高中常见分段函数题型归纳
- 格式:doc
- 大小:205.36 KB
- 文档页数:8
分段函数的几种常见题型及解法1.求分段函数的定义域和值域例1.求函数1222[1,0];()(0,2);3[2,);x x f x xx x +∈-⎧⎪=-∈⎨⎪∈+∞⎩的定义域、值域.【解析】作图, 利用“数形结合”易知()f x 的定义域为[1,)-+∞, 值域为(1,3]-.2.求分段函数的函数值例2.(05年浙江理)已知函数2|1|2,(||1)()1,(||1)1x x f x x x --≤⎧⎪=⎨>⎪+⎩求12[()]f f . 【解析】因为311222()|1|2f =--=-, 所以312223214[()]()1()13f f f =-==+-.3.求分段函数的最值例3.求函数43(0)()3(01)5(1)x x f x x x x x +≤⎧⎪=+<≤⎨⎪-+>⎩的最大值.【解析】当0x ≤时, max ()(0)3f x f ==, 当01x <≤时, max ()(1)4f x f ==, 当1x >时, 5154x -+<-+=, 综上有max ()4f x =.4.求分段函数的解析式例4.在同一平面直角坐标系中, 函数()y f x =和()y g x =的图象关于直线y x =对称, 现将()y g x =的图象沿x 轴向左平移2个单位, 再沿y 轴向上平移1个单位, 所得的图象是由两条线段组成的折线(如图所示), 则函数()f x 的表达式为( )222(10).()2(02)xx x A f x x +-≤≤⎧=⎨+<≤⎩ 222(10).()2(02)xx x B f x x --≤≤⎧=⎨-<≤⎩ 222(12).()1(24)xx x C f x x -≤≤⎧=⎨+<≤⎩ 226(12).()3(24)xx x D f x x -≤≤⎧=⎨-<≤⎩ 【解析】当[2,0]x ∈-时, 121y x =+, 将其图象沿x 轴向右平移2个单位, 再沿y 轴向下平移1个单位, 得解析式为1122(2)111y x x =-+-=-, 所以()22([f x x x =+∈-, 当[0,1]x ∈时, 21y x =+, 将其图象沿x 轴向右平移2个单位, 再沿y 轴向下平移1个单位, 得解析式2(2)1124y x x =-+-=-, 所以1()2([0,2])f x x x =+∈, 综上可得222(10)()2(02)x x x f x x +-≤≤⎧=⎨+<≤⎩, 故选A .5.作分段函数的图像例5.函数|ln ||1|x y e x =--的图像大致是( )AyxCD6.求分段函数得反函数例6已知()y f x =是定义在R 上的奇函数, 且当0x >时, ()31x f x =-, 设()f x 得反函数为()y g x =, 求()g x 的表达式.【解析】设0x <, 则0x ->, 所以()31x f x --=-, 又因为()f x 是定义在R 上的奇函数, 所以()()f x f x -=-, 且(0)0f =, 所以()13x f x -=-, 因此31(0)()0(0)13(0)x x x f x x x -⎧->⎪==⎨⎪-<⎩, 从而可得33log (1)(0)()0(0)log (1)(0)x x g x x x x +>⎧⎪==⎨⎪--<⎩.7.判断分段函数的奇偶性例7.判断函数22(1)(0)()(1)(0)x x x f x x x x ⎧-≥⎪=⎨-+<⎪⎩的奇偶性.【解析】当0x >时, 0x -<, 22()()(1)(1)()f x x x x x f x -=---+=-=, 当0x =时,(0)(0)0f f -==, 当0x <, 0x ->, 22()()(1)(1)()f x x x x x f x -=---=-+=因此, 对于任意x R ∈都有()()f x f x -=, 所以()f x 为偶函数.8.判断分段函数的单调性例8.判断函数32(0)()(0)x x x f x xx ⎧+≥⎪=⎨-<⎪⎩的单调性.