年后(2002年)父的年龄是弟的年龄的4倍,母的年龄是兄的年龄的3倍.那么当父的年龄是兄的年龄的3倍时,是公元哪一年?兄的年龄是(25×4-86)÷(4-3)=14(岁).1998年,兄年龄是14-4=10(岁)父年龄是(25-14)×4-4=40(岁).当父的年龄是兄的年龄的3倍时,兄的年龄是(40-10)÷(3-1)=15(岁)5、蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀.现在这三种小虫共18只,有118条腿和20对翅膀.每种小虫各几只?蜘蛛数=(118-6×18)÷(8-6)=5(只)18-5=13(只)6、某次数学考试考五道题,全班52人参加,共做对181道题,已知每人至少做对1道题,做对1道的有7人,5道全对的有6人,做对2道和3道的人数一样多,那么做对4道的人数有多少人?解:对2道,3道,4道题的人共有52-7-6=39(人)181-1×7-5×6=144(道)7、买一些4分和8分的邮票,共花6元8角.已知8分的邮票比4分的邮票多40张,那么两种邮票各买了多少张如果拿出40张8分的邮票,余下的邮票中8分与4分的张数就一样多. (680-8×40)÷(8+4)=30(张),余下的邮票中,8分和4分的各有30张.因此8分邮票有40+30=70(张).解二:假设有20张4分,根据条件"8分比4分多40张",那么应有60张8分.以"分"作为计算单位,此时邮票总值是4×20+8×60=560.比680少,因此还要增加邮票.为了保持"差"是40,每增加1张4分,就要增加1张8分,每种要增加的张数是(680-4×20-8×60)÷(4+8)=10(张).因此4分有20+10=30(张),8分有60+10=70(张).8、一项工程,如果全是晴天,15天可以完成.倘若下雨,雨天一天工程要多少天才能完成?我们设工程的全部工作量是150份,晴天每天完成10份,雨天每天完成8份.用上一例题解一的方法,晴天有(150-8×3)÷(10+8)= 7(天). 雨天是7+3=10天,总共7+10=17(天).9、鸡与兔共100只,鸡的脚数比兔的脚数少28.问鸡与兔各几只?假如再补上28只鸡脚,也就是再有鸡28÷2=14(只),鸡与兔脚数就相等,兔的脚是鸡的脚4÷2=2(倍),于是鸡的只数是兔的只数的2倍.兔的只数是(100+28÷2)÷(2+1)=38(只).鸡是100-38=62(只).解二:假设有50只鸡,就有兔100-50=50(只).此时脚数之差是4×50-2×50=100,比28多了72.就说明假设的兔数多了(鸡数少了).为了保持总数是100,一只兔换成一只鸡,少了4只兔脚,多了2只鸡脚,相差为6只(千万注意,不是2).因此要减少的兔数是(100-28)÷(4+2)=12(只).兔只数是50-12=38(只).10、古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字.有一诗选集,其中五言绝句比七言绝句多13首,总字数却反而少了20个字.问两种诗各多少首.解一:如果去掉13首五言绝句,两种诗首数就相等,此时字数相差13×5×4+20=280(字).每首字数相差7×4-5×4=8(字).因此,七言绝句有28÷(28-20)=35(首).五言绝句有35+13=48(首)11、有一辆货车运输2000只玻璃瓶,运费按到达时完好的瓶子数目计算,每只2角,如有破损,破损瓶子不给运费,还要每只赔偿1元.结果得到运费379.6元,问这次搬运中玻璃瓶破损了几只解:如果没有破损,运费应是400元.但破损一只要减少1+0.2=1.2(元).因此破损只数是(400-379.6)÷(1+0.2)=17(只).答:这次搬运中破损了17只玻璃瓶.12、学校组织新年游艺晚会,用于奖品的铅笔,圆珠笔和钢笔共232支,共花了300元.其中铅笔数量是圆珠笔的4倍.已知铅笔每支0.60元,圆珠笔每支2.7元,钢笔每支6.3元.问三种笔各有多少支?解:从条件"铅笔数量是圆珠笔的4倍",这两种笔可并成一种笔,四支铅笔和一支圆珠笔成一组,这一组的笔,每支价格算作(0.60×4+2.7)÷5=1.02(元).现在转化成价格为1.02和6.3两种笔.用"鸡兔同笼"公式可算出,钢笔支数是(300-1.02×232)÷(6.3-1.02)=12(支).铅笔和圆珠笔共232-12=220(支).其中圆珠笔220÷(4+1)=44(支).