方差和标准差,频数分布表
- 格式:doc
- 大小:238.00 KB
- 文档页数:10
2009年中考数学复习教材回归知识讲解+例题解析+强化训练方差与频率分布◆知识讲解1.方差的定义在一组数据x1,x2,…,x n中,各数据与它们的平均数x的差的平方的平均数,•叫做这组数据的方差.通常用“S2”表示,即S2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2].2.方差的计算(1)基本公式S2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2](2)简化计算公式(Ⅰ)S2=1n[(x12+x22+…+x n2)-n x2],也可写成S2=1n(x12+x22+…+x n2)-x2,此公式的记忆方法是:方差等于原数据平方的平均数减去平均数的平方.(3)简化计算公式(Ⅱ)S2=1n[(x`12+x`22+…+x`n2)-nx x`2].当一组数据中的数据较大时,可以依照简化平均数的计算方法,将每个数据同时减去一个与它们的平均数接近的常数a,得到一组数据x`1=x1-a,x`2=x2-a,…x`n=x n-a,•那么S2=1n[(x`12+x`22+…+x`n2)-n x`2],也可写成S2=1n(x`12+x`22+…+x`n2)-x`2.记忆方法是:•方差等于新数据平方的平均数减去新数据平均数的平方.3.标准差的定义和计算方差的算术平方根叫做这组数据的标准差,用“S”表示,即4.方差和标准差的意义方差和标准差都是用来描述一组数据波动情况的特征数,常用来比较两组数据的波动大小,我们所研究的权是这两组数据的个数相等、平均数相等或比较接近时的情况.方差较大的数据波动较大,方差较小的数据波动较小.5.频率分布的意义前面学习的平均数与方差,反映了样本和总体的两个特征:平均水平和波动大小.但是在许多问题中,只知道这些还不够,还需要知道样本中数据在各个小范围所占的比例的大小,这就需要研究如何对一组数据进行整理,以便得到它的频率分布.6.研究频率分布的一般步骤及有关概念(1)研究样本的频率分布的一般步骤:①计算极差(最大值与最小值的差);②决定组距与组数;③决定分点;④列频率分布表;⑤画出频率分布直方图.(2)频率分布的有关概念:①极差:最大值与最小值的差;②频数:落在各个小组内的数据的个数;③频率:每一小组的频数与数据总体(样本容量n•)的比值叫做这一小组的频率.(3)几个重要的结论:①各小组的频数之和等于数据总数;②各小组的频率之和等于1;③频率分布直方图中,各小长方形的面积等于相应各组的频率,各小长方形面积之和等于1;④各小长方形的高与该组频数成正比.◆例题解析例1甲、乙两个学习小组各4名学生的数学测验成绩如下(•单位:分)甲组:86 82 87 85 乙组:85 81 85 89(1)分别计算这两组数据的平均数;(2)分别计算这两组数据的方差;(3)哪个学习小组学生的成绩比较整齐?【分析】应用平均数计算公式和方差的计算公式求平均数和方差.【解答】(1)x甲=14(6+2+7+5)+80=85,x乙=14(5+1+5+9)+80=85.(2)S甲2=14[(86-85)2+(82-85)2+(87-85)2+(85-85)2]=3.5,S乙2=14[(85-85)2+(81-85)2+(85-85)2+(89-85)2]=8.(3)∵S乙2>S甲2,∴甲组学习成绩较稳定.【点评】方差是反映一组数据波动大小的量.例2 为了迎接全市体育中考,•某中学对全校初三男生进行了立定跳远项目测试,并从参加测试的500名男生中随机抽取了部分男生的测试成绩(单位:m,精确到0.01m)作为样本进行分析,绘制了如图所示的频率分布直方图(•每组含最低值,不含最高值).已知图中从左到右每个小长方形的高比依次为2:4:6:•5:3,其中1.80~2.00这一小组的频数为8,请根据有关信息解答下列问题:(1)这次调查的样本容量为______,2.40~2.60这一小组的频率为_____.(2)请指出样本成绩的中位数落在哪一小组内,并说明理由;(3)样本中男生立定跳远的人均成绩不低于多少米?(4)请估计该校初三男生立定跳远成绩在2.00m以上(包括2.00m)•的约有多少人?【分析】样本容量是样本数据,不带单位,确定中位数时,首先将样本数据按大小排序后再求出,然后分析落在哪个小组.【解答】(1)由于1.80~2.00小组的频数为8,占总份数中的4份,总份数是20•分,故样本容量为:8÷420=40.2.40~2.60这个小组的频率为3÷20=0.15.(2)由于样本容量是40,则中位数是第20人和第21人成绩的平均数,而第20•人和第21人的成绩均在2.00~2.20这个小组,则中位数落在2.00~2.20这个小组.(3)因为第一组到第五组人数依次为4人,8人,12人,10人,6人,•则可求得样本中男生立定跳远的人均成绩不低于2.03m.(4)初中男生立定跳远成绩在2.00m以上的约有2540×500=350(人).【点评】频率分布直方图中各小组频率之和为1,掌握它是解题的关键.◆强化训练一、填空题1.(2005,荆门市)已知数据:1,2,1,0,-1,-2,0,-1,这组数据的方差为______.2.(2005,宜昌市)甲、乙、丙三台包装机同时分装质量为400g的茶叶,从它们各自分装的茶叶中分别随机抽取了10盒,得到它们的实际质量的方差如下表所示.根据表中数据,可以认为三台包装机中,______包装机包装的茶叶质量稳定.甲包装机乙包装机丙包装机方差/g2 31.96 7.96 16.323.2005年沈阳市春季房交会期间,某公司对参加本次房交会的消费者进行了随机的问卷调查,共发放1000份调查问卷,并全部收回.根据调查问卷,将消费者年收入情况整理后,制成表1;将消费者打算购买住房的面积的情况整理后,制成表2,并作出部分频率分布直方图(如图).表1 被调查的消费者年收入情况年收入/万元 1.2 1.8 3.0 5.0 10.0被调查的消费者数/人200 500 200 70 30表2 被调查的消费者打算购买住房的面积的情况分组/m2 频数频率40.5~60.5 0.0460.5~80.5 0.1280.5~100.5 0.36100.5~120.5120.5~140.5 0.20140.5~160.5 0.04合计1000 1.00注:住房面积取整数请你根据以上信息,回答下列问题:(1)根据表1可得,被调查的消费者平均年收入为______万元;被调查的消费者年收入的中位数是______万元;在平均数,中位数这两个数中,更能反映出被调查的消费者年收入的一般水平;(2)根据表2可得,打算购买100.5~120.5m2房子的人数是_____人;打算购买住房面积不超过100m2的消费者的人数占被调查人数的百分数是____;(3)在下图中补全这个频率分布直方图.4.