【解析】显然()f x 连续. 当0x ≥时, '2()311f x x =+≥恒成立, 所以()f x 是单调递增函数, 当0x <时, '()20f x x =->恒成立, ()f x 也是单调递增函数, 所以()f x 在R 上是单调递增函数; 或画图易知()f x 在R 上是单调递增函数.例9.写出函数()|12||2|f x x x =++-的单调减区间.【解析】121231()()3(2)31(2)x x f x x x x x -+≤-⎧⎪=+-<<⎨⎪-≥⎩, 画图易知单调减区间为12(,]-∞-.9.解分段函数的方程例10.(01年上海)设函数812(,1]()log (1,)x x f x x x -⎧∈-∞=⎨∈+∞⎩, 则满足方程1()4f x =的x 的值为【解析】 若142x -=, 则222x--=, 得2(,1]x =∉-∞, 所以2x =(舍去), 若1814log x =,则14x =, 解得3(1,)x =∈+∞, 所以3x =即为所求.10.解分段函数的不等式例11.设函数1221(0)()(0)x x f x xx -⎧-≤⎪=⎨⎪>⎩, 若0()1f x >, 则0x 得取值范围是( ).(1,1)A - .(1,)B -+∞ .(,2)(0,)C -∞-⋃+∞ .(,1)(1,)D -∞-⋃+∞【解析1】xxy首先画出()y f x =和1y =的大致图像, 易知0()1f x >时, 所对应的0x 的取值范围是(,1)(1,)-∞-⋃+∞.【解析2】因为0()1f x >, 当00x ≤时, 0211x -->, 解得01x <-, 当00x >时,1201x >, 解得01x >, 综上0x 的取值范围是(,1)(1,)-∞-⋃+∞. 故选D.例12.设函数2(1)(1)()4(1)x x f x x ⎧+<⎪=⎨-≥⎪⎩, 则使得()1f x ≥的自变量x 的取值范围为( )A .(,2][0,10]-∞-⋃ B. (,2][0,1]-∞-⋃ C. (,2][1,10]-∞-⋃ D. [2,0][1,10]-⋃ 【解析】当1x <时, 2()1(1)120f x x x x ≥⇔+≥⇔≤-≥或, 所以21x x ≤-≤<或0, 当1x ≥时, ()141310f x x ≥⇔≤⇔≤, 所以110x ≤≤, 综上所述, 2x ≤-或010x ≤≤, 故选A 项.【点评:】以上分段函数性质的考查中, 不难得到一种解题的重要途径, 若能画出其大致图像, 定义域、值域、最值、单调性、奇偶性等问题就会迎刃而解, 方程、不等式等可用数形结合思想、等价转化思想、分类讨论思想及函数思想来解, 使问题得到大大简化, 效果明显.。
微专题18 分段函数10种常考题型总结题型1 分段函数求函数值题型2 已知函数值求参数题型3 解分段函数不等式题型4 分段函数的图象题型5 分段函数的单调性题型6 分段函数的奇偶性题型7 分段函数的值域或最值题型8 分段函数与零点问题题型9 max/min 型分段函数题型10 新定义题一、分段函数1、分段函数的定义函数y x =与函数,0,0x x y x x ³ì=í-<î是同一函数,但在表达方式上有所区别,前者在定义域内有一个表达式,而后者的定义域被分成两部分,而在不同的部分有不同的解析式.在函数的定义域内,对于自变量x 在不同取值范围内,函数有着不同的对应关系,这样的函数通常叫作分段函数.2、对分段函数的理解(1)分段函数是一个函数而不是几个函数。
处理分段函数问题时,首先要确定自变量的取值属于哪一个范围,从而选择相应的对应关系;(2)分段函数的定义域是各段自变量取值范围的并集,各段定义域的交集是空集;(3)分段函数的值域是各段函数在对应自变量的取值范围内值域的并集.3、分段函数常见的几种类型(1)取整函数:()[]f x x =([]x 表示不大于x 的最大整数).(2)1,()(1)1,x x f x x -ì=-=íî为正奇数为非负偶数.(3)含绝对值符号的函数.如2,2()|2|(2),2x x f x x x x +³-ì=+=í-+<-î.(4)自定义函数.如21,1(),122,2x x f x x x x x x--£-ìï=--<£íï->î二、有关分段函数的求解问题1、分段函数的表达式因其特点可以分解成两个或两个以上的不同表达式,所以它的图象也由几部分构成,有的可以是光滑的曲线段,有的也可以是一些孤立的点或线段,而分段函数的值域,也就是各部分的函数值集合的并集,最好的求解方法是“图象法”。