铅笔220-44=176(支).答:其中钢笔12支,圆珠笔44支,铅笔176支.13、商店出售大,中,小气球,大球每个3元,中球每个1.5元,小球每个1元.张老师用120元共买了55个球,其中买中球的钱与买小球的钱恰好一样多.问每种球各买几个解:因为总钱数是整数,大,小球的价钱也都是整数,所以买中球的钱数是整数,而且还是3的整数倍.我们设想买中球,小球钱中各出3元.就可买2个中球,3个小球.因此,可以把这两种球看作一种,每个价钱是(1.5×2+1×3)÷(2+3)=1.2(元).从公式可算出,大球个数是(120-1.2×55)÷(3-1.2)=30(个).买中,小球钱数各是(120-30×3)÷2=15(元).14、某人去时上坡速度为每小时走3千米,回来时下坡速度为每小时走6千米,求他的平均速度是多少解:去和回来走的距离一样多.这是我们考虑问题的前提.平均速度=所行距离÷所用时间去时走1千米,要用20分钟;回来时走1千米,要用10分钟.来回共走2千米,用了30分钟,即半小时,平均速度是每小时走4千米.平均速度不是两个速度的平均值:每小时走(6+3)÷2=4.5千米.15、从甲地至乙地全长45千米,有上坡路,平路,下坡路.李强上坡速度是每小时3千米,平路上速度是每小时5千米,下坡速度是每小时6千米.从甲地到乙地,李强行走了10小时;从乙地到甲地,李强行走了11小时.问从甲地到乙地,各种路段分别是多少千米解:把来回路程45×2=90(千米)算作全程.去时上坡,回来是下坡;去时下坡回来时上坡.把上坡和下坡合并成"一种"路程,根据例15,平均速度是每小时4千米.现在形成一个非常简单的"鸡兔同笼"问题.头数10+11=21,总脚数90,鸡,兔脚数分别是4和5.因此平路所用时间是(90-4×21)÷(5-4)=6(小时).单程平路行走时间是6÷2=3(小时).从甲地至乙地,上坡和下坡用了10-3=7(小时)行走路程是45-5×3=30(千米).又是一个"鸡兔同笼"问题.从甲地至乙地,上坡行走的时间是(6×7-30)÷(6-3)=4(小时).行走路程是3×4=12(千米).下坡行走的时间是7-4=3(小时).行走路程是6×3=18(千米).答:从甲地至乙地,上坡12千米,平路15千米,下坡18千米.16、某种考试已举行了24次,共出了426题.每次出的题数,有25题,或者16题,或者20题.那么,其中考25题的有多少次解:如果每次都考16题,16×24=384,比426少42道题.每次考25道题,就要多25-16=9(道).每次考20道题,就要多20-16=4(道).就有9×考25题的次数+4×考20题的次数=42.请注意,4和42都是偶数,9×考25题次数也必须是偶数,因此,考25题的次数是偶数,由9×6=54比42大,考25题的次数,只能是0,2,4这三个数.由于42不能被4整除,0和4都不合适.只能是考25题有2次(考20题有6次).17、有50位同学前往参观,乘电车前往每人1.2元,乘小巴前往每人4元,乘地下铁路前往每人6元.这些同学共用了车费110元,问其中乘小巴的同学有多少位解:由于总钱数110元是整数,小巴和地铁票也都是整数,因此乘电车前往的人数一定是5的整数倍.如果有30人乘电车,110-1.2×30=74(元).还余下50-30=20(人)都乘小巴钱也不够.说明假设的乘电车人数少了.如果有40人乘电车110-1.2×40=62(元).还余下50-40=10(人)都乘地下铁路前往,钱还有多(62>6×10).说明假设的乘电车人数又多了.30至40之间,只有35是5的整数倍.现在又可以转化成"鸡兔同笼"了:总头数 50-35=15,总脚数 110-1.2×35=68.因此,乘小巴前往的人数是(6×15-68)÷(6-4)=11.答:乘小巴前往的同学有11位.。
鸡兔同笼应用题解答这是古典的算术问题。
已知笼子里鸡、兔共有多少只和多少只脚,求鸡、兔各有多少只的问题,叫做第一鸡兔同笼问题。
已知鸡兔的总数和鸡脚与兔脚的差,求鸡、兔各是多少的问题叫做第二鸡兔同笼问题。
【数量关系】第一鸡兔同笼问题:假设全都是鸡,则有兔数=(实际脚数-2×鸡兔总数)÷(4-2)假设全都是兔,则有鸡数=(4×鸡兔总数-实际脚数)÷(4-2)【王牌例题】例1、笼子里有若干只鸡和兔,从上面数有8个头,从下面数有28只脚,鸡兔各有多少只?【思路分析】从上面数有8个头,可知鸡兔共有8只,假设8只全是兔,一共应有4×8=32(只)脚,这和已知的28只脚相比多了32-28=4(只)脚。
