离子液体对纤维素溶解的研究进展
- 格式:docx
- 大小:44.13 KB
- 文档页数:11
纤维素溶剂研究现状及应用前景纤维素是一种重要的天然生物质资源,具有广泛的应用前景。
然而,纤维素的高结晶度和高度聚合程度使其难以溶解和利用。
为了解决这一问题,研究人员们不断探索纤维素新溶剂的应用和研发。
纤维素新溶剂是指用于溶解纤维素的新型溶剂,可以将纤维素转化为可溶性纤维素或纤维素衍生物,从而实现纤维素的高效利用。
纤维素新溶剂的研发旨在降低纤维素的结晶度和聚合度,提高纤维素的可溶性和活性。
近年来,纤维素新溶剂的应用实例逐渐增多。
其中之一是利用离子液体作为溶剂溶解纤维素。
离子液体是一种特殊的液体,具有低熔点、宽电化学窗口、可调性等特点。
研究人员发现,某些离子液体可以有效溶解纤维素,使其转化为可溶性纤维素或纤维素衍生物。
这为纤维素的高效利用提供了新的途径。
例如,利用离子液体可以将纤维素转化为纤维素醚、纤维素酯等可溶性化合物,用于制备生物基材料、生物能源等。
另一个纤维素新溶剂的应用实例是利用超临界流体溶剂溶解纤维素。
超临界流体是介于气体和液体之间的物质,在一定条件下具有较高的溶解能力和扩散性。
研究人员发现,某些超临界流体可以有效溶解纤维素,使其转化为可溶性纤维素或纤维素衍生物。
这为纤维素的高效利用提供了另一种选择。
例如,利用超临界二氧化碳可以将纤维素转化为纤维素酯、纤维素醚等可溶性化合物,用于制备生物基材料、生物能源等。
纤维素新溶剂的研发目前仍处于探索阶段,但已取得了一些进展。
目前,研究人员已经发现了多种具有潜力的纤维素新溶剂,并对其进行了深入研究和应用探索。
例如,除了离子液体和超临界流体外,还有一些有机溶剂、水溶性聚合物等也被发现可以溶解纤维素。
此外,一些新型溶剂的设计和合成也成为当前的研究热点。
例如,一些研究人员通过调整离子液体的结构和性质,设计出具有高效溶解纤维素能力的离子液体。
另外,一些研究人员通过改性纤维素表面,使其更易溶解于传统溶剂中,提高纤维素的可溶性。
总的来说,纤维素新溶剂的应用和研发在不断取得进展。
学年论文题目:1-乙基-3-甲基咪唑醋酸盐的制备及其用于纤维素溶解纺丝的研究进展学院:化学化工学院专业:化学学生姓名:王昱周学号:2011730104381-乙基-3-甲基咪唑醋酸盐的制备及其用于纤维素溶解纺丝的研究进展摘要离子液体1-乙基-3-甲基咪唑醋酸盐([ Emim]Ac) 可以溶解天然高分子等许多聚合物,尤其对于纤维素具有较强的溶解能力,且溶解过程基本不造成纤维素降解,故可以作为纤维素的有效溶剂,用于纤维素的溶解加工。
与其它溶剂相比,[Emim]Ac具有使用安全、不污染环境、易回收循环利用等优势,故在纤维素溶解、纺丝方面具有广阔的应用前景。
本文主要介绍了以N-甲基咪唑为原料,采用两步法对离子液体[Emim]Ac 进行制备;并概述了[Emim] Ac在纤维素溶解、纺丝等方面的应用研究进展。
关键词离子液体;[Emim]Ac;制备;纤维素;溶解;纺丝Abstract Ionic liquid 1 - ethyl - 3 - methyl imidazole acetate (Ac) [Emim] can dissolve natural polymer and many other polymers, especially for cellulose has strong dissolving ability, basic cause no cellulose degradation and dissolving process, therefore, can be a effective cellulose solvent, used for processing the dissolution of cellulose. Compared with other solvents, [Emim] Ac with the use of safe, no pollution, easy to recycle use of advantages, so in cellulose dissolution, spinning has broad application prospects. In N - methyl imidazole is mainly introduced in this paper as a raw material, adopts the two-step preparation for ionic liquids [Emim] Ac; And [Emim] Ac in cellulose dissolution, spinning and so on application research. Keywords:Ionic liquids; [Emim]Ac; Preparation; Cellulose; Dissolve; spinning目录1.