221用样本的频率分布估计总体分布
- 格式:pdf
- 大小:5.93 MB
- 文档页数:41
用样本的频率分布估计总体的频率分布频率分布是一种用于描述数据集中频次分布情况的统计工具,它描述了每个数值或数值范围出现的频率。
在样本中,我们可以利用频率分布来估计总体的频率分布,从而了解总体的特征。
为了确切估计总体的频率分布,我们需要采取一定的统计方法,下面将介绍一种常用的方法,直方图。
一、直方图的构建构建频率分布的首要任务是将数据分为不同的组或区间。
一般来说,我们会根据数据的特点选择合适的组距,然后根据不同的组距将数据分组。
例如,假设我们有一组数据代表了一些班级学生的测试成绩,我们选择了组距为10,那么我们可以将数据分为以下几个组:然后,我们统计每个组内数据出现的次数,即频次,得到每个组的频次数。
二、计算频率频率是频次的一个重要衍生指标,它反映的是不同数据值或数据范围在总体中的比例。
频率的计算公式为:频率=频次/总样本量在直方图中,我们通常将频率表示为每个组的相对频率。
这样可以更好地反映出组与组之间的差异。
三、绘制直方图绘制直方图是一种直观地表现频率分布的方法。
在直方图上,x轴表示不同的组或区间,y轴表示频率。
我们可以用矩形的高度来表示每个组的频率,矩形的宽度表示组距。
通过绘制多个矩形,可以将频率分布更直观地展示出来。
在绘制直方图时,需要注意以下几点:1.组距应该选择合适,既不过小也不过大,以保证直方图的直观性和准确性。
2.直方图的高度应该符合频率的大小,即高度越高表示频率越大。
3.直方图的矩形之间应该没有间隙,以保证数据的完整性。
四、利用样本频率分布估计总体频率分布样本的频率分布可以提供总体频率分布的一种估计方法。
我们可以基于样本数据构建直方图,并计算每个组的频率。
然后,我们可以将样本频率分布与总体的频率分布进行比较。
如果两个分布形状相似并且没有明显的偏差,那么我们可以认为样本的频率分布可以很好地估计总体的频率分布。
当然,在使用样本频率分布进行总体频率分布估计时,还需要注意以下几点:1.样本的选取应该具有代表性,以避免样本偏差对估计结果的影响。
必修3《2.2.1 用样本的频率分布估计总体的分布》教学设计北京师范大学附属实验中学曹付生一、教学内容分析1.教学主要内容:本节课选自人教B版必修三,第二章第二小节,《用样本的频率分布估计总体的分布》,需要2课时完成,本节课是第一课时。
主要是画出样本的频率分布直方图,并能通过频率分布直方图对总体进行简单的估计。
2.教材编写特点本节是本章教材的第二小节,前面研究了随机抽样的方法及数据收集。
本节课主要研究对收集样本如何进行处理,突出对数据描述、处理的方法,特别是频率分布直方图画法,后面接着研究总体密度曲线、用样本的数字特征估计总体的数字特征以及正态曲线等,可以说本节课内容承上启下,地位非常重要。
从教材编写的角度来看,也正是要体现这一特点。
教材编写,通过对样本分析和总体估计的过程,突出了统计的实用性,从实际出发,收集数据,进行分析整理,再回到实际问题,感受数学对实际生活的需要,体现了统计的思想及其在实际问题中的应用价值,真正体会数学知识与现实生活的联系。
3.教材内容的数学核心思想教材内容的数学核心思想是用样本的频率分布直方图估计总体的统计思想方法。
4.我的思考:本节课重在教会学生绘制频率分布直方图,引导学生通过频率分布直方图分析总体的分布,体会统计的思想、方法。
在通读了教材的基础上,与人教A版的相应内容作了比较,再结合学生的情况,最终选择A版内容,更利于完成教学目标。
(1)人教A版教材中的例子与学生关系紧密,提出的问题更切合学生实际。
背景的熟悉使学生易于课堂参与。
(2)教材中问题的设计利于学生统计思想的建立等。
统计思想方法是数学的一个重要的思想方法,中学学习统计,除了掌握必要的统计知识之处,关键是让学生建立统计在现实生活中具有重要的作用,具有统计意识,同时体会到统计结果随机性、科学性,能作为总体的分布的合理性,是生活中某些问题决策必不可少的依据。
统计教学的核心目标正是让学生体会统计思维的特点和作用。
因此在设计中,从实际问题出发,再回到实际问题的决策,前后呼应,使学生真正体会数据处理的全过程、统计应用于现实生活的全过程,突出统计的思想、方法。
用样本的频率分布估计总体分布教案教案:用样本的频率分布估计总体分布一、教学目标:1.了解频率分布的概念和作用;2.学会使用频率分布来估计总体分布;3.掌握构建频率分布表的方法;4.能够利用频率分布表对总体进行估计。
二、教学内容:1.频率分布的概念和作用2.构建频率分布表的方法3.利用频率分布表对总体进行估计三、教学过程:一、频率分布的概念和作用(10分钟)1.频率分布是指对一组数据中各个数值出现的次数进行统计,从而得到数值的分布情况。
2.频率分布的作用是可以帮助我们了解数据的分布规律,从而对总体进行估计。