青少年视力水平的下降已经引起全社会的关注,某校为了了解初中毕业年级500名学生的视力情况,从中抽查了一部分学生视力,通过数据处理,得到如下频率分布表和频率分布直方图.分组频数频率3.95~4.25 2 0.044.25~4.55 6 0.124.55~4.85 254.85~5.15 0.045.15~5.45 2 1.00合计请你根据给出的图表回答:(1)填写频率分布表中未完成部分的数据.(2)在这个问题中,总体是________,样本容量是________.(3)在频率分布直方图中,梯形ABCD的面积是______.(4)请你用样本估计总体,可以得到哪些信息(写一条即可):________.5.甲,乙两种产品进行对比试验,•得知乙产品比甲产品的性能更稳定,如果甲,乙两种产品抽样数据的方差分别是S甲2与S乙2,•则它们的方差的大小关系是_______.6.已知:一组数据-1,x,1,2,0•的平均数是0,•这组数据的方差是_____.7.若样本数据1,2,3,2的平均数是a,中位数是b,众数是c,则数据a,b,c的标准差是_______.8.若已知一组数据:x1,x2,…,x n的平均数为x,方差为S2,那么另一组数据:3x1-2,•3x2-2,…,3x n-2的平均数为______,方差为______.二、选择题9.在一次射击练习中,甲,乙两人前5次射击的成绩分别为(单位:环)甲:10 8 10 10 7 乙:7 10 9 9 10 则这次练习中,甲,乙两人方差的大小是()A.S甲2>S乙2B.S甲2<S乙2C.S甲2=S乙2D.无法确定10.已知甲,乙两组数据的平均数相等,•若甲组数据的方差S甲2=0.055,乙组数据的方差S乙2=0.105,则()A.甲组数据比乙组数据波动大B.乙组数据比甲组数据波动大C.甲组数据与乙组数据的波动一样大D.甲,乙两组数据的波动大小不能比较11.(2005,宜昌市)衡量样本和总体的波动大小的特征数是()A.平均数B.众数C.标准差D.中位数12.某少年军校准备从甲,乙,丙三位同学中选拔一人参加全市射击比赛,他们在选拔比赛中,射靶十次的平均环数是x甲=x乙=x丙=8.3,方差分别是S甲2=1.5,S乙2=2.8,S丙2=3.2.那么,根据以上提供的信息,•你认为应该推荐参加全市射击比赛的同学是()A.甲B.乙C.丙D.不能确定13.(2005,广州市)甲,乙两人在相同情况下,各射靶10次,•两人命中环数的平均数是x甲=x乙=7,方差S甲2=1.0,S乙2=1.2,则射击成绩较稳定的是()A.甲B.乙C.一样D.不能确定14.为参加电脑汉字输入比赛,甲和乙两位同学进行了6次测试,成绩如表所示:甲和乙两位同学6次测试成绩(每分钟输入汉字个数)及部分统计数据表第1次第2次第3次第4次第5次第6次平均数方差甲134 137 136 136 137 136 136 1.0乙135 136 136 137 136 136 136 有四位同学在进一步算得乙测试成绩的方差后分别作出了以下判断,•其中说法正确的是()A.甲的方差大于乙的方差,所以甲的成绩比较稳定B.甲的方差小于乙的方差,所以甲的成绩比较稳定C.乙的方差小于甲的方差,所以乙的成绩比较稳定D.乙的方差大于甲的方差,所以乙的成绩比较稳定15.在一次科技知识竞赛中,两组学生成绩统计如下表,通过计算可知两组的方差为S甲2=172,S乙2=256.下列说法:①两组的平均数相同;②甲组学生成绩比乙组学生成绩稳定;③甲组成绩的众数>乙组成绩的众数;•④两组成绩的中位数均为80,但成绩≥80的人数甲组比乙组多,从中位数来看,甲组成绩总体比乙组好;⑤成绩高于或等于90分的人数乙组比甲组多,高分段乙组成绩比甲组好.其中正确的共有(•)分数50 60 70 80 90 100人数甲组 2 5 10 13 14 6 乙组 4 4 16 2 12 12A.2种B.3种C.4种D.5种16.(2005,盐城市)如果将一组数据中的每一个数据都加上同一个非零常数,那么这组数据的()A.平均数和方差都不变B.平均数不变,方差改变C.平均数改变,方差不变D.平均和方差都改变三、解答题17.某校初三(1)班,三(2)班各有49名学生,两班一次数学测验中的成绩统计如下表:班级平均分众数中位数标准差初三(1)班79 70 87 19.8初三(2)班79 70 79 5.2(1)请你对下面的一段话给予简要分析:初三(1)班的小刚回家对妈妈说:“昨天的数学测验,全班平均79分,得70分的人最多,我得了85分,在班上可算上游!”(2)请你根据表中数据,对这两个班的测验情况进行简要分析,•并提出教学建议.18.武汉市教育局在中学开展的“创新素质实践行”中,进行了小论文的评比.各校交论文的时间为5月1日至30日,•评委会把各校交的论文的件数按5天一组分组统计,绘制了频率分布直方图,•已知从左到右各长方形的高的比为2:3:4:6:4:1,第二组的频数为18.请回答下列问题:(1)本次活动共有多少篇论文参加评比?(2)哪组上交的论文数量最多?有多少篇?(3)经过评比,第四组和第六组分别有20篇,4篇论文获奖,•问这两组哪组获奖率较高?19.(2008,金华)九(3)班学生参加学校组织的“绿色奥运”知识竞赛活动,•老师将对学生的成绩按10分的组距分段,统计每个分数段出现的频数,填入频数分布表,并绘制频数的分布直方图.九(3)班“绿色奥运”知识竞赛成绩频数分布表分数段/分49.5~59.5 59.5~69.5 69.5~79.5 79.5~89.5 89.5~99.5组中值/分54.5 64.5 74.5 84.5 94.5频数 a 9 10 14 5频率0.050 0.225 0.250 0.350 b (1)频数分布表中a=_____,b=___;(2)把频数分布直方图补充完整;(3)学校设定成绩在69.5分以上的学生将获得一等奖或二等奖,一等奖奖励作业本15本及奖金50元,二等奖奖励作业本10本及奖金30元.已知这部分学生共获得作业本335本,请你求出他们共获得的奖金.九(3)班“绿色奥运”知识竞赛成绩频数分布直方图20.甲、乙两人在相同条件下各射靶10次,每次射靶的成绩情况如图6-28所示.(1)请填写下表:平均数方差中位数命中8环以上次数甲7 1.2 1乙 5.4(2)请从下列四个不同的角度对这次测试结果进行分析.①从平均数和方差相结合看;②从平均数和中位数相结合看(分析谁的成绩好些);③从平均数和命中9环以上的次数相结合看(分析谁的成绩好些);④从折线图上两人射击命中环数的走势看(分析谁更有潜力).21.在“3.15”消费者权益日的活动中,对甲、•乙两家商场售后服务的满意度进行了抽查.如图反映了被抽查用户对两家商场售后服务的满意程度(以下称:用户满意度),分为很不满意,不满意,较满意,很满意四个等级,并依次为1分,2分,3分,4分.(1)请问:甲商场的用户满意度分数的众数为_____分;乙商品的用户满意度分数的众数为_______分.(2)分别求出甲、乙两商场的用户满意度分数的平均分.