3.1.3 简单的分段函数课程标准学习目标(1)通过具体实例, 了解简单的分段函数, 并能简单应用。
(1)了解分段函数的概念;(2) 会求分段函数的解析式或函数值;(3)分段函数的性质与应用.(难点)知识点01 分段函数定义:有些函数在其定义域中,对于自变量x 的不同取值范围,对应关系不同,这样的函数通常称为分段函数.Eg f(x)=|x|=x, x ≥0―x, x <0,f(x)=(―1)x =―1, x 为奇数1, x 为偶数(x ∈N).【即学即练1】湛江市自来水公司鼓励企业节约用水,按下表规定收取水费,用水量单价(元/吨)不超过40吨的部分 1.8超过40吨的部分2.2求用水量与水费之间的函数关系,并求用水30吨和50吨的水费.解析 设用水量为x 吨,水费为y 元,依题意知当x ≤40时,y =1.8x 元;当x >40时,y =2.2(x ―40)+1.8×40=2.2x ―16元,故用水量与水费之间的函数关系为f (x )= 1.8x , x ≤402.2x ―1.6, x >40,所以f (30)=54,f (50)=109.4,即用水30吨和50吨的水费分别为54元、109.4元.【题型一:求分段函数的函数值】例1.已知函数f (x )=f (x +2),x ≤0x 2―3x +4,x >0,则f (f (―6))=( )A .6B .4C .2D .0【答案】C 【分析】通过函数表达式即可得出f (f (―6))的值.【详解】由题意,在f (x )=f (x +2),x ≤0x 2―3x +4,x >0中,f (f (―6))=f (f (―4))=f (f (―2))=f (f (0))=f (f (2))=f (22―3×2+4)=f (2)=22―3×2+4=2,故选:C.变式1-1.已知函数f (x )=x ―1, x >0x, x =0x+1, x <0那么f(f(3))的值是( )A .1B .2C .3D .5【答案】A【分析】先计算f (3)=3―1=2,从而f [f (3)]=f (2),由此能求出结果.【详解】解:∵函数f (x )=x ―1,x >0x,x =0x +1,x <0,∴f (3)=3―1=2,f [f (3)]=f (2)=2―1=1.故选:A.变式1-2.已知函数f (x )=f (x ―2),x ≥02x 2―3x,x <0,则f(1)=( )A .14B .5C .1D .-1【答案】B【分析】根据分段函数解析式代入计算可得.【详解】因为f (x )=f (x ―2),x ≥02x 2―3x,x <0,所以f (1)=f (―1)=2×(―1)2―3×(―1)=5.故选:B变式1-3.定义:|a bc d |=ad ―bc .若f(x)=|ax ―3xx |,x ≥0f(x +3),x <0,f(1)=4,则f(―2020)=( )A .10B .9C .8D .7【答案】A【分析】依题意可得f(x)=ax 2+3x,x ≥0f(x +3),x <0,由f(1)=4求出a 的值,从而得到f (x )的解析式,再根据f(―2020)=f(―2020+673×3)=f(―1)=f(2)代入计算可得.【详解】依题意可得|ax―3xx |=ax 2+3x ,所以f(x)=|ax ―3x x |,x ≥0f(x +3),x <0=ax 2+3x,x ≥0f(x +3),x <0 ,因为f(1)=4,所以f(1)=a +3=4,所以a =1,所以f(x)=x 2+3x,x ≥0f(x +3),x <0,所以f(―2020)=f(―2020+673×3)=f(―1)=f(2)=4+6=10.