实验 (3)1.1试剂和仪器 (3)1.1.1试剂 (3)1.1.2仪器 (3)1.2离子液体[Emim]Ac的制备过程 (3)1.2.1 N-甲基咪唑的预处理 (4)1.2.2离子液体中间产物[Emim]Br的制备 (4)1.2.3 离子液体[Emim]Ac的得到 (4)1.2.4 中间体合成机理探讨 (4)2. 1-乙基-3-甲基咪唑醋酸盐[Emim]Ac在纤维素溶解及纺丝方面的研究进展 (5)2.1对纤维素的溶解机理 (5)2.2 离子液体对纤维素的溶解特性 (6)2.2.1 溶解速度 (6)2.2.2 溶解浓度 (6)2.2.3 溶液粘度 (6)2.2.4 溶液稳定性 (7)2.3 再生纤维素纤维的制备和性能 (7)3. 1-乙基-3-甲基咪唑醋酸盐的其它用途 (7)4. 展望 (8)参考文献 (9)致谢 (10)离子液体[1]( Ionic Liquids,简称IL) 是指在室温或接近室温下呈现液态的,完全由有机阳离子和无机阴离子或有机阴离子所组成的盐,也被称为低温熔融盐或室温离子液体。
纤维素在[BmimCl]离子液体及其溶液中的溶解一、实验原理纤维素是由葡萄糖组成的大分子多糖,是植物细胞壁的主要成分,它是地球上最丰富的天然生物质资源,广泛存在于棉花、甘蔗、木材等大多数的植物中,同时也是一种重要的工业原料,可以用于造纸、塑料、建材及医药等方面。
由于其再生速度比化石燃料快,具有可再生、含硫量低、二氧化碳零净排放等特点,被誉为是替代化石能源、解决能源危机的一种可行方案。
但是常温下,由于纤维素分子内存在大量复杂的氢键,纤维素既不溶于水,又不溶于一般的有机溶剂,如酒精、乙醚、丙酮、苯等,它也不溶于稀碱溶液中。
这成为纤维素转化利用中的最大局限之一。
近年来发展了几类纤维素溶剂体系,存在溶解能力不强、不稳定、有一定毒性、不易回收、价格昂贵等缺点。
因此,新型纤维素溶剂的开发显得尤为重要。
离子液体(Ionic Liquids, ILs)是近几十年来在“绿色化学”的框架下发展起来的全新的介质和“软”功能材料,它是指在室温下或<100 °C 温度条件下呈现液态的、基本由阴阳离子所组成的盐,也称为低温熔融盐。
与传统的有机溶剂相比,离子液体具有许多卓越的性质:(1)液体状态温度范围宽,且具有良好的物理和化学稳定性;(2)蒸汽压极低,不易挥发;(3) 电化学稳定性高,电化学窗口较宽;(4)对大量的无机和有机物质都表现出良好的溶解能力,且具有溶剂和催化剂的双重功能,可作为许多化学反应溶剂或催化活性载体;(5)具有较强的极性可调性和结构可设计性等。
这使得离子液体在催化、合成、分离、电化学、纳米材料、分子自组装、CO2或SO2捕集、生物质转化利用等方面表现出优良的应用性能,因而离子液体被誉为可替代传统有机溶剂的新型绿色溶剂,成为世界各国学术界和化工界的一大研究热点。
而离子液体这些优异的理化特性使之有可能成为优良的纤维素溶剂。
本实验选取了一种经典的离子液体:1-丁基-3-甲基咪唑氯(BmimCl)为研究对象,探究其对微晶纤维素的溶解性能,同时考量并分析助溶剂水和DMSO的存在对溶解性能的影响。
Vol .30高等学校化学学报No .72009年7月 CHE M I CAL JOURNAL OF CH I N ESE UN I V ERSI TI ES 1469~1472纤维素在离子液体[A MM or]C l/[A M I M ]C l混合溶剂中的溶解性能王美玲,臧洪俊,蔡白雪,程博闻(天津工业大学材料科学与化学工程学院,改性与功能纤维天津市重点实验室,天津300160)摘要 研究了纤维素在混配离子液体N 2甲基2N 2烯丙基吗啉氯盐[AMMor ]Cl/32甲基212烯丙基咪唑氯盐[AM I M ]Cl 中的溶解性能,结果表明,[AMMor]Cl/[AM I M ]Cl 混配溶剂能有效溶解天然纤维素,且在相同条件下,溶解能力要优于离子液体[AM I M ]Cl;随着溶解温度的升高,溶解时间大大缩短.利用FTI R,XRD 和TG A 方法分析了再生纤维素的化学结构和热稳定性,结果表明,未经活化的纤维素可直接溶于[AMMor ]Cl/[AM I M ]Cl 而不发生其它衍生化反应,且天然纤维素在该溶剂体系中纤维素聚合度下降较小.关键词 纤维素;离子液体;溶解;聚合度中图分类号 O631.1 文献标识码 A 文章编号 025120790(2009)0721469204收稿日期:2008210208.基金项目:天津市自然科学基金(批准号:07JCY BJC02200)资助.联系人简介:臧洪俊,女,博士,副教授,主要从事有机合成及高分子材料的绿色化学.E 2mail:che mhong@寻求一种可循环利用的绿色溶剂,将具有生物可降解性的天然纤维素转变为理想的纺织材料,已经成为当前研究的热点[1].由于纤维素的高结晶度、分子内和分子间的大量氢键,使其难以熔融,也很难溶于水及其它大部分有机溶剂.为此,开发有效的纤维素溶剂体系是解决这一问题的关键.