(精确到0.01)(3)请你根据所学统计知识,判断哪家商场的用户满意度较高,并简要说明理由.参考答案1.322.乙3.(1)2.39;1.8;中位数(2)240;52% (3)略4.(1)第二列从上至下两空分别填15,50;第三列从上至下两空分别填0.5,0.3 •(2)500名学生的视力情况;50 (3)0.8 (4)该校初中毕业年级学生视力在4.55~4.85的人数最多,约250人;或该校初中毕业年级学生视力在5.15以上的与视力在4.25以下的人数基本相等,各有20人左右5.S乙2<S甲26.2 7.0 8.3x-2 9S29.A 10.B 11.C 12.A 13.A 14.C 15.D 16.C17.(1)从平均数,众数和中位数角度分析;(2)平均分,众数均相同,但三(1)班的成绩中位数高,表示三(1)班成绩比三(2)•班好,但三(2)班标准差比三(1)班小,表示三(2)班学生成绩较整齐.18.(1)本次活动共有120篇文章参评(2)第四组上交的论文数量最多,有36篇(3)第六组获奖率最高.19.(1)2 0.125 (2)图略(3)由题中表得,有29名同学获得一等奖或二等奖.设有x名同学获得一等奖,则有(29-x)名同学获得二等奖,根据题意得15x+10(29-x)=335.解得x=9.∴50x+30(29-x)=1050,所以他们得到的奖金是1050元.20.(1)如下表:平均数方差中位数命中8环以上次数甲7 1.2 7 1乙7 5.4 7.5 3(2)①∵平均数相同,S甲2<S乙2,∴甲成绩比乙稳定.②∵平均数相同,甲的中位数<乙的中位数.∴乙的成绩比甲好些.③∵平均数相同,命中9环以上的次数甲比乙少.∴乙的成绩比甲好些.④甲成绩在平均数上下波动,而乙处于上升势头,从第4•次以后就没有比甲少的情况发生,乙较有潜力.21.(1)3 3(2)甲商场抽查用户数为:500+1000+2000+1000=4500(户),乙商场抽查用户数为:100+900+2200+1300=4500(户).所以甲商场满意度分数的平均值=50011000220003100044500⨯+⨯+⨯+⨯≈2.78(分).乙商场满意度分数的平均值=1001900222003130044500⨯+⨯+⨯+⨯≈3.04(分)答:甲,乙两商场用户满意度分数的平均值分别为2.78分,3.04分.(3)因为乙商场用户满意度分数的平均值较高(或较满意和很满意的人数较多),所以乙商场的用户满意度较多.。
第8课时 方差与标准差【学习目标】1.通过实例是学生理解样本数据的方差、标准差的意义和作用; 2.学会计算数据的方差、标准差;3.使学生掌握通过合理抽样对总体的稳定性水平作出科学估计的思想. 【问题情境】有甲、乙两种钢筋,现从中各抽取一个标本(如表)检查它们的抗拉强度(单位:2/mm kg ),通过计算发现,两个样本的平均数均为125.甲 110 120 130 125 120 125 135 125 135 125 乙115100125130115125125145125145哪种钢筋的质量较好?【合作探究】将甲、乙两个样本数据分别标在数轴上,如下图所示.由图可以看出,乙样本的最小值 ,低于甲样本的最小值 ,最大值 高于甲样本的最大值 ,这说明乙种钢筋没有甲种钢筋的抗拉强度稳定.我们把一组数据的 称为极差(range ).由图可以看出,乙的极差较大,数据点较分散;甲的极差小,数据点较集中,这说明甲比乙稳定.运用极差对两组数据进行比较,操作简单方便,但如果两组数据的集中程度差异不大时,就不容易得出结论.那又该如何刻画抗拉强度的稳定性呢?【知识建构】1.设一组样本数据12,,,n x x x L ,其平均数为x ,则方差2s =___________________________________________=________________; 标准差s =____________________________________________=________________. 2.方差和标准差的意义:描述样本和总体的波动大小的特征数,标准差大说明波动大. 【展示点拨】例1.甲、乙两种水稻试验品种连续5年的平均单位面积产量(单位:2/hm t )如下,试根据这组数据估计哪一种水稻品种的产量比较稳定.例2.为了保护学生的视力,教室内的日光灯在使用一段时间后必须更换.已知某校使用的100只日光灯在必须换掉前的使用天数如下,试估计这种日光灯的平均使用寿命和标准差.例3.⑴若样本x 1,x 2,……,x n 的平均数为10,方差为2,则样本x 1+2,x 2+2,……,x n +2的平均数为_________;方差为__________;⑵若样本x 1,x 2,……,x n 的平均数为10,方差为2,则样本5x 1,5x 2,……,5x n的平均数为_________;方差为__________;⑶若样本x 1,x 2,……,x n 的平均数为10,方差为2,则样本5x 1+6,5x 2+6,……,5x n +6的平均数为_________;方差为__________; 【学以致用】1.已知一个样本为8,14,12,18,那么样本的方差是______ _;标准差是_ .2.若821k k k ,,, 的方差是3,则)3(2)3(2)3(2821 k k k ,,, 的方差是 .3.设一组数据的方差是2s ,将这组数据的每个数据都乘以10,所得的一组新数据的方差是 .4.甲、乙两人在相同条件下练习射击,每人打5发子弹,命中环数如下:5.两台机床同时生产一种零件,在10天中,两台机床每天的次品数如下:(1)哪台机床的次品数的平均数较小?(2)哪台机床生产状况比较稳定?第8课时方差与标准差【基础训练】1.以下4个说法:①极差与方差都反映了数据的集中程度;②方差是没有量纲的统计量;③标准差比较小时,数据比较分散;④只有两个数据时,极差是标准差的2倍.其中正确的是________.2.(2020年常州调研)已知样本9,10,11,x,y的平均数是10,标准差是2,则xy=________.3.某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如下表:4.(2020年高考山东卷改编)在某项体育比赛中,七位裁判为一选手打出的分数如下:90 89 90 95 93 94 93去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为________.5.样本x1,x2,x3,…,x10的平均数为5,方差为7,则3(x1-1),3(x2-1),…,3(x10-1)的平均数、方差、标准差分别是________、________、________.6.某人5次上班途中花的时间(单位:分钟)分别为x,y,10,11,9,已知这组数据的平均数为10,方差为2,则|x-y|的值为________.7.甲、乙、丙、丁四人参加奥运会射击项目选拔赛,四人的平均成绩和方差如下表所示:8.