如果用一只鸡换一只兔,就要少4-2=2(只)脚,那么4只里面有几个2只就有几只鸡,显然4+2=2(只),所以鸡的只数就是2,兔的只数是8-2=6(只)。
解法一:鸡数=(4×8-28)÷(4-2)=2(只)兔数=8-2=6(只)解法二:兔数=(28-2×8)÷(4-2)=6(只)鸡数=8-6=2(只)答:有鸡2只,有兔6只。
例2、蜘蛛有8条腿,蜻蜓有6条腿,现在蜻蜓和蜘蛛共有15只,一共数出104条腿。
蜘蛛和蜻蜓各有多少只?【思路分析】假设这15只全是蜘蛛,那么一共应有15×8=120(只)腿,这和已知的104条腿相比多了120-104=16(条)腿,如果用一只蜻蜓替换一只蜘蛛就要少8-6=2(条)腿,那么16条腿里面有几个2条腿就有几只蜻蜓,很显然16÷2=8(只)蜘蛛=15-8=7(只)解法一:蜻蜓=(15×8-104)÷(8-6)=8(只)蜘蛛=15-8=7(只)解法二:蜘蛛=(104-15×6)÷(8-6)=7(只)蜻蜓=15-7=8(只)答:蜘蛛有7只,蜻蜓有8只。
鸡兔同笼问题(讲解,答案)1、鸡兔同笼,共有头100个,足316只,求鸡兔各有多少只?兔:316÷2-100=58 鸡:100-58=422、小明花4元钱买贺年卡和明信片,共14张,贺年卡每张3角5分,明信片每张2角5分。
问:买了几张贺年卡,几张明信片?3角5分:(4-0.25×14)÷(0.35-0.25)=5 2角5分:14-5=93、鸡、兔共有脚100只,若将鸡换成兔,兔换成鸡,则共有脚92只。
鸡兔各几只?(100-92÷2)=4 鸡:(100-4×4)÷(2+4)=14 兔:14+4=184、100个馒头100个和尚吃,大和尚每人吃3个,小和尚每3人吃一个。
大、小和尚各有多少人?大和尚:100÷(3+1)=25 小和尚:25×3=755、30枚硬币,由2分和5分组成,共值9角9分。
两种硬币各多少枚?5分:(99-2×30)÷(5-2)=13 2分:30-13=176、有2角、5角和1元的人民币20张,共计12元,三种票子各多少张?2角的是5的倍数。
2角5张。
20-5=15张 12-0.2×5=11元5角:(1×15-11)÷(1-0.5)=8 1元:15-8=77、班主任老师带五年级二班50名学生去栽树,张老师一人栽5棵,男生一人栽3棵,女生一人栽两棵,总共栽树120棵。
有几名男生?几名女生?120-5=115 女生:(50×3-115)÷(3-2)=35 男生:50-35=158、100名师生绿化校园,老师每人栽3棵树,学生每两人栽1棵树,总共栽树100棵,求老师和学生各栽树多少棵?(2×100-100)÷(3-1/2)=80名学生:80÷2=40棵老师: 100-40=60棵9、80本语文书和100本数学书总价相等。
一、鸡兔同笼问题例题透析例题1:有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只?解:我们设想,每只鸡都是“金鸡独立”,一只脚站着;而每只兔子都用两条后腿,像人一样用两只脚站着.现在,地面上出现脚的总数的一半,·也就是244÷2=122(只).在122这个数里,鸡的头数算了一次,兔子的头数相当于算了两次.因此从122减去总头数88,剩下的就是兔子头数122-88=34,有34只兔子.当然鸡就有54只.答:有兔子34只,鸡54只.上面的计算,可以归结为下面算式:总脚数÷2-总头数=兔子数.上面的解法是《孙子算经》中记载的.做一次除法和一次减法,马上能求出兔子数,多简单!能够这样算,主要利用了兔和鸡的脚数分别是4和2,4又是2的2倍.可是,当其他问题转化成这类问题时,“脚数”就不一定是4和2,上面的计算方法就行不通.因此,我们对这类问题给出一种一般解法.还说此题.如果设想88只都是兔子,那么就有4×88只脚,比244只脚多了88×4-244=108(只).每只鸡比兔子少(4-2)只脚,所以共有鸡(88×4-244)÷(4-2)= 54(只).说明我们设想的88只“兔子”中,有54只不是兔子.而是鸡.因此可以列出公式鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数).当然,我们也可以设想88只都是“鸡”,那么共有脚2×88=176(只),比244只脚少了244-176=68(只).