故选:A .【方法技巧与总结】根据分段函数求函数值,要注意分段函数中的每段函数中自变量的取值范围.【题型二:根据分段函数求解不等式】例2.设函数f(x)={|x ―1|+1,x ≤11,x >1,则满足f(x +1)<f(2x)的 x 的取值范围是( )A .(―∞ , ―12]B .(―∞,12)C .(―12 , 0)D .(―12 , +∞)【答案】B【分析】化简函数解析式,分区间讨论化简不等式f(x +1)<f(2x)求其解.变式2-1.已知f(x)=1,x⩾0,0,x<0,则不等式xf(x)+x⩽2的解集为()A.[0,1]B.[0,2]C.(―∞,1]D.(―∞,2]【答案】C【解析】分别讨论x≥0与x<0的情况,进而求解即可【详解】当x≥0时,原不等式可化为x⋅1+x≤2,解得0≤x≤1;当x<0时.原不等式可化为x≤2,所以x<0;综上,原不等式的解集为(―∞,1]故选:C【点睛】本题考查分段函数,考查解不等式,考查分类讨论思想变式2-2.设函数f(x)=x2―4x+6,x≥0x+6,x<0,则不等式f(x)>f(1)的解集是()A.(―3,1)∪(2,+∞)B.(―3,1)∪(3,+∞)C.(―1,1)∪(3,+∞)D.(―∞,―3)∪(1,3)【答案】B【分析】首先求出f(1),再结合函数解析式分两段得到不等式组,解得即可.【详解】因为f(x)=x2―4x+6,x≥0x+6,x<0,所以f(1)=12―4+6=3,不等式f(x)>f(1)等价于x≥0x2―4x+6>3或x+6>3x<0,解得0≤x<1或x>3或―3<x<0,所以不等式f (x )>f (1)的解集为(―3,1)∪(3,+∞).故选:B变式2-3.设函数f (x )=x 2+2x,x ≥0―x 2+2x,x <0,若f (f (a ))≥3,则实数a 的取值范围是( )A .―1,+∞)B .(―∞,――1]C .[―3,1]D .[1,+∞)【方法技巧与总结】根据分段函数求解不等式,要注意好分类讨论,找准分类讨论的标准,做到不重不漏.【题型三:根据分段函数所得方程求参数或自变量】例3.已知函数f (x )=(x ―1)2,0<x <22(x ―2),x ≥2,若f (a )=f (a +2),则f (a +=( )A .0B .C .0或D .4―变式3-1.已知函数f(x)=x,x<02x,x≥0,若f(m)=―f(1),则m=()A.―2B.―1C.―4D.2【答案】A【分析】先求出f(1)=2,然后分类讨论代入函数解析式列式求解即可.【详解】由题意可得f(1)=2.当m≥0时,f(m)=2m=―f(1)=―2,解得m=―1,舍去;当m<0时,f(m)=m=―f(1)=―2,解得m=―2,满足题意.所以m=―2.故选:A变式3-2.设f(x)=<x<11),x>1,若f(a)=f(a+1),则=()A.2B.4C.6D.8变式3-3.已知函数f(x)=x2+x,0<x<2―2x+8,x≥2,若f(a)=f(a+2),a∈(0,+∞),则=()A.2B.516C.6D.172【答案】A【分析】根据分段函数,分0<a<2,a≥2,由f(a)=f(a+2)求解.【详解】因为函数f(x)=x2+x,0<x<2―2x+8,x≥2,且f(a)=f(a+2),a∈(0,+∞),【方法技巧与总结】根据分段函数的函数值所得的方程求其中的参数或自变量,要注意变量的取值范围,作好分类讨论.【题型四:求分段函数的解析式】例4.如图,△OAB是边长为2的正三角形,记△OAB位于直线x=t(0≤t≤2)左侧的图形的面积为f (t).则函数y=f(t)的图象大致为()A.B.C.D.变式4-1.已知边长为1的正方形ABCD 中,E 为CD 的中点,动点P 在正方形ABCD 边上沿A→B→C→E 运动.设点P 经过的路程为x .△APE 的面积为y .则y 与x 的函数图象大致为图中的( )A .B .C .D .变式4-2.