若样本x1+1,x2+1,…,x n+1的平均数为10,其方差为2,则对于样本x1+2,x2+2,…,x n+2的平均数为________,方差为________.9.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是________.①甲地:总体均值为3,中位数为4;②乙地:总体均值为1,总体方差大于0;③丙地:中位数为2,众数为3;④丁地:总体均值为2,总体方差为3.【思考应用】10.某班40人随机平均分成两组,两组学生某次考试的分数情况如下表:11.对甲、乙两名自行车赛手在相同条件下进行了6次测试,测得他们的最大速度(m/s)的数据如下表:(1)(2)分别求出甲、乙两名自行车赛手最大速度(m/s)的平均数和标准差,并判断选谁参加比赛更合适?【拓展提升】12.为了了解中学生的身体发育情况,对某一中学的50名男生进行了身高测量,结果如下(单位:cm):175 168 170 176 167 181 162 173 171 177 179 172 165 157 172 173 166 177 169 181 160 163 166 177 175 174 173 174 171 171 158 170 165 175 165 174 169 163 166 166 174 172 166 172 167 172 175 161 173 167(1)列出样本的频率分布表,画出频率分布直方图; (2)计算样本平均数和标准差;(3)由样本数据估计总体中有多少数据落在区间(x -s ,x +s)内?第8课时 方差与标准差答案1.①④ 2.96 3.25 4.92,2.8 5.12 63 37 6.4 7.丙 8.11 2 9.④10.解:设第一组20名学生的成绩为x 1,x 2,x 3,…,x 20,第二组20名学生的成绩为x 21,x 22,…, x 40.根据题意得 90=x 1+x 2+…+x 2020,80=x 21+x 22+…+x 4020,x =x 1+x 2+…+x 4040=90×20+80×2040=85,第一组的方差s 21=120(x 21+x 22+…+x 220)-902,①第二组的方差s 22=120(x 221+x 222+…+x 240)-802,②由①+②得36+16=120(x 21+x 22+…+x 220+x 221+…+x 240)-(902+802),∴x 21+x 22+…+x 24040=7276.s 2=x 21+x 22+…+x 24040-852=7276-7225=51,∴s =51.11.解:(1)画出茎叶图如下图所示.甲乙78 7 5 1 0238 93 4 6 8乙的中位数是33.5,甲的中位数是33,因此乙发挥比较稳定,总体得分情况比甲好.(2)用科学计算器求得x甲=33,x乙=33,s甲=3.96,s乙=3.56,故s甲>s乙.综合比较,选乙参加比赛较为合适.12.解:(1)频率分布表如下:分组频数频率[156.5,161.5) 4 0.08[161.5,166.5) 11 0.22[166.5,171.5) 11 0.22[171.5,176.5) 18 0.36[176.5,181.5] 6 0.12合计50 1.00频率分布直方图如上图所示.(2)由计算器可得到平均数x=170.1 cm,标准差s≈5.6 cm.(3)因为x=170.1,s≈5.6,所以区间(x-s,x+s)为(164.5,175.7).又因为样本中落在区间(164.5,175.7)内的数据有36个,所以样本数据中有72%的数据落在区间(164.5,175.7)内,因此估计总体中有72%的数据落在区间(164.5,175.7)内.。
第二讲 频数分布的集中趋势与离散趋势① 频数分布通过调查或试验取得原始资料后,要对全部资料进行检查和核对后,才能进行数据的整理。
根据样本资料的多少确定是否分组,一般样本容量n<30称为小样本,可直接进行统计描述分析,样本容量n>30称为大样本,此时须将数据分成若干组后进行描述分析。
1、频数分布表1)、频数表的编制相同观察结果出现的次数称为频数。
将所有观察结果的频数按一定顺序排列在一起便是频数表(frequency table)。
步骤:① 找出最大和最小值,计算极差 R=X max ―X min② 根据斯梯阶公式确定组距n RH log 322.31+=③ 扫描样本值,划记后获得频数 2)、频数表的用途① 大样本数据(不限于计量资料)常用的表达方式。
② 便于观察数据的分布类型。
③ 便于发现资料中远离群体的某些特大或特小的可疑值,必要时经检验后舍去。
④ 当样本含量足够大时,各组段的分布频率作为分布概率的估计值。
样本量与分组数量的关系样本量分组数30 ~ 60 5 ~ 860 ~ 100 7 ~ 10100 ~ 200 9 ~ 12200 ~ 500 10 ~ 18500以上15 ~ 30例1:某地随机检查了140名成年男性红细胞数(1012/L)4.765.26 5.61 5.95 4.46 4.57 4.31 5.18 4.92 4.27 4.77 4.885.00 4.73 4.47 5.34 4.70 4.81 4.93 5.04 4.40 5.27 4.63 5.50 5.24 4.97 4.71 4.44 4.94 5.05 4.78 4.52 4.63 5.51 5.24 4.98 4.33 4.83 4.56 5.44 4.79 4.91 4.26 4.38 4.87 4.99 5.60 4.46 4.95 5.07 4.80 5.30 4.65 4.77 4.50 5.37 5.49 5.22 4.58 5.074.81 4.54 3.82 4.01 4.89 4.625.12 4.85 4.59 5.08 4.82 4.935.05 4.40 4.14 5.01 4.37 5.24 4.60 4.71 4.82 4.94 5.05 4.79 4.52 4.64 4.37 4.87 4.60 4.72 4.83 5.33 4.68 4.80 4.15 4.65 4.76 4.88 4.61 3.97 4.08 4.58 4.31 4.05 4.16 5.04 5.15 4.50 4.62 4.73 4.47 4.58 4.70 4.81 4.55 4.28 4.78 4.51 4.63 4.36 4.48 4.59 5.09 5.20 5.32 5.05 4.41 4.52 4.64 4.75 4.49 4.22 4.71 5.21 4.94 4.68 5.17 4.91 5.02 4.76R= 5.95 ― 3.82 = 2.13连续型资料:红细胞数(1012/L)(1)频数f(2)组中值X(3)Fx(4)=(2)*(3)3.80~4.00~ 4.20~ 4.40~ 4.60~4.80~5.00~ 