每只鸡比每只兔子少(4-2)只脚,68÷2=34(只).说明设想中的“鸡”,有34只是兔子,也可以列出公式兔数=(总脚数-鸡脚数×总头数)÷(兔脚数-鸡脚数).上面两个公式不必都用,用其中一个算出兔数或鸡数,再用总头数去减,就知道另一个数.假设全是鸡,或者全是兔,通常用这样的思路求解,有人称为“假设法”.现在,拿一个具体问题来试试上面的公式.例题2:红铅笔每支0.19元,蓝铅笔每支0.11元,两种铅笔共买了16支,花了2.80元.问红、蓝铅笔各买几支?解:以“分”作为钱的单位.我们设想,一种“鸡”有11只脚,一种“兔子”有19只脚,它们共有16个头,280只脚.现在已经把买铅笔问题,转化成“鸡兔同笼”问题了.利用上面算兔数公式,就有蓝笔数=(19×16-280)÷(19-11)=24÷8=3(支).红笔数=16-3=13(支).答:买了13支红铅笔和3支蓝铅笔.对于这类问题的计算,常常可以利用已知脚数的特殊性.例2中的“脚数”19与11之和是30.我们也可以设想16只中,8只是“兔子”,8只是“鸡”,根据这一设想,脚数是8×(11+19)=240.比280少40.40÷(19-11)=5.就知道设想中的8只“鸡”应少5只,也就是“鸡”(蓝铅笔)数是3.30×8比19×16或11×16要容易计算些.利用已知数的特殊性,靠心算来完成计算.实际上,可以任意设想一个方便的兔数或鸡数.例如,设想16只中,“兔数”为10,“鸡数”为6,就有脚数19×10+11×6=256.比280少24.24÷(19-11)=3,就知道设想6只“鸡”,要少3只.要使设想的数,能给计算带来方便,常常取决于你的心算本领.二、鸡兔同笼应用题奥林匹克视频辅导三、“鸡兔同笼”问题练习题及答案1.鸡兔同笼,共有30个头,88只脚。
鸡兔同笼应用题1、大小两辆汽车共同运216吨货物,小汽车运了7小时,大汽车运了8小时,已知小汽车5小时运的数量等于大汽车2小时运的数量,则大汽车每小时运多少吨?2、笼子里有鸡兔共27只,兔脚比鸡脚多18只,问:有鸡兔各多少只?3、有182只兔子,把它们分别装在甲乙两种笼子里,甲种笼子每笼装6只,乙种笼子每笼装4只,两种笼子正好用36个,问:两种笼子个多少个?4、一个大人一餐吃2个面包,两个小孩一餐吃1个面包,现在有大人和小孩共99人,一餐刚好吃了99个面包,大人、小孩各有多少人?5、四年级共有52位同学参加植树,男生每人种3棵,女生每人种2棵,已知男生比女生多种36棵,求:有多少名男生?6、有面值分别为2元、5元、10元的邮票共34张,价值共计178元。
其中5元与10元的邮票张数相等,问:各种面值的邮票各有多少张?7、公园门票出售5元、8元、10元共100张,收入748元,其中5元和8元的张数相等。
各种票售出多少张?8、犀牛、鹿、鸵鸟三种动物共有26个头,80只脚,20只角。
犀牛有4只脚,1只角;鹿有4只脚,2只角,鸵鸟有2只脚。
三种动物分别有多少只?答案:1、大小两辆汽车共同运216吨货物,小汽车运了7小时,大汽车运了8小时,已知小汽车5小时运的数量等于大汽车2小时运的数量,则大汽车每小时运多少吨?假设全是小汽车(8÷2)×5=20小时,7+20=27小时……小汽车一共运的时间,216÷27=8(吨)……小汽车每小时运的量;8×5÷2=20吨……大汽车每小时运的量。
2、笼子里有鸡兔共27只,兔脚比鸡脚多18只,问:有鸡兔各多少只?假设全是兔:4×27=108只,兔脚比鸡脚多108-0=108只,可实际兔脚比鸡脚只多了18只,那其中的108-18=90只脚是怎么回事?现在我们把一只兔子的脚换回鸡的脚,要相差6只脚,90÷6=15只鸡,那么兔子就是27-15=12只3、有182只兔子,把它们分别装在甲乙两种笼子里,甲种笼子每笼装6只,乙种笼子每笼装4只,两种笼子正好用36个,问:两种笼子个多少个?假如全部装甲笼,那么6×36=216只,现在只有182只,多余的34只,是因为本来应该是乙种笼子装的我们却都按甲种算,换回去。
鸡兔同笼尝试与猜测
基础作业
不夯实基础,难建成高楼。
1. (1)下面的“○”代表鸡头或兔头,根据下面腿的数量在“○”内写上“鸡”或“兔”。
(2)
兔和鸡一共有( )个头和( )条腿。
(3)
①现在一共有( )条腿。
②如果把3只鸡换成3只兔子,这时有( )条腿。
③如果把2只兔子换成2只鸡,这时有( )条腿。
2. 利用表格解答下面各题。
(1)蛐蛐和蜘蛛共有7只,腿有48条,蛐蛐蜘蛛各几只?