在同一平面直角坐标系中,函数y =f (x )和y =g (x )的图象关于直线y =x 对称.现将y =g (x )的图象沿x 轴向左平移2个单位,再沿y 轴向上平移1个单位,所得的图象是由两条线段组成的折线(如图所示),则函数f (x )的表达式为( )A .f (x )=2x +2,―1≤x ≤0x 2+2,0<x ≤2B .f (x )=2x ―2,―1≤x ≤0x 2―2,0<x ≤2C .f (x )=2x ―2,1≤x ≤2x 2+1,2<x ≤4D .f (x )=2x ―6,1≤x ≤2x 2―3,2<x ≤4故选:A【方法技巧与总结】求分段函数的解析式,要抓好分段自变量的临界点以及对应的区间范围!【题型五:画具体分段函数的图象】例5.将函数y =|―x 2+1|+2向左、向下分别平移2个、3个单位长度,所得图像为( )A .B .C .D .【答案】C【分析】根据题意,将函数化为分段函数的形式,得到其大致图像,即可判断平移之后的函数图像.【详解】因为y =3―x 2,x ∈[―1,1]x 2+1,x ∈(―∞,―1)∪(1,+∞),可得函数的大致图像如图所示,将其向左、向下分别平移2个、3个单位长度,所得函数图像为C 选项中的图像.故选:C变式5-1.已知f(x)={x +1,x ∈[―1,0)x 2+1,x ∈[0,1],则函数y =f(―x)的图象是( )A .B .C .D .【答案】A【分析】先画函数f(x)的图象,再根据函数f(x)的图象与f(―x)的图象关于y 轴对称,即可选出正确选项.【详解】先画函数f(x)={x +1,x ∈[―1,0)x 2+1,x ∈[0,1]的图象,如下图:因为函数f(x)的图象与f(―x)的图象关于y 轴对称,只有A 选项的图象符合.故选:A.【点睛】本题主要考查分段函数的画法,同时考查函数有关对称性的知识,解题的关键是把原函数的图象画出,那么对称函数的图象随之可得.变式5-2.函数f (x )=x|x |―1的图象大致形状是( )A .B .C .D .变式5-3.设函数f (x )=|x ―1|―2|x +1|.(1)作出函数f (x )的图象;(2)若f (x )的最大值为m ,正实数a,b,c 满足ab +2b 2+3ac +6bc =m ,求a +3b +3c 的最小值.(2)由(1)可知:当x =―1时,∴ab +2b 2+3ac +6bc =2,即∴a +3b +3c =(a +2b )+(b +a +b =3c 时等号成立),∴(a +3b +3c )min =22.【方法技巧与总结】画含绝对值的函数图象,可以利用|x |=x,x ≥0―x,x <0,把函数转化为分段函数,再把分段函数画出.【题型六:与分段函数有关的值域问题】例6.已知函数f (x )=―1x,x <c x 2―x,c ≤x ≤2,若f (x )值域为―14,2,则实数c 的取值范围是( )A .[―1,0]B .―12,0C .―1,―D .―∞,变式6-1.已知函数f (x )=(3a ―1)x +4a,x <2x +1,x ≥2的值域为R ,则a 的取值范围是( )AB+∞C .―∞D +∞变式6-2.已知函数f (x )=(1―2a )x +3a,x <1x ―1x,x ≥1的值域为R ,那么a 的取值范围是( )A .(―∞,―1]B .―C .―D .(0,1)变式6-3.已知函数f (x )=1―x,―1≤x <0|x ―1|,0≤x ≤a的值域是[0,2],则实数a 的取值范围是( )A .(0,1]B .[1,3]C .[1,2]D .[2,3]【答案】B【分析】先求出当―1≤x <0时,f (x )的值域为(1,2].由题意可知,当0≤x ≤a 时,f (x )=|x ―1|=0有解,此时x =1,所以1∈[0,a ],故a ≥1,然后根据f (x )=|x ―1|的单调性对a 分1≤a ≤2和a >2两种情况进行讨论即可求解.