5.20~ 5.40~ 5.60~ 5.80~ 261125322717134213.904.104.304.504.704.905.105.305.505.705.907.824.647.3112.5150.4132.386.768.922.011.45.9合计140(∑f)669.8(∑fX)离散型资料:我国某地农村1995年已婚育龄妇女现有子女数的分布子女数(1)妇女数f(2)频率(%)(3)累计频数(4)累计频率(%)(5)0 1 2 3 4 5 6 7 8 9 ≥10 合计137512519130426285602171913695725532681513731561455259.4517.3020.9119.6214.929.414.982.250.100.260.11100.0013751389226934897908119627133322140577143845144996145369145525——9.4526.7547.6567.2882.2091.6196.6098.8599.6499.89100.00——(一)、均数(mean )的计算① 直接法n xn x x x x x in∑=+++=...32 1例2. 10名7岁男童体重(kg )分别为:17.3、 18.0、 19.4、 20.6、21.2、21.8、 22.5、 23.2、 24.0、 25.5,求平均体重。
第四章 差异量教学目的:1.理解全距、四分位距、百分位距、平均差、方差、标准差和差异系数等概念;2.掌握各种差异量指标的计算方法。
数据的分布特征不仅有集中趋势,还有离中趋势。
以动态的眼光,从不同的角度看,数据是向中间变动的,也是向两端变动的。
两组数据可能平均水平相同,但两组数据的分布特征并不完全相同。
【如】:比较以下两组数据 A 组:88、82、73、76、81 B 组:92、86、70、72、80两组平均数,80==B A X X 但R A =88-73=15,R B=92-70=22。
即A 组较集中,B 组较分散。
因此,我们描述一组数据的分布特征,既要描述其集中趋势,也要描述其离中趋势。
差异量:表示一组数据的离中趋势或变异程度的量称为差异量。
常用的差异量指标有全距、四分位距、百分位距、平均差、方差、标准差和差异系数。
第一节全距、四分位距、百分位距一、全距全距:是一组数距中最大值与最小值之差。
优点:意义明确,计算方便。
缺点:反响不灵敏,易受极端值影响。
二、四分位距〔一〕四分位距的的概念四分位距:是指一组按大小顺序排列的数据中间部位50%个频数距离的一半。
QD :表示四分位距; Q 3:表示第三四分位数; Q 1:表示第一四分位数。
所以:四分位距的公式又为: 〔二〕四分位数的计算方法 1、原始数据计算法〔1〕将数据由小到大进行排列;〔2〕分别求出三位四分位数〔点〕;〔3〕代入公式计算。
【例如】:有以下16个数据25、22、29、12、40、15、14、39、37、31、33、19、17、20、35、30,其中四分位距的计算方法如下:〔1〕先将原始数据从小到大排列好;12、14、15、17、*19、20、22、25、*29、30、31、33、*35、37、39、40Q1=18 Md=27 Q3=34〔2〕求出Q1、Md、Q3;〔3〕将Q1、Md、Q3的得数代入公式〔4.1〕。
2、频数分布表计算法利用频数分布表计算公式为:关键是分别计算P75和P25,百分位数计算方法掌握了,这里的计算就不会有什么问题。
高中数学必修2《统计》知识点讲义一、引言高中数学必修2中的《统计》部分是我们在日常生活中应用广泛的数学知识。
通过学习统计,我们可以更好地理解世界,做出更明智的决策。
本篇文章将详细讲解统计部分的重要知识点。
二、知识点概述1、描述性统计描述性统计是统计学的基石,它主要研究如何用图表和数值来描述数据的基本特征。
这部分内容将介绍如何制作频数分布表、绘制条形图、饼图和折线图等。
2、概率论基础概率论是统计学的核心,它研究随机事件发生的可能性。
在本部分,我们将学习如何计算事件的概率,了解独立事件与互斥事件的概念。
3、分布论基础分布论是研究随机变量及其分布的数学分支。
本部分将介绍如何计算随机变量的期望和方差,了解正态分布的特点及其在日常生活中的应用。
三、知识点详解1、描述性统计本文1)频数分布表:频数分布表是一种用于表示数据分布情况的表格,其中每一列表示数据的一个取值,每一行表示该取值的频数。
通过频数分布表,我们可以直观地看到数据分布的集中趋势和离散程度。
本文2)图表:图表是描述数据的一种有效方式。
通过绘制条形图、饼图和折线图,我们可以直观地展示数据的数量关系和变化趋势。
2、概率论基础本文1)概率:概率是指事件发生的可能性,通常用P表示。
P(A)表示事件A发生的概率,其值在0和1之间,其中0表示事件不可能发生,1表示事件一定会发生。
本文2)独立事件与互斥事件:独立事件是指两个事件不相互影响,即一个事件的发生不影响另一个事件的概率;互斥事件是指两个事件不包括共同的事件,即两个事件不可能同时发生。
3、分布论基础本文1)期望:期望是随机变量的平均值,通常用E表示。
E(X)表示随机变量X的期望,它是所有可能取值的概率加权平均值。
期望对于预测随机变量的行为非常有用。
本文2)方差:方差是衡量随机变量取值分散程度的指标,通常用D表示。
D(X)表示随机变量X的方差,它是每个取值与期望之差的平方的平均值。
方差越大,随机变量的取值越分散;方差越小,取值越集中。
统计学常用表格在统计学中,有许多不同类型的表格用于呈现和总结数据、分析结果以及实验设计。
以下是一些常用的统计学表格类型:交叉表(Cross Tabulation):实验设计表(Experimental Design Table):说明:统计学表格类型:1.频数表(Frequency Table):描述变量各个取值的出现频率。
2.交叉表(Cross Tabulation):将两个或多个变量的频数列在一个表格中,用于观察它们之间的关系。
3.描述统计表(Descriptive Statistics Table):包括均值、中位数、标准差等描述性统计指标,用于概括数据分布的特征。
4.相关系数表(Correlation Table):展示变量之间的相关关系,通常包括皮尔逊相关系数或斯皮尔曼等级相关系数。
5.回归分析表(Regression Analysis Table):呈现回归模型的系数、标准误差、t统计量等信息。
6.方差分析表(Analysis of Variance Table):用于展示方差分析的结果,包括组间方差、组内方差、F统计量等。
7.卡方检验表(Chi-Square Test Table):展示卡方检验的结果,通常用于分析分类变量之间的关联。
8.生存分析表(Survival Analysis Table):包括生存曲线、中位生存时间等,用于描述时间至事件发生的分布。