研究较多的纤维素溶剂主要有DMAc /L i Cl,DMF /N 2O 4,NMMO ,L i Cl O 4・3H 2O 及一些熔融盐等[2~6],而这些溶剂或多或少存在着不稳定、有毒害、不易回收、价格昂贵等缺点.开发低成本、环境友好的纤维素溶剂仍然是这一领域的发展趋势.近年来,文献[7,8]报道开发了以碱金属氢氧化物为基础的一类新的纤维素溶剂,该类溶剂在低温下可有效地溶解纤维素,是一种无污染、价廉的纤维素溶剂,为纤维素溶剂体系的开发研究开辟了一个新领域.室温离子液体是新兴的一种极具前景的环境友好溶剂.由于其具有良好的低温熔融性、热稳定性、环境稳定性及较宽的电化学窗口等特性而受到了广泛关注.S watl oski 等[9]首次报道了离子液体氯化12丁基2甲基咪唑([BM I M ]Cl )能够溶解不经任何处理的纤维素.12烯丙基232甲基咪唑氯盐([AM I M ]Cl )[10]、12(22羟乙基)232甲基咪唑氯盐([He M I M ]Cl )[11]、12乙基232甲基咪唑乙酸鎓盐[C 2M I M ]CH 3COO -[12]、[AM I M ]COO -[13]和12乙基232甲基咪唑磷酸酯盐[14]等功能化的离子液体也可作为纤维素的溶剂.尤其是12烯丙基232甲基咪唑氯盐([AM I M ]Cl )离子液体,对纤维素的溶解性能很好.但是,这些离子液体体系存在黏度大、溶解温度高、溶解时间长、纤维素降解严重等缺点,且烷基咪唑价格昂贵,目前还不能实现较好的经济价值.为克服离子液体存在的问题,本文采用价格比较低廉的N 2甲基吗啉为原料,设计合成了一种新的N 2甲基2N 2烯丙基吗啉氯盐[AMMor]Cl,使其与离子液体[AM I M ]Cl 混配溶解纤维素.实验结果表明,在相同溶解温度下,该溶剂体系对天然纤维素的溶解时间缩短且溶解能力要好于纯离子液体[AM I M ]Cl .未经活化的纤维素在较短的时间内可直接溶解于[AMMor]Cl/[AM I M ]Cl 而不发生其它衍生化反应,不仅降低了能耗,而且天然纤维素在该溶剂体系中只发生轻微的降解.1 实验部分1.1 试剂与仪器木浆纤维素(保定天鹅化纤集团有限公司,α纤维素含量9919%),聚合度729,使用粉碎机打成0741高等学校化学学报 Vol.30 棉絮状,放入真空烘箱中于60℃干燥12h,备用.丙酮、乙腈(分析纯)等溶剂经无水氯化钙干燥数天后,加入金属钠回流蒸出.其它试剂均为分析纯(天津市科密欧化学试剂厂).O ly mpus BX57偏光显微镜;NDG28S型旋转式黏度仪(上海精密科学仪器有限公司);综合热分析仪(ST A409PC),DSC(Perkin El m er DSC7);恒温水浴槽;Perkin2El m er红外光谱仪(FTI R2000Sys2 te m,K B r压片);D/Max2r B型X射线衍射仪.1.2 实验过程1.2.1 离子液体的合成 参照文献[10]方法合成[AM I M]Cl.[AMMor]Cl的合成:将30134g(013mol)N2甲基吗啉和22196g(013mol)烯丙基氯加入到250mL 的三口烧瓶中,以40mL乙腈作为溶剂,室温下机械搅拌,随着反应时间的延长,溶液中出现白色固体,1h后反应基本完全.抽滤,用少量丙酮洗涤固体,除去固体中残余的未反应原料,将白色固体置于80℃的真空烘箱中干燥24h,得到纯品,产率92%,m.p.101~102℃;1H NMR(300MHz, CDCl3),δ:3153(s,3H,CH3),3174(s,4H,CH2NCH2),4106(s,4H,CH2OCH2),4164(d,2H,J= 619Hz,CH2),5174~6112(m,3H,CH CH2);元素分析实测值(%,计算值):C54111(54108),H 9105(9103),N7189(7189).由于[AMMor]Cl在室温下为固体,与[AM I M]Cl混合后,室温下产生结晶,因此测定80℃下质量比为1∶3的[AMMor]Cl/[AM I M]Cl的混合溶液黏度为316Pa・s,相同温度下[AM I M]Cl黏度为812Pa・s.1.2.2 纤维素在离子液体中的溶解 在100mL三口烧瓶中加入质量比为1∶3的[AMMor]Cl/ [AM I M]Cl,控制一定的油浴温度,加热搅拌至均相,加入质量分数为4%的木浆纤维素,观察其溶解过程.1.2.3 纤维素的再生及聚合度的测定 用针管吸取上述溶解的纤维素溶液,加入到水中浸泡12h,然后用蒸馏水反复洗涤,浸泡,再用无水乙醇浸泡6h,取出再生后的纤维素,放入50℃的真空烘箱干燥24h.将再生后的纤维素机械粉碎成小块,真空干燥3h.依照国家标准G B5888286,用铜乙二胺溶液为溶剂,用乌氏黏度计测定再生后纤维素的聚合度.2 结果与讨论2.1 纤维素在混配溶液中的溶解温度对溶解性能的影响纤维素在不同溶解温度下的溶解情况列于表1.