【详解】解:由题意,当―1≤x <0时,f (x )=1―x ∈(1,2],又函数f (x )=1―x,―1≤x <0|x ―1|,0≤x ≤a的值域是[0,2],当0≤x ≤a 时,f (x )=|x ―1|=0有解,此时x =1,所以1∈[0,a ],所以a ≥1,当a ≥1时,f (x )=|x ―1|=1―x,0≤x ≤1x ―1,1<x ≤a在[0,1]上单调递减,在[1,a ]上单调递增,又f (0)=1,f (1)=0,f (a )=|a ―1|,①若1≤a ≤2,则|a ―1|≤1,所以f (x )∈[0,1],此时[0,1]∪(1,2]=[0,2],符合题意;②若a >2,则|a ―1|>1,所以f (x )∈[0,|a ―1|],要使[0,|a ―1|]∪(1,2]=[0,2],只须|a ―1|≤2,即2<a ≤3;综上,1≤a ≤3.故选:B.【方法技巧与总结】1 处理与分段函数有关的值域问题,往往可以采取数形结合或分离讨论的方法,在其中函数的单调性往往很重要.2 对于分段函数的值域,应该是两段的值域并到一起,定义域也是两段并到一起,单调区间也是两段的区间总和.二次函数找最值一般情况要和对称轴比较,讨论轴和区间的关系.【题型七:与分段函数的最值问题】例7.已知函数f(x)=x 2―2ax ―2,x ≤2,x +36x―6a,x >2,若f(x)的最小值为f(2),则实数a 的取值范围为( )A .[2,5]B .[2,+∞)C .[2,6]D .(―∞,5]当x ≤2时,f(x)=x 2―2ax ―2,要使得函数f(x)的最小值为f(2),则满足a ≥2,f(2)=2―4a ≤12―6a,解得2≤a ≤5.故选:A .变式7-1.函数f (x )=(1―x )|x ―3|在(―∞,t )上取得最小值―1,则实数t 的取值范围是A .(―∞,2)B .[2―C .[2,2D .[2,+∞)【点睛】本题考查零点分段法得分段函数,以及图象法解决函数最值问题变式7-2.设f (x )=(x -a )2,x ≤0x +1x+a +4,x >0,若f (0)是f (x )的最小值,则a 的取值范围为( )A .[0,3]B .(0,3)C .(0,3]D .[0,3)【答案】A【分析】利用基本不等式可求得f 得出实数a 的取值范围.因此,实数a 的取值范围是[0,3].故选:A.变式7-3.已知f (x )=1―|x +1|,x <0x 2―2x,x ≥0,若实数m ∈[―2,0],则|f (x )―f 在区间[m,m +1]上的最大值的取值范围是( )A B C D 因为f ―12=1―|―12+1因为m ∈[―2,0],所以[m,m |f (x )―f―12|表示函数f (由图可知,当x =1时,|f (x 当m ∈[―2,―1]时,―1∈【方法技巧与总结】1 处理与分段函数有关的最值问题,往往可以采取数形结合或分离讨论的方法,在其中函数的单调性往往很重要;2 结合分段函数的图象的话,要把问题进行等价转化,注意如何才能使得图象取到最值或在哪里取到等.【题型八:其他分段函数的性质及应用】例8.定义max a,b=a,a≥bb,a<b,若函数f(x)=max―x2+3x,|x―3|,若f(x)在区间[m,n]上的值域3,则区间[m,n]长度的最大值为()A.6B.52C.72D.74变式8-1.已知函数f(x)=x2―8x+8,x≥02x+4,x<0.若互不相等的实根x1,x2,x3满足f(x1)=f(x2)=f(x3),则x1+x2+x3的范围是()A.(2,8)B.(―8,4)C.(―6,0)D.(―6,8)【答案】A【分析】根据函数图象有三个实数根的函数值在(―8,4)之间,第一段函数关于x =4对称,即可求出x 2+x 3=8,再根据图象得到x 1的取值范围,即可得到答案.【详解】根据函数的解析式可得如下图象若互不相等的实根x 1,x 2,x 3满足f (x 1)=f (x 2)=f (x 3),根据图象可得x 2与x 3关于x =4,则x 2+x 3=8,当2x 1+4=―8时,则x 1=―6是满足题意的x 1的最小值,且x 1满足―6<x 1<0,则x 1+x 2+x 3的范围是(2,8).