9.混淆矩阵(Confusion Matrix):用于评估分类模型的性能,特别是在分类问题中。
10.ANOVA表(ANOVA Table):用于分析方差,通常与方差分析一起使用,包括平方和、自由度、均方等。
11.正态性检验表(Normality Test Table):用于检验数据是否符合正态分布。
12.实验设计表(Experimental Design Table):描述实验设计中的因子水平、处理组合以及实验结果。
各章练习题答案第2章统计数据的描述2.1 (1)属于顺序数据。
(2)频数分布表如下:服务质量等级评价的频数分布服务质量等级家庭数(频率)频率%A1414B2121C3232D1818E1515合计100100(3)条形图(略)2.2 (1)频数分布表如下:(2)某管理局下属40个企分组表按销售收入分组(万元)企业数(个)频率(%)先进企业良好企业一般企业落后企业11119927.527.522.522.5合计40 100.0 2.3 频数分布表如下:某百货公司日商品销售额分组表按销售额分组(万元)频数(天)频率(%)25~30 30~35 35~40 40~45 45~5046159610.015.037.522.515.0合计40 100.0 直方图(略)。
2.4 (1)排序略。
(2)频数分布表如下:100只灯泡使用寿命非频数分布按使用寿命分组(小时)灯泡个数(只)频率(%)650~660 2 2660~670 5 5670~680 6 6680~690 14 14690~700 26 26700~710 18 18710~720 13 13720~730 10 10730~740 3 3740~750 3 3合计100 100 直方图(略)。
2.5 (1)属于数值型数据。
(2)分组结果如下:分组天数(天)-25~-20 6-20~-15 8-15~-10 10-10~-5 13-5~0 120~5 45~10 7合计60(3)直方图(略)。
2.6 (1)直方图(略)。
(2)自学考试人员年龄的分布为右偏。
2.7 (1)茎叶图如下:(2)A 班考试成绩的分布比较集中,且平均分数较高;B 班考试成绩的分布比A 班分散,且平均成绩较A 班低。
2.8 箱线图如下:(特征请读者自己分析)2.9 (1)x =274.1(万元);Me=272.5 ;Q L =260.25;Q U =291.25。
(2)17.21=s (万元)。
统计学第三版答案第一章1.什么是统计学?怎样理解统计学与统计数据的关系?答:统计学是一门收集、整理、显示和分析统计数据的科学。
统计学与统计数据存在密切关系,统计学阐述的统计方法来源于对统计数据的研究,目的也在于对统计数据的研究,离开了统计数据,统计方法以致于统计学就失去了其存在意义。
2.简要说明统计数据的来源答:统计数据来源于两个方面:直接的数据:源于直接组织的调查、观察和科学实验,在社会经济管理领域,主要通过统计调查方式来获得,如普查和抽样调查。
间接的数据:从报纸、图书杂志、统计年鉴、网络等渠道获得。
3.简要说明抽样误差和非抽样误差答:统计调查误差可分为非抽样误差和抽样误差。
非抽样误差是由于调查过程中各环节工作失误造成的,从理论上看,这类误差是可以避免的。
抽样误差是利用样本推断总体时所产生的误差,它是不可避免的,但可以控制的。
4.答:(1)有两个总体:A品牌所有产品、B品牌所有产品(2)变量:口味(如可用10分制表示)(3)匹配样本:从两品牌产品中各抽取1000瓶,由1000名消费者分别打分,形成匹配样本。
(4)从匹配样本的观察值中推断两品牌口味的相对好坏。
第二章、统计数据的描述思考题1描述次数分配表的编制过程答:分二个步骤:(1)按照统计研究的目的,将数据按分组标志进行分组。
按品质标志进行分组时,可将其每个具体的表现作为一个组,或者几个表现合并成一个组,这取决于分组的粗细。
按数量标志进行分组,可分为单项式分组与组距式分组单项式分组将每个变量值作为一个组;组距式分组将变量的取值范围(区间)作为一个组。
统计分组应遵循“不重不漏”原则(2)将数据分配到各个组,统计各组的次数,编制次数分配表。
2.解释洛伦兹曲线及其用途答:洛伦兹曲线是20世纪初美国经济学家、统计学家洛伦兹根据意大利经济学家帕累托提出的收入分配公式绘制成的描述收入和财富分配性质的曲线。
洛伦兹曲线可以观察、分析国家和地区收入分配的平均程度。
方差和标准差1一、自学指导:看书P 140-P145 回答下列问题:1、一组数据中_____________________的差,叫做这组数据的极差,极差是表示两组数据变化范围的大小,极差大的变化范围______,极差小的变化范围______2、为一组数据为它们的平均数,方差的基本公式n x x x x ...,,,321x =_______________,方差描述了一组数据__________的大小,方差的值越2S 小,数据的波动越小,越________,越__________3、标准差就是____________的算术平方根,公式为=___________,它能更精σ确的描述了一组数据波动的大小4、表示一组数据波动大小的量有____________________二、自学书P143例1、P144例2并完成书后练习三、自学反馈:1.已知某样本的方差是4,则这个样本的标准差是_____.2.已知一个样本1,3,2,x ,5,其平均数是3,则这个样本的标准差是_____.极差是______3.甲、乙两名战士在射击训练中,打靶的次数相同,且打中环数的平均数如果甲的射击成绩比较稳定,那么方差的大小关系是S ___S 。
乙甲x x =甲2乙24.已知一个样本的方差的平均数是S =[(X -4)+(x -4)+…+(x -251122254)],这个样本的平均数是____,样本的容量是_____25、甲、乙两名射击手的测试成绩统计如下表:第一次第二次第三次第四次第五次甲命中环数78889乙命中环数1061068①请分别算出甲、乙两名射击手的平均成绩②请根据这两名射击手的成绩在图中画出折线图(说明极差的概念)③你认为挑选哪一位比较适宜?为什么?一6八年级(5)班要从黎明的张军两位获选人中选出一人去参加学科竞赛,他们在平时的5次测试中成绩如下(单位:分)黎明:652 652 654 652 654张军:667 662 653 640 643如果你是班主任,在收集了上述数据或,你将利用哪些统计的知识来决定这一个名额?四、拓展提高:1、已知一组5个数据的和为100,平方和为2010,求方差和标准差2、若1,2,3,x的平均数为3,又4,5,x,y的平均数为5,则样本0,1,2,3,4,x,y的方差是_________五、检测:求-4,-3, 0, 4 , 3的极差,方差,标准差和平均数方差和标准差21、甲、乙两人在相同条件下各射10(1)请填写下表:平均数方差中位数命中9环以上次数甲71.21乙5.4(2)请你就下列四个不同的角度对这次测试结果进行分析: 从平均数和方差相结合看,谁的成绩好?