二、构建频率分布表的方法(30分钟)1.确定数据的分组区间:首先需要确定分组的宽度,即把数据分为若干个区间。
常用的方法有等宽分组和等频分组。
2.计算各个分组的频数:统计每个区间内数据的个数。
3.计算各个分组的频率:将各个分组的频数除以总样本数量,得到各个分组的频率。
4.制作频率分布表:将各个分组的上界、下界、频数和频率列成表格。
三、利用频率分布表对总体进行估计(40分钟)1.利用频率分布表进行估计的方法有两种:直接估计和间接估计。
2.直接估计是通过频率分布表直接读取各个分组的频率来估计总体分布。
3.间接估计是通过频率分布表的图形化表示来估计总体分布,常用的图形有直方图和折线图。
4.对于直方图,可以通过观察分布的形状和峰值来估计总体的分布情况。
5.对于折线图,可以通过观察分布曲线的形状来估计总体的分布情况。
四、练习和小结(20分钟)1.让学生根据给定的数据,完成频率分布表的构建。
2.让学生根据给定的频率分布表,进行总体分布的估计。
3.对学生进行小结和概念回顾,检查他们对于频率分布和总体估计的理解程度。
四、教学反思:通过本节课的教学,学生能够了解频率分布的概念和作用,掌握构建频率分布表的方法,以及利用频率分布表对总体进行估计的方法。
在教学过程中,可以利用实际案例和练习来加深学生对于频率分布和总体估计的理解。
2.2.1 用样本的频率分布估计总体分布A级基础巩固一、选择题1.没有信息的损失,所有的原始数据都可以从图中得到的统计图是( )A.总体密度曲线B.茎叶图C.频率分布折线图D.频率分布直方图答案:B2.下图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的频率为( )B.C.D.解析:数据总个数n=10,又落在区间[22,30)内的数据个数为4,故所求的频率为410=0.4.答案:B3.某雷达测速区规定:凡车速大于或等于70 km/h的汽车视为“超速”,并将受到处罚.下图是某路段的一个检测点对300辆汽车的车速进行检测所得结果的频率分布直方图,则从图中可得出将被处罚的汽车数为( )A.30辆B.40辆C.60辆D.80辆解析:车速大于或等于70 km/h的汽车数为×10×300=60(辆).答案:C4.一个社会调查机构就某地区居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(如图),为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样方法抽出100人作进一步调查,则在[2 500,3 000)(单位:元)月收入段应抽出的人数为( )A.5 B.25 C.50 D.2 500解析:组距=500,在[2 500,3 000)的频率=0.000 5×500=,样本数为100,则在[2 500,3 000)内应抽100×=25(人).答案:B5.为了了解某校高三学生的视力情况,随机抽查了该校100名高三学生的视力情况,得到频率分布直方图如图所示,由于不慎将部分数据丢失,仅知道后5组的频数和为62.设视力在到之间的学生数为a,最大频率为,则a的值为( )A.27 B.48 C.54 D.64解析:由已知,视力在到之间的学生数为100×=32,又视力在到之间的频率为1-+0.5)×-62100=,所以视力在到之间的学生数为100×=22,所以视力在到之间的学生数a =32+22=54.答案:C二、填空题6.某市共有5 000名高三学生参加联考,为了了解这些学生对数学知识的掌握情况,现从中随机抽出若干名学生在这次测试中的数学成绩,制成如下频率分布表:分组/分频数频率[80,90)①②[90,100)[100,110)[110,120)36[120,130)[130,140)12③[140,150]合计④根据上面的频率分布表,可以①处的数值为________,②处的数值为________. 解析:由位于[110,120)的频数为36,频率=36n=,得样本容量n =120,所以[130,140)的频率=12120=,②处的数值=1------=; ①处的数值为×120=3. 答案:37.从某小学随机抽取100名同学,将他们的身高(单位:cm)数据绘制成频率分布直方图(如图).由图中数据可知a =________.若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法抽取18人参加一项活动,则从身高在[140,150]内的学生中抽取的人数应为________.