实验结果表明,在相同的溶解温度下,达到相同的质量分数(4%)时,纤维素在[AMMor]Cl/[AM I M]Cl混配溶液中全部溶解所需要的时间比在[AM I M]Cl中要短得多.在80℃下[AMMor]Cl/[AM I M]Cl混配溶液对纤维素的最大溶解度为17%.普遍认为,溶剂与纤维素大分子间的较强相互作用导致纤维素的溶解,而起决定作用的则是溶剂体系中高浓度的氯离子.在本体系中,阳离子也起着很大的作用,咪唑阳离子中双键的存在,导致阳离子的缺电子程度增加,进攻纤维素羟基上的氧原子,加快纤维素的溶解.同时,由于吗啉阳离子的存在,其极性官能团C→O上的氧原子可以和羟基形成氢键,从而生成络合物,破坏非结晶区纤维素大分子原有的氢键.Table1 I nfluences of tem pera ture on the cellulose d issoluti onD iss oluti on te mperature/℃60708080a80b100D iss oluti on ti m e/m in524315251266a.Cellul ose diss oluti on in[AM I M]Cl;b.the largest diss olubility of cellul ose is17%in[AMMor]Cl/[AM I M]Cl.2.2 纤维素溶解温度对再生纤维素聚合度的影响纤维素溶解温度对再生纤维素聚合度的影响列于表2.由表2可以看出,再生纤维素的聚合度较溶解前有所下降,80℃时再生纤维素聚合度为623.而文献[10]报道聚合度640的木浆纤维素在80℃时溶解,得到的再生纤维素聚合度为460.另外,溶解温度对聚合度也有很大的影响,随着温度的升高,降解程度增大;温度较低时,聚合度只有轻微的降解.其原因可能是,在高温条件下,溶剂体系中的阴阳离子在破坏分子间和分子内氢键的同时,也破坏了纤维素的分子链,使纤维素的分子链发生断裂.随着时间的延长,温度的增加,分子运动速度加快,分子链的破坏程度增加,从而造成纤维素聚合度的降低.Table 2 I nfluences of te m pera ture on degree poly m er i za ti on(D P)of regenera ted celluloseD iss oluti on te mperature /℃607080100DP of regenerated cellul ose 7026906234542.3 纤维素溶解过程的形貌观察晶体区别于非晶体的一个特征就是各向异性,纤维素是具有高结晶度的高分子材料,因此通过偏光显微镜的正交偏光能够很好的观察未完全溶解的纤维素纤维.通过传统的加热溶解方法,观察80℃时不同时间纤维素在混配溶液[AMMor ]Cl/[AM I M ]Cl 中的微观形貌.图1为纤维素样品在整个溶解过程中定时取样所拍摄的光学显微照片.由图1(A )可知,溶解前纤维素的纤丝较长;图1(B )和(C )表明,纤维素的纤丝发生轻微的溶胀;图1(D )表明,随着溶解时间的延长,部分纤丝断裂,纤丝由长变短,纤维素逐渐被溶解;图1(E )表明,溶解15m in 后,纤维素完全被溶解,形成透明的离子液体纤维素溶液.F i g .1 O pti cs m i croscope photos of cellulose d issoluti on i n AMM orC l/AM I M C l a t d i fferen t ti m et /m in:(A )0;(B )5;(C )10;(D )1215;(E )15.2.4 纤维素溶解再生前后红外光谱和X 射线衍射分析对木浆纤维素及其在混配体系中溶解再生后的纤维素膜进行了红外光谱分析,结果如图2所示.由图2可见,3340,2890和1160c m -1处的吸收峰分别归属为纤维素分子中—OH 键伸缩振动、—CH键伸缩振动及C —O —C 不对称伸缩振动.可以看出,纤维素只是在这3个位置的峰面积变小,没有发生显著的变化,说明纤维素是直接溶解,并没有发生衍生化.F i g .2 FT I R spectra of or i g i n a l cellulose(a )andregenera ted cellulose after d issoluti on(b)F i g .3 XR D pa ttern s of or i g i n a l cellulose(a )and regenera ted cellulose after d issoluti on(b )图3为纤维素和再生纤维的XRD 谱图,可以看出,经过离子液体再生后,纤维素的衍射特征峰发生了很大的变化.再生纤维素在21°~22°之间出现了不明显的双峰,且衍射峰强明显减弱,峰形变宽.在34°~35°的衍射峰没有发生太大的变化,只是峰强略为减弱.再生后的纤维素与纤维素Ⅱ的特征衍射峰基本相符,纤维素再生前符合纤维素Ⅰ的特征.