从平均数和命中9环以上的次数相结合看,谁的成绩较好?从折线图上两人射击命中环数的走势看,谁更有潜力?2、探究:1、分别求下列各组数据的平均数、方差、标准差:①已知两组数据1,2,3,4,5,和101,102,103,104,105.②已知两组数据为1,2,3,4,5和3,6,9,12,15.通过以上两题的计算,你发现的结论是________________________③用你发现的结论来解决以下的问题:已知数据x ,x ,x ………,x 的平局数为a ,方差为b ,标准差为c 则123n 数据x +3,x +3,x +3,……,x +3的平均数为_______,方差为_______,标准差123n 为___________.(2)x -3,x -3,x -3,,……,x -3的平均数为________,方差为________,标123n 准差为__________.(3)数据4x ,4x ,4x ,…,4x 的平均数为_________, 方差为_________,123n 标准差为__________(4)数据2x -3,2x -3,2x -3,…,2x -3的平均数为_________,方差为123n ________, 标准差为__________。
医学统计学复习题(3)医学统计学复习题⼀、名词解释1、总体2、样本3、随机抽样4、变异5、概率6、随机误差(偶然误差)7、参数8、统计量9、算术均数10、中位数11、百分位数12、频数分布表13、⼏何均数14、四分位数间距15、⽅差16、标准差17、变异系数18、标准正态分布19、医学参考值范围20、可信区间21、统计推断22、参数估计23、标准误及24、检验⽔准25、检验效能26、率27、直线相关28、直线回归29、实验研究30、回归系数⼆、单项选择1.观察单位为研究中的()。
A.样本B.全部对象C.影响因素D.个体E.观察指标2.总体是由( )组成。
A.部分个体B.全部对象C.全部个体D.同质个体的所有观察值E.相同的观察指标3.抽样的⽬的是()。
A.研究样本统计量B.由样本统计量推断总体参数C.研究典型案例D.研究总体统计量E.研究特殊个体的特征4.参数是指( ) 。
A.参与个体数B.总体中研究对象的总和C.样本的统计指标D.样本的总和E.总体的统计指标5.关于随机抽样,下列哪⼀项说法是正确的()。
A.抽样时应使得总体中的每⼀个个体都有同等的机会被抽取B.研究者在抽样时应精⼼挑选个体,以使样本更能代表总体C.随机抽样即随机抽取个体D.为确保样本具有更好的代表性,样本量应越⼤越好E.选择符合研究者意愿的样本6.反映计量资料平均的指标是()。
A.频数B.参数C.百分位数D.平均数E.统计量7.表⽰总体均数的符号是( ) 。
A.σB.µC.XD. SE. M8.下列指标中,不属于集中趋势指标的是()。
A.均数B.中位数C.百分位数D.⼏何均数E.众数9. ( )分布的资料,均数等于中位数。
A.对称分布B.正偏态分布C.负偏态分布D.对数正态分布E.正态分布10.⼀组某病患者的潜伏期(天)分别是:2、5、4、6、9、7、10和18,其平均⽔平的指标该选()。
A.中位数B.算术均数C.⼏何均数D.平均数E.百分位数末端有确定数据11.利⽤频数分布表和公式 ∑-+=L m f n f iL M 2(计算中位数时,要求()。
方差和标准差1一、自学指导:看书P 140-P145 回答下列问题:1、一组数据中_____________________的差,叫做这组数据的极差,极差是表示两组数据变化范围的大小,极差大的变化范围______,极差小的变化范围______2、n x x x x ...,,,321为一组数据x 为它们的平均数,方差的基本公式2S =_______________,方差描述了一组数据__________的大小,方差的值越小,数据的波动越小,越________,越__________3、标准差就是____________的算术平方根,公式为σ=___________,它能更精确的描述了一组数据波动的大小4、表示一组数据波动大小的量有____________________二、自学书P143例1、P144例2并完成书后练习三、自学反馈:1.已知某样本的方差是4,则这个样本的标准差是_____.2.已知一个样本1,3,2,x ,5,其平均数是3,则这个样本的标准差是_____.极差是______3.甲、乙两名战士在射击训练中,打靶的次数相同,且打中环数的平均数 乙甲x x =如果甲的射击成绩比较稳定,那么方差的大小关系是S 甲2___S 乙2。
4.已知一个样本的方差的平均数是S 2=51[(X 1-4)2+(x 2-4)2+…+(x 5-4)2],这个样本的平均数是____,样本的容量是_____② 请根据这两名射击手的成绩在图中画出折线图(说明极差的概念)③你认为挑选哪一位比较适宜?为什么?6八年级(5)班要从黎明的张军两位获选人中选出一人去参加学科竞赛,他们在平时的5次测试中成绩如下(单位:分)黎明:652 652 654 652 654张军:667 662 653 640 643如果你是班主任,在收集了上述数据或,你将利用哪些统计的知识来决定这一个名额?四、拓展提高:1、已知一组5个数据的和为100,平方和为2010,求方差和标准差2、若1,2,3,x 的平均数为3,又4,5,x ,y 的平均数为5,则样本0,1,2,3,4,x ,y 的方差是_________五、检测:求 -4,-3, 0, 4 , 3的极差,方差,标准差和平均数方差和标准差2 射击次序2543211、甲、乙两人在相同条件下各射10(1)请填写下表:(2)请你就下列四个不同的角度对这次测试结果进行分析:从平均数和方差相结合看,谁的成绩好?从平均数和命中9环以上的次数相结合看,谁的成绩较好?从折线图上两人射击命中环数的走势看,谁更有潜力?2、探究:1、分别求下列各组数据的平均数、方差、标准差:①已知两组数据1,2,3,4,5,和101,102,103,104,105.②已知两组数据为1,2,3,4,5和3,6,9,12,15.通过以上两题的计算,你发现的结论是________________________③用你发现的结论来解决以下的问题: 十九八七六五四三二一987654321已知数据x 1,x 2,x 3………,x n 的平局数为a ,方差为b ,标准差为c 则 数据x 1+3,x 2+3,x 3+3,……,x n +3的平均数为_______,方差为_______,标准差为___________.(2)x 1-3,x 2-3,x 3-3,,……,x n -3的平均数为________,方差为________,标准差为__________.(3)数据4x 1,4x 2,4x 3,…,4x n 的平均数为_________, 方差为_________, 标准差为__________(4)数据2x 1-3,2x 2-3,2x 3-3,…,2x n -3的平均数为_________, 方差为________, 标准差为__________。