解析:所有小矩形的面积和等于10×++0.020+a +0.035)=1,解得a =;100名同学中,身高在[120,130)内的学生数是10××100=30,身高在[130,140)内的学生数是10××100=20,身高在[140,150]内的学生数是10××100=10,则三组内的总学生数是30+20+10=60,抽样比是1860=310,所以身高在[140,150]内的学生中选取的人数应为10×310=3.答案: 38.为了解某校教师使用多媒体进行教学的情况,采用简单随机抽样的方法,从该校200名授课教师中抽取20名教师,调查了他们上学期使用多媒体进行教学的次数,结果用茎叶图表示如下:据此可估计该校上学期200名教师中,使用多媒体进行教学次数在[15,25)内的人数为________.答案:60三、解答题9.为了调查甲、乙两个网站受欢迎的程度,随机选取了14天,统计上午8:00-10:00间各自的点击量,得到如图所示的茎叶图.(1)甲网站点击量在[10,40]间的频率是多少? (2)甲、乙两个网站哪个更受欢迎?请说明理由.解:(1)甲网站点击量在[10,40]内的有17,20,38,32,共有4天,则频率为414=27. (2)甲网站的点击量集中在茎叶图的下方,而乙网站的点击量集中在茎叶图的上方,从数据的分布情况来看,甲网站更受欢迎.10.为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2∶4∶17∶15∶9∶3,第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少? 解:(1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小,因此第二小组的频率为:42+4+17+15+9+3=0.08.又因为第二小组的频率=第二小组的频数样本容量,所以样本容量=第二小组的频数第二小组的频率=120.08=150.(2)由题意估计该学校高一学生的达标率约为17+15+9+32+4+17+15+9+3×100%=88%.B 级 能力提升1.为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组,如图所示是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )A .6B .8C .12D .18解析:志愿者的总人数为20(+)×1=50,所以第三组的人数为50×=18,有疗效的人数为18-6=12.答案:C2.在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是________.解析:由题意可知,这35名运动员的分组情况为,第一组(130,130,133,134,135),第二组(136,136,138,138,138),第三组(139,141,141,141,142),第四组(142,142,143,143,144),第五组(144,145,145,145,146),第六组(146,147,148,150,151),第七组(152,152,153,153,153),故成绩在区间[139,151]上的运动员恰有4组,则运动员人数为4.答案:43.从高一学生中抽取50名参加调研考试,成绩的分组及各组的频数如下(单位:分): [40,50),2;[50,60),3;[60,70),10;[70,80),15;[80,90),12;[90,100],8.(1)列出样本的频率分布表;(2)画出频率分布直方图;(3)估计成绩在[70,80)分的学生所占总体的百分比.解:(1)频率分布表如下:成绩分组频数频率[40,50)2[50,60)3[60,70)10[70,80)15[80,90)12[90,100]8合计50(2)由题意知组距为10,取小矩形的高根据表格画出如下的频率分布直方图:(3)由频率分布直方图,可估计成绩在[70,80)分的学生所占总体的百分比是×10==30%.。
§2.2用样本估计总体2.2.1用样本的频率分布估计总体的分布自主学习学习目标1.通过实例体会分布的意义和作用,在表示样本数据的过程中,学会列频率分布表、画频率分布直方图、频率折线图、茎叶图,体会它们各自的特点.2.在解决统计问题的过程中,进一步体会用样本估计总体的思想,会用样本的频率分布估计总体的分布,初步体会样本频率分布的随机性.自学导引1.极差的概念极差是一组数据的________________的差,它反映了一组数据____________,极差又叫________.2.频数、频率的概念将一批数据按要求分为若干组,对落在各个小组内数据的________进行累计,这个累计数叫做各个小组的______,各个小组的______除以________,即得该小组的______.3.频率分布直方图在频率分布直方图中,纵轴表示________________,各小长方形的面积等于________________,所有长方形面积之和等于________.4.