(2)广场上有自行车和三轮车共11辆,共26个轮子。
自行车和三轮车各有多少辆?
综合提升
重点难点,一网打尽
3.
两种邮票各买了多少张?
4. 某校的师生共100人去植树,教师平均每人栽3棵树,学生平均每人栽1棵树,一共栽120棵。
教师和学生各有多少人?
5. 五(1)班有37名同学去划船,一共乘坐9条船,其中大船每条坐5人,小船每条坐3人。
大船、小船各几条?
拓展探究
举一反三,应用创新,方能一显身手。
6.某次数学竞赛共20道题,评分标准是:每做对一道题得5分,每做错或不做一道题扣1分,王宇参加了这次竞赛得到了88分的好成绩。
王宇做对了几道题?
尝试与猜测
第1课时
1. (1)略(2)8 22 (3)①14 ②20 ③10
2. 表格略(1)蛐蛐:2只蜘蛛:5只
(2)自行车:7辆三轮车:4辆
3. 5张8角和7张100分
4.教师:10人学生:90人
5. 大船:5条小船:4条
6. 18道提示:用假设法解答。
拓展资源:反馈练习
一、填空题
1.已知甲库存粮x吨,乙库存粮y吨.若从甲库调出10吨给乙库,乙库的存粮
数是甲库存粮数的2倍,则以上用等式表示为_______.
2.兄弟两人,弟弟五年后的年龄与哥哥五年前的年龄相等,3年后兄弟两人的
年龄和是他们年龄之差的3倍,则兄弟两人今年的岁数分别是________.
3.两抵相距300千米,一艘船航行与两地之间.若顺流需15时,逆流需用20
时,则船在静水中速度和水流速度分别是_______.
4.现有面值总和为570元的人民币50元和20元的共15张,问其中50元人
民币和20元人民币分别有_____张.
二、选择题
5.一张试卷有25道题,做对一题得4分,做错一题扣1分,小明做了全部试题
得70分,则他做对的题数是( ).
(A)16 (B)17 (C)18 (D)19
6.某校150名学生参加数学考试,平均分55分,其中及格学生平均77分,不
及格学生平均47分,则不及格的学生人数为( ) .
(A)49 (B)101 (C)110 (D)40
三、解答题
7.某校办工厂有工人60名,生产某种由一个螺栓套两个螺母的配套产品,每
人每天平均生产螺栓14个或螺母20个,应分配多少人生产螺栓,多少人生产
螺母,能使生产出的螺栓和螺母刚好配套?
8.六一儿童节,某动物园的成人门票8元,儿童门票半价(即每张4元),全天
共售出门票3000张,共收入15600元,问这天售出成人票和儿童票多少张?
四、探究升级
9.100元钱买15张邮票,其中有4元、8元、10元的三种,有几种买的方
法?
答案:1.).
+x
y 2.17岁和7岁.
=
10-
(2
10
3.17.5千米/时, 2.5千米/时.
4.9张和6张.
5.D.
6.C.
7.25个和35个. 8.900张和2100张.
9.有三种:4元、8元、10元的邮票分别为6张、7张、2张,或7张、
4张、4张,或8张、1张、6张.。