通过Segal 公式计算得到再生前后纤维素的相对结晶度由6513%降低到2512%,说明与原生纤维素相比,纤维素的晶型发生了改变,再生纤维素的相对结晶度降低.2.5 纤维素在不同溶解温度下的热重分析对原生纤维素和80℃溶解再生后的纤维素进行了热重分析,结果如图4所示.由图4可知,原生纤维素和80℃溶解再生后的纤维素的热分解均分为3个阶段.原生纤维素热稳定性较好,在33013℃1741 No .7 王美玲等:纤维素在离子液体[AMMor]Cl/[AM I M ]Cl 混合溶剂中的溶解性能F i g .4 TGA curves of or i g i n a l cellulose(a )and regenera ted cellulose after d issoluti on(b )左右才开始分解,这一过程为纤维素失去水等小分子的失重,失重率比较小,质量变化为414%.33013℃以后为纤维素的热分解过程,失重较快,35619℃时达到最大失重率,这个阶段质量变化达到86122%.而80℃溶解再生的纤维素在29514℃就开始分解,31316℃时失重速率达到最大值,这一阶段失重质量变化70159%.表明再生后的纤维素的热分解温度比原生纤维素的低,说明再生的纤维素比原生纤维素的热稳定性能降低.参 考 文 献[1] ZHAO J ia 2Sen (赵家森),WANG Yuan 2Long (王渊龙),CHENG Bo 2W en (程博闻).Journal of Textile Research (纺织学报)[J ],2004,25(5):124—127[2] El Seoud O. A.,Mars on G . A.,Giacco G .T .,et al ..Macr omol .Che m.Phys .[J ],2000,201:882—889[3] Satge C .,Granet R.,Verneuil B.,et al ..C .R.Chi m .[J ],2004,7:135—142[4] Takaragi A.,M inoda M.,M iyamot o T .,et al ..Cellul ose[J ],1999,6:93—102[5] Fischer S .,Thumm ler K .,Pfeiffer K .,et al ..Cellul ose[J ],2002,9:293—300[6] Mccor m ick C .L.,Callais P . A..Poly mer[J ],1987,28:2317—2323[7] Cai J.,Zhang L.N..Macr omolecular B i oscience[J ],2005,5:539—548[8] Zhang L.N.,Ruan D.,Gao S .J..Journal of Poly mer Science[J ],2002,40:1521—1529[9] S watl oski R.P .,Spear S .K .,Holbrey J. D.,et al ..J.Am.Che m.Soc .[J ],2002,124:4974—4975[10] REN Q iang (任强),WU Jin (武进),ZHANG Jun (张军),et al ..Acta Poly merica Sinica (高分子学报)[J ],2003,3:448—451[11] LUO Hui 2Mou (罗慧谋),L I Yi 2Qun (李毅群),Z HOU Chang 2Ren (周长忍).Poly merMaterials Science &Engineering (高分子材料科学与工程)[J ],2005,21(20):233—235,240[12] W elt on T ..Che m.Rev .[J ],1999,99:2071—2083[13] Fukaya Y .,Sugi m ot o A.,Ohno .H..B i omacr omolecules[J ],2006,7(12):3295—3297[14] Fukaya Y .,Hayashi K .,W ada M..Green Che m.[J ],2008,10:44—46D issolub ility of the Cellulose i n [AMM or]C l/[A M I M ]C lWANG Mei 2L ing,Z ANG Hong 2Jun 3,CA IBai 2Xue,CHE NG Bo 2W en(D epart m ent of M aterial Science and Che m istry Engineering,Tianjin Polytechnic U niversity,T ianjin M unicipal Key L aboratory of FiberM odification &Functional Fiber ,T ianjin 300160,China )Abstract The m ixed i onic