频率分布折线图连接频率分布直方图中各个小长方形的____________,就得到频率分布折线图.5.总体密度曲线如果样本容量越大,所分组数越多,频率分布直方图中表示的频率分布就越接近总体在各个小组内所取值的________________的大小;当样本容量不断增大,分组的组距不断缩小时,频率分布直方图实际上越来越接近于____________,它可以用一条____________来描绘,这条光滑曲线就叫做________________.6.茎叶图用茎叶图表示数据的两个优点在于:一是从茎叶图上没有____________的损失,所有的数据信息都可以从茎叶图中得到;二是茎叶图可以在比赛时____________,方便记录与表示.对点讲练知识点一画频率分布直方图、频率分布折线图例1某中学同年级40名男生的体重数据如下(单位:千克):61605959595858575757575656565656565655555555545454545353525252525251515150504948列出样本的频率分布表,画出频率分布直方图,画出频率分布折线图.变式迁移1有一容量为200的样本,数据的分组以及各组的频数如下:[-20,-15),7;[-15,-10),11;[-10,-5),15;[-5,0),40;[0,5),49;[5,10),41;[10,15),20;[15,20),17.(1)列出样本的频率分布表;(2)画出频率分布直方图;(3)求样本数据不足0的频率.知识点二用样本的频率分布估计总体分布寿命(2)画出频率分布直方图及折线图;(3)估计电子元件寿命在400 h以上的概率.变式迁移2为了解小学生的体能情况,抽取了某小学同年级部分学生进行跳绳测试,将所得数据整理后,画出频率分布直方图如图所示,已知图中从左到右前三个小组的频率分别是0.1,0.3,0.4,第一小组的频数为5.(1)求第四小组的频率;(2)问参加这次测试的学生人数是多少?(3)问在这次测试中,学生跳绳次数的中位数落在第几小组内?例3某赛季甲、乙两名篮球运动员每场比赛的得分情况如下:甲的得分12,15,24,25,31,31,36,36,37,39,44,49,50;乙的得分8,13,14,16,23,26,28,33,38,39,51.(1)画出甲、乙两名运动员得分数据的茎叶图;(2)根据茎叶图分析甲、乙两运动员的水平.变式迁移3在某电脑杂志的一篇文章中,每个句子所含的字数如下:10,28,31,17,23,27,18,15,26,24,20,19,36,27,14,25,15,22,11,24,27,17;在某报纸的一篇文章中,每个句子所含的字数如下:27,39,33,24,28,19,32,41,33,27,35,12,36,41,27,13,22,23,18,46,32,22.(1)将这两组数据用茎叶图表示;(2)将这两组数据进行比较分析,得到什么结论?几种表示频率分布的方法的优点与不足(1)频率分布表在数量表示上比较确切,但不够直观、形象,分析数据分布的总体态势不太方便.(2)频率分布直方图能够很容易地表示大量数据,非常直观地表明分布的形状,使我们能够看到在分布表中看不清楚的数据模式.(3)频率分布折线图的优点是它反映了数据的变化趋势.如果样本容量不断增大,分组的组距不断缩小,那么折线图就趋向于总体密度曲线.(4)用茎叶图刻画数据有两个优点:一是所有的信息都可以从这个茎叶图中得到;二是茎叶图便于记录和表示,能够展示数据的分布情况,但当样本数据较多或数据位数较多时,茎叶图就显得不太方便了.课时作业一、选择题1.关于频率分布直方图中的有关数据,下列说法正确的是()A.小矩形的高表示取某数的频率B.小矩形的高表示该组上的个体在样本中出现的频率C.小矩形的高表示该组上的个体数与组距的比值D.小矩形的高表示该组上个体在样本中出现的频率与组距的比值2.关于样本频率分布直方图与总体密度曲线的关系,下列说法中正确的是()A.频率分布直方图与总体密度曲线无关B.频率分布直方图就是总体密度曲线C.样本容量很大的频率分布直方图就是总体密度曲线D.如果样本容量无限增大,分组的组距无限减小,那么相应的频率分布折线图会越来越接近一条光滑曲线,则这条光滑曲线为总体密度曲线3.已知10个数据如下:63,65,67,69,66,64,66,64,65,68.如果对这些数据绘制频率分布表,那么其中在64.5~66.5这组的频率是()A.0.4 B.0.5 C.5 D.4A.0.5 B.0.24 C.0.6 D.0.7二、填空题5.在求频率分布时,把数据分为5组,若已知其中的前四组频率分别为0.1,0.3,0.3,0.1,则第五组的频率是______,这五组的频数之比为________.6.