4、已知数据54321,,,x x x x x ,均为互不相等的正整数,且x =3,中位数是3,求这组数据的方差小结:1、知识:描述一组数据通常从两个方面入手:(1)数据的集中程度:描述的统计量有平均数、中位数和众数。
(2)数据的离散程度:描述得统计量有方差和标准差。
2、方法:根据判断、决策的需要来选择、运用统计量:首先要知道的是数据的集中程度,还是数据的离散程度,还是两者都需要;再求相应的统计量,根据相应的统计量,做出判断与决策。
检测:1、已知一个样本1, 2,x ,3,其平均数是2,则这个样本的标准差是_____.方差是______2、已知数据321,,x x x 的平均数x =10,方差2s =2,那么1,1,1321+++x x x 的平均数为____________,标准差为____________频数分布表1活动一:为了了解全班同学的出生月份情况,任意抽取30名同学,对他们的出生月份进行统计分析,下面让我们一起来对被抽到的30名同学出生月份绘制一张出生月份表:请分析那一个月份出生的人数最多?所占的百分比是多少?那一个月份出生的人数最少?所占的百分比值是多少?还希望知道,各季度出生的人数的具体分布情况:活动二:在中学生体能测试中,抽查某班20名学生每分钟脉搏跳动次数,获得如下数据(单位:次):81,73,77,79,80,78,85,80,68,90,80,89,82,81,84,72,83,77,79,75 填写下表:分组讨论:“组区间”、“组距”、“组数”如何定?频数:___________________________频率:___________________________活动三1.下表是八年级某班20名男生100m跑成绩(精确到0.1秒)的频数分布表;(1)求个组频率,并填入上表;(2)求其中100m跑的成绩不低于15.5秒的人数和所占的比例。
注:不低于15.5秒是指大于或等于15.5秒2车站实施电脑售票后大大缩短了购票者等候的时间,一名记者在车站随机访问了25名购票者,了解到他们排队等候的时间分别为(单位:分)1,2,2,2,,1,3,4,2,2,2,2,1,3,4,5,3,2,1,2,2,3,2,3,2.(1)请填写下表的频数分布表:3、某袋饼干的质量的合格范围为50 0.125g,抽检某食品厂生产的200袋该种饼干,质量的频数分布如下表:(1)求个组数据的频数;(2)估计被抽样的袋装饼干的平均质量;(3)由这批抽检饼干估计该厂生产这张饼干的质量的合格率。
频数分布表2活动一:1、一个样本的样本容量是50,极差是10,分组时取组距为2,应分成________组2、已知样本容量为60,数据落在59.5~69.5这组的频率为0.3,则这组数据的频数是________3、已知一个样本中,50个数据分别落在5个组内,第ⅠⅡⅢⅣⅤ,五组数据的个数分别是2,8,15,20,5,则第四组的频率为________4、一个容量是40的样本,把它分布成6组,第一组到第四组的频数分别为5,6,7,10,第五组的频率是0.2,那么第六组的频数是_________活动二:1、测量36名老人的血压,获得每位老人的舒张压数据如下(单位:毫米汞柱):100,110,80,88,90,80, 87, 88,90,78,120,80,82, 84, 88,89,72,100,110,90,80,85,86,88,90, 88, 87,85,70,80, 88, 89,90,92,85,84(1)按组距10毫米汞柱将数据分组,列出频数分布表,填写下表:36名老人的血压,获得每位老人的舒张压分布表(3)画出频数分布折线图活动三:1、在对某班的一次英语测验成绩进行统计分析中,各分数段的人数如图所示(分数取正整数,满分100)(1) 该班共有多少名学生(2) 69.5~79.5分这一组的频数是多少? 频率是多少?2、为了让中学生了解人防知识,增强人防意识,某中学举行了一次“人防知识竞赛”,共有150名学生参加了这次竞赛。
为了了解本次竞赛成绩,对全体学生的成绩进行了统计(得分取整数)。
请你根据下表和图解回答下列问题(1)填满表中的空格,补全频数分布直方图。
(2)全体参赛学生中,竟赛成绩落在哪组范围内的人数最多?答:_________________________________________(3)若成绩在80分以上(含80分)为优秀,则本次比赛成绩优秀的为多少人?答:__________________________________________89.579.5590-10080-8970-7960-6960分以下300502010频数分布表3活动一:1.明明连续记录了10天以来爸爸每天看报的时间,结果(单位:min )如下:12 20 16 20 22 18 19 16 20 23那么出现频率最高的时间是_____,他出现的频数是________,频率是_______.2.初中生的视力状况受到全社会的广泛关注。
某市有关部门对全市3万名初中生视力状况进行了一次抽样调查,如图是利用所得数据绘制的频数分布直方图。
(长方形的高表示该组人数),根据图中所提供的信息回答下列问题:(1)这次调查共抽测了多少名学生?(2)在这个问题中的样本指什么?(3) 若视力在1.9~5.1(含4.9,5.1)均属 正常,那么全市有多少名初中生的视力正常?活动二:1. 某校现有学生1800人,为了增强学生的法律意识,学校组织全体学生进行了一次普法测试。
现抽取部分测试成绩(得分取整数)作文样本,进行整理后分成五组,并绘制成频数分布直方图。
根据图中提供的信息,下列判断不正确的是A.样本容量是48B.估计本次测试全校在90分 以上的学生约有225人C.样本的中位数在70.~80.5这一分数段内 D.样本中50.5~70.5这一分数段的频率是0.255.455.154.854.554.253.9520100.590.580.570.560.550.59632.根据频数分布直方图(如图所示) 回答下列问题(1)总共统计了多少名学生的跳绳情况?(2)哪个次数段的学生数最多?占多大比例?(3)如果跳75次以上(含75次)为达标, 则达标学生占多大比例3、为了了解某中学同龄女同学的身体发育状况,对其中40名女同学的身高进行了测量,结果(单位:cm )如下:164,146,158,159,168,151,164,158,149,157158,162,154,165,153,156,162, 159,158,159,163,162,161,169,158,157,157,166,165,x ,160,159,160,158, 164,154,151,163,160,167.将数据整理后,列出了频率分布表,并画出了如图所示的频数分布直方图。