liquid s olvent N 2methy 2N 2allyl m or pholine chl oride [AMMor ]Cl/12allyl 232methy 2li m idaz oliu m chl oride [AM I M ]Cl can diss olve cellul ose effectively .W e surveyed the influence of the diss olu 2ti on ti m e and te mperature t o the diss oluti on p r operties .The che m ical constructi on and ther mostability of regen 2erated cellul ose fr o m the [AMMor ]Cl/[AM I M ]Cl were investigated with Fourier transf or m infrared (FTI R )s pectr oscopy,ther mogravi m etry (TG )and X 2ray diffracti on (XRD )measure ments .Results show that the s olu 2bility cellul ose in [AMMor]Cl/[AM I M ]Cl is better than [AM I M ]Cl under the sa me conditi ons .The cellu 2l ose sa mp les without any p retreat m ent were readily diss olved in [AMMor]Cl/[AM I M ]Cl in a relatively short ti m e .I n the course of diss oluti on,no other derivatizing reacti on occurred and degrades slightly .Keywords Cellul ose;I onic liquid;D iss oluti on;Degree poly merizati on(Ed .:D,Z )2741高等学校化学学报 Vol .30 。
纤维素在离子液体中溶解及反应性能的研究的开题报告一、研究背景和意义纤维素是一种多糖物质,是植物细胞壁的主要成分之一。
纤维素的分子量大、极性强、稳定性高,一直以来都是一种难以溶解和加工的物质。
在传统的溶解方法中需要使用有机溶剂,但这种方法不仅受到环境保护的限制,同时也会导致产生大量有害废弃物。
因此,寻找一种更环保、更具可持续性的纤维素溶解方法是十分必要和紧迫的。
离子液体是一类具有特殊物理、化学性质的无机离子或有机阳离子与非卡宾型准束缚型阴离子或相应的有机阴离子形成的液体。
相较于传统溶剂,离子液体具有密度小、稳定性高、绿色环保等诸多优点,因此,近年来备受关注。
本研究旨在探究离子液体中纤维素的溶解和反应性能,为纤维素溶解提供新的途径和手段,为开发纤维素的利用提供技术支持。
二、研究内容和方法1.研究内容(1)探究不同种类离子液体对纤维素的溶解效果及溶解机理。
(2)研究离子液体中纤维素的反应性质及反应机理。
(3)建立离子液体中纤维素溶解和反应的模型,并对模型进行分析和验证。
2.研究方法(1)实验室实验:通过离子液体和纤维素的混合实验,探究纤维素在不同的离子液体中的溶解效果及溶解机理。
(2)反应动力学实验:通过离子液体中纤维素的反应,制备纤维素的各种化学产物,并通过反应动力学分析,探究离子液体中纤维素的反应性质及反应机理。
(3)理论分析:根据实验结果建立离子液体中纤维素溶解和反应的模型,利用计算机模拟等手段对模型进行分析和验证。
三、研究预期结果(1)离子液体对纤维素的溶解机理和溶解率进行探究,为纤维素溶解提供新的途径和手段。
(2)离子液体中纤维素的反应产物作用机理的探究,为纤维素的利用提供新思路和技术支持。
(3)建立相应的理论模型,对其进行分析和验证,为纤维素的溶解和反应研究提供参考和指导。
四、研究现状分析目前,国内外学者对离子液体中纤维素溶解和反应方面的研究已有不少的成果。
一些研究表明,离子液体可有效地溶解纤维素,通过对离子液体的结构与性质的控制,可调节离子液体对纤维素的溶解能力。
离子液体对纤维素溶解的研究进展李永莲;刘文锋【摘要】纤维素是自然界含量最丰富的可再生资源,开发一种环境友好、生物可降解、具有应用前景的新型绿色纤维素溶剂是近年来的研究热点。
离子液体具有良好的发展前景,可为纤维素资源的绿色应用提供一个崭新的平台。
本文对国内外离子液体溶解纤维素的研究成果进行了综述,探讨了纤维素的溶解机理和溶解特性,分析了纤维素在溶解过程中存在的问题,提出了离子液体溶解纤维素的发展方向。