在样本的频率分布直方图中,共有5个小长方形,已知中间一个小长方形面积是其余4个小长方形面积之和的13,且中间一组的频数为10,则这个样本容量是________.三、解答题7.在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为6月1日至30日,评委会把同学们上交作品的件数按5天一组分组统计,绘制了频率分布直方图(如图),已知从左到右各长方形的高的比为2∶3∶4∶6∶4∶1,第三组的频数为12,请解答下列问题:(1)本次活动共有多少件作品参加评比?(2)哪组上交的作品数量最多?有多少件?(3)经过评比,第四组和第六组分别有10件、2件作品获奖,问这两组哪组获奖率较高?8.有关部门从甲,乙两个城市所有的自动售货机中分别随机抽取了16台,记录下一上午各自的销售情况如下:(单位:元)甲18,8,10,43,5,30,10,22,6,27,25,58,14,18,30,41乙22,31,32,42,20,27,48,23,38,43,12,34,18,10,34,23(1)请画出这两组数据的茎叶图.(2)将这两组数据进行比较分析,你能得到什么结论?§2.2用样本估计总体2.2.1用样本的频率分布估计总体的分布自学导引1.最大值与最小值变化的幅度全距2.个数频数频数样本容量频率3.频率与组距的比值相应各组的频率 14.上边的中点5.个数与总数比值总体的分布光滑曲线y=f(x)总体密度曲线6.原始信息随时记录对点讲练例1解(1)计算:61-48=13;(2)决定组距与组数,取组距为2,∵132=612,∴共分7组;(3)决定分点,使分点比数据多一位小数.并把第1小组的分点减小0.5,即分成如下7组:47.5~49.5,49.5~51.5,51.5~53.5,53.5~55.5,55.5~57.5,57.5~59.5,59.5~61.5.(4)51.5~53.5 7 0.175 53.5~55.5 8 0.20 55.5~57.5 11 0.275 57.5~59.5 5 0.125 59.5~61.5 2 0.05 合计4040 1.00(5)(6)取各小长方形上边的中点并用线段连接就构成了频率分布折线图. 变式迁移1 解 (1)分组 频数 频率[-20,-15)7 0.035 [-15,-10)11 0.055 [-10,-5)15 0.075 [-5,0)40 0.200 [0,5) 49 0.245 [5,10) 41 0.205 [10,15) 20 0.100 [15,20) 17 0.085合计200 (2)(3)样本数据不足0的频率为7+11+15+40200=0.365.例2 解 (1)寿命(h ) 频数 频率100~20020 0.10 200~30030 0.15 300~40080 0.40 400~50040 0.20 500~60030 0.15 合计200 1.00 (2)(3)由频率分布表可知,寿命在400 h 以上的电子元件出现的频率为0.20+0.15=0.35,故我们估计电子元件寿命在400 h 以上的频率为0.35.变式迁移2 解 (1)第四小组的频率为1-(0.1+0.3+0.4)=0.2. (2)n =第一小组的频数÷第一小组的频率=5÷0.1=50.(3)由0.1×50=5,0.3×50=15,0.4×50=20,0.2×50=10,得第一、第二、第三、第四小组的频数分别为5,15,20,10.所以学生跳绳次数的中位数落在第三小组内. 例3 解 (1)作出茎叶图如下图:(2)由上面的茎叶图可以看出,甲运动员的得分情况是大致对称的,中位数是36分;乙运动员的得分情况除一个特殊得分外,也大致对称,中位数是26分.因此甲运动员的发挥比较稳定,总体得分情况比乙运动员好.变式迁移3 解 (1)茎叶图如图所示:(2)电脑杂志上每个句子的字数集中在10~30之间,报纸上每个句子的字数集中在20~40之间,说明电脑杂志上每个句子的平均字数要比报纸上每个句子的平均字数要少.课时作业 1.D 2.D3.A [∵在这组中的数只有4个,∴频率=410=0.4.]4.D5.0.2 1∶3∶3∶1∶2 6.40解析 可知中间长方形的面积是所有长方形面积的14,即频率为14,∴样本容量为1014=40.7.解 (1)依题意知第三组的频率为42+3+4+6+4+1=15,又∵第三组的频数为12,∴本次活动的参评作品数为1215=60(件).(2)根据频率分布直方图,可以看出第四组上交的作品数量最多,共有60×62+3+4+6+4+1=18(件)(3)第四组的获奖率是1018=59,第六组上交的作品数量为60×12+3+4+6+4+1=3(件)∴第六组的获奖率为23=69,显然第六组的获奖率较高. 8.解 (1)茎叶图如图所示.(2)由图可以看出乙城市的销售额分布较对称,集中程度较高,故乙城市一上午的销售情况比较稳定且销售额较高.。