%Cellulose is the most abundant natural renewable resources. The development of a environmentally friendly, biodegradable, prospective solvent has became research focus in recent years. Ionic liquid has good development prospect and offers a new platform for the green application of cellulose resource. The paper reviews research a- chievements of cellulose dissolution in ionic liquids at home and abroad, and summarizes the cellulose dissolution mechanism, and analyzes the problems in the process of the dissolution, then puts forward the development direc- tion of cellulose dissolution in ionic liquids.【期刊名称】《广东轻工职业技术学院学报》【年(卷),期】2012(011)004【总页数】5页(P6-10)【关键词】离子液体;纤维素;溶解;分离;进展【作者】李永莲;刘文锋【作者单位】广东轻工职业技术学院,广东广州510300;广东工业大学,广东广州510006【正文语种】中文【中图分类】TQ202随着矿物质资源的短缺和环境问题的影响,对人类的生存提出了挑战,寻找开发可持续、可再生能源已迫在眉睫。
纤维素在植物界中纤维素的总量约达2.6×1012t,是自然界中最丰富的可再生资源,其资源环境友好、可再生、储存量丰富,能满足人类对材料环保性和生物相容性能源日益增加的需求。
天然纤维素结构高度有序、聚合度高、结晶度高、链长、分子间与分子内存在大量氢键和复杂的非结晶区,这些特点导致其不易溶于水和一般的有机溶剂,严重影响其转化利用。
研究能够溶解纤维素并能提供适宜反应条件的纤维素溶剂是解决纤维素资源利用、保护环境的关键。
1 离子液体的特性传统的纤维素溶剂体系大多存在溶解性比较差、稳定性差、有毒和污染环境、制备困难、易挥发、难以回收、价格较高等缺点。
近年来,离子液体作为一种新兴的、理想的纤维素溶剂,具有巨大的潜力,成为国内外纤维素研究领域的热点。
与常规有机溶剂相比,离子液体具有如下优点:(l)蒸气压非常小,不挥发,在使用、储藏中不会蒸发散失,可减少因挥发而产生的环境污染问题,环保;(2)可操作温度范围宽(-40~300℃),具有良好的热稳定性和化学稳定性;(3)电导率高,电化学窗口大,可作为许多物质电化学研究的电解液;(4)阴阳离子的设计可调节,可以对无机物、有机物、有机金属化合物甚至高分子材料具有很好的溶解性;(5)组成离子液体的有机离子可以调整和修饰,粘度低,密度大,可形成二相或多相体系,适合作分离溶剂或构成反应—分离耦合新体系;(6)部分离子液体具有可调节的酸碱性,是使用方便的反应介质。
因此,室温离子液体作为高效绿色溶剂及催化剂材料已成为当代化学的研究热点和科学前沿[1]。
离子液体溶解纤维素过程遵循了绿色化学的两项基本原则:利用可再生资源和开发环境友好溶剂,展现了其在纤维素的“绿色”应用中巨大的发展潜力。
因此开发对环境友好而且价格便宜的离子液体成为目前纤维素离子液体绿色溶剂研究发展的趋势。
2 离子液体对纤维素溶解的研究进程、机理及特性2.1 离子液体对纤维素溶解的研究进程1934年,Graenacher[2]第一次发现 N- 乙基吡啶氯化物能够溶解纤维素,但是因为其熔点高达118℃,而且当时离子液体的概念没有提出,对其具体的作用机理并不了解,且对纤维素的溶解能力一般,故人们并没有将其运用到实际中。
2002年,Swatloski等[3]发现离子液体1-丁基-3-甲基咪唑氯盐([BMIM]Cl)在室温条件时对纤维素表现出优异的溶解能力,因此引起人们对离子液体溶解纤维素的关注,从而开辟了纤维素新溶剂体系的新领域。
2003年,任强等[4]合成了新型离子液体1-烯丙基-3-甲基咪唑氯化物([AMIM]C1),其熔点和粘度较低,溶解纤维素的时间短,并且在溶解过程中纤维素降解程度低。
同年,Zhang等[5]通过研究发现二烷基咪唑醋酸盐([RMIM]Ac)和1-甲基-3-烯丙基咪唑氯盐([AMIM]Cl)这两种离子液体对纤维素都具有良好的溶解度,而且与[BMIM]Cl离子液体的比较还发现,[RMIM]Ac和[AMIM]Cl更优。
2005年,Heinze 等[6]以三种离子液体([BMIM]C1、[BMPy]C1和BDTAC)为溶剂,研究了聚合度(290~1200)不同的纤维溶解的变化,发现[BMPy]C1作为溶剂时,其对不同聚合度的纤维都具有良好的溶解性,均使纤维发生很大程度的降解,而以[BMIM]Cl和BDTAC为溶剂时,其对纤维的溶解效果均不明显。
同年,罗慧谋等[7]合成了氯化1-(2-羟乙基)-3-甲基咪唑盐([HeMIM]Cl),这是一种新型的功能化离子液体,通过性能测试发现,在70℃时其对活化后的微晶纤维素具有良好的溶解性,溶解度可达5%~7%;当温度超过80℃时,由于含羟基季铵盐的热稳定性差,离子液体开始分解。
通过FT-IR、TGA 和XRD等检测手段表征再生纤维素的结构表明,[HeMIM]Cl也是很好的纤维素溶剂。
郭立颖[8]等人合成了氯化1-烯丙基-3-甲基咪唑[AMIM]Cl和氯化1-(2-羟乙基)-3-甲基咪唑[HeMIM]Cl这两种离子液体,而且还研究了这两种离子液体对杉木粉的溶解性能。
通过对溶解前后杉木粉的结晶结构和化学结构进行分析,发现[HeMIM]C1对杉木粉的溶解性能优于[AMIM]C1。
2006年,郭明等[9]合成一种新型功能化离子液体二氯二(3,3’-二甲基)咪唑基亚砜盐([(MIM)2SO]C12),研究其对纤维素的溶解性能,发现([(MIM)2SO]C12)对微晶纤维素有一定的溶解能力,但是溶解度较小;以([(MIM)2SO]C12)为溶剂时,纤维素在溶解过程中未发生衍生化。
2008年,Fukaya等[10]合成了以甲基膦酸酯盐的二烷基咪唑为阴离子的室温离子液体1-乙基-3-甲基咪唑甲基膦酸酯盐([C2MIM][(MeO)RPO2]),通过对其溶解性能的研究,发现当温度为45℃时,离子液体30min内即可溶解10%的纤维素,这表明其具有良好的溶解性能。
但是该类离子液体制备困难、造价高,实用价值不高。
Birgit Hosan[11]发现将纤维素溶于1-乙基-3-甲基咪唑氯化物[EMIM]Cl,其溶解度高达15.8%,溶解能力较强。
同年,段衍鹏等[12]合成了三种含有羧基或醚基的离子液体([CMEIM]C1、[C2OCEIM]C1和[Cl-C2OC2-EIM]C1),通过对30%NaOH溶液处理前后棉纤维的溶解性能与三种离子液体结构之间的关系进行研究发现:对于处理前的原生纤维素和经碱处理后的纤维素,[C2OCEIM]Cl的溶解性能最好。
通过对三种离子液体作为溶剂处理后的纤维素(原生纤维素以及经碱处理后的纤维素)进行比较发现,在溶解过程中,[Cl-C2OC2-EIM]C1引起纤维素的聚合度下降最严重。
2009年,王美玲等[13]混配两种离子液体N-甲基-N-烯丙基吗啉氯盐[AMMor]C1和3-甲基-1-烯丙基咪唑氯盐[AMIM]C1,探讨了不同比例的混配离子液体对纤维素的溶解性能,发现:当[AMMor]C1与[AMIM]Cl的混配比例为1:3时,混配离子液体能够有效溶解天然纤维素,且相对于[AMIM]C1离子液体,混配离子液体在相同条件下的溶解性能更好,未经活化的纤维素可直接溶于混配离子液体,而且不发生其它衍生化反应,但是用以溶解未经处理的再生后纤维素发现热稳定性较差。
同年,郭清华等[14]研究用咪唑型离子液体1-乙基-3-甲基咪唑醋酸盐([EMIM]Ac)溶解棉桨纤维素,发现在适当的温度条件下,[EMIM]Ac离子液体能溶解纤维素,纤维素/[EMIM]Ac溶液为切力变稀流体。
同年,Amarasekara等[15]以含有磺酸基的基团为离子液体的阳离子,Cl-为离子液体的阴离子,通过合成得到了一种新型的液体离子,其具有在室温下即可快速溶解纤维素,在升温时催化纤维素水解得到还原性糖的特点。
2010年,Xu 等[16]研究 8 种阳离子为[BMIM]+、阴离子是Brφnsted碱的离子液体溶解纤维素的能力,发现:(1)[BMIM]Ac、[BMIM][HCOO]、[BMIM][H2NCH2COO]、[BMIM][HOCH2COO]、[BMIM][HSCH2COO]、[BMIM][CH3CHOHCOO]和[BMIM][(C6H5)COO]对纤维素都具有较好的溶解能力。
(2)这些离子液体的溶解能力与其阴离子氢键接受能力(β)成线性关系。
(3)锂盐(LiAc、LiNO3、LiClO4、LiCl、LiBr)的加入可以提高[BMIM]Ac的溶解性能,推测因为Li+可与纤维素中的羟基氧形成氢键因此破坏了纤维素分子之间的氢键,因而进一步溶解纤维素。
现在,已知具有溶解纤维素能力的离子液体有几十种,新型可溶解纤维素的离子液体仍然不断地被合成和开发。
2.2 离子液体对纤维素溶解的机理离子液体溶解纤维素的机理研究并不成熟。
现在,一般是按照电子给体与受体理论(EDA)来解释[17]:也就是纤维素分子-OH中的氧原子为电子给予体,氢原子为接受体;离子液体中相应存在的阴离子作为电子给予体,阳离子作为电子接受体。
通过纤维素氢原子和-OH中氧原子与离子液体中阴、阳离子的相互作用,从而破坏纤维素分子间和分子内的氢键,使得纤维素中的羟基电荷发生分离,导致分子链分开,从而实现纤维素的溶解。