故选:A.变式8-2.德国数学家狄利克雷在数学领域成就显著,以其名命名函数y =D (x )=1,x 为有理数0,x 为无理数,该函数被称为狄利克雷函数,关于狄利克雷函数有如下四个命题:①D (D (x ))=0;②对任意x ∈R ,恒有D (x )=D (―x )成立;③任取一个不为零的有理数T ,D (x +T )=D (x )对任意实数x 均成立;④存在三个点A (x 1,D (x 1)),B (x 2,D (x 2)),C (x 3,D (x 3)),使得△ABC 为等边三角形;其中正确的序号为( )A .①②③B .②③④C .②④D .①②③【答案】B【分析】根据狄利克雷函数的定义分别验证x 为无理数和为有理数两种情况,判断①②③;结合狄利克雷函数的定义找特殊点验证④.【详解】对①,当x 为无理数时,D (x )=0,所以D (D (x ))=D (0)=1,当x 为有理数时,D (x )=1,所以D (D (x ))=D (1)=1,所以对任意x ∈R ,恒由D (D (x ))=1,所以①错误;对②,当x 为无理数时,―x 为无理数,所以D (x )=D (―x )=0,当x 为有理数时,―x 为有理数,所以 D (x )=D (―x )=1,所以②正确;对③,任取一个不为零的有理数T ,当x 为无理数时,则x +T 为无理数,变式8-3.已知函数f(x)=ax2―x,x≥―1,―x+a,x<―1.若∃x1,x2∈R,且x1≠x2,使得f(x1)=f(x2)成立,则实数a的取值范围是.所以函数在―∞,12a上单调递减,在所以∃x1,x2∈R,且x1≠x当a<0时:当x≥―1时,函数的开口下,对称轴①当―1<1<0,即a<―由此可知∃x 1,x 2∈R ,且②当12a ≤―1时,即―12≤此时函数的大致图象如图所示:易知函数在R 上单调递减,所以不存在x 1,x 2∈R ,且x 综上,a 的取值范围为:故答案为:―∞,―1∪(0,【方法技巧与总结】处理与分段函数有关的函数性质问题,往往可以采取数形结合或分离讨论的方法,在其中掌握函数的单调性是关键.一、单选题1.已知函数f(x)=2x ,x >0f(x +2),x ≤0,则f (―3)=( )A .1B .2C .4D .8【答案】B【分析】根据分段函数解析式,代入求值即可.【详解】由函数可得,f(―3)=f(―1)=f(1)=21=2.故选:B.2.已知f(x)=―x 2+2x,x≥0x2+2x,x<0,满足f(a)<f(―a),则a的取值范围是()A.(―∞,―2)∪(0,2)B.(―∞,―2)∪(2,+∞)C.(―2,0)∪(0,2)D.(―2,0)∪(2,+∞)A.―1B.―2C.―3D.―4所以a≥0⇒f(a)=|a―1|=所以f(―2a)=f(―1)=―2.故选:B4.如图所示,在直角坐标系的第一象限内,个三角形可得位于此直线左方的图象的面积为f(t),则函数y=f(t)的图象大致是()A .B .C .D .5.已知函数f (x )=x 2―1,x >1,若n >m ,且f (n )=f (m ),设t =n ―m ,则t 的最大值为( )A .1912B ―1C .1712D .43【答案】C【分析】借助分段函数f(x)图象得出m,n 的范围,由m,n 的关系,化t =n ―m 为关于n 的二次函数,由此可得最大值.【详解】作出函数f (x )=3x +1,x ≤1x 2―1,x >1的图象如下图,f(1)=4,令f(x)=4,解得若n>m,且f(n)=f(m可得3m+1=n2―1,可得则t=n―m=n―13(n2对称轴为n=32,3()A.∀x∈[0,+∞),f(x―2)>f(x)B.∀x∈[1,+∞),f(x―2)>f(x)C.∀x∈R,f(f(x))≤f(x)D.∀x∈R,f(f(x))>f(x)【答案】C【分析】分别画出y=|x―2|,y=x2,y=|x+2|的图象,分别判断四个选项,结合图象即可选出正确选项.【详解】解:如图所示:由题意可得A中,f(x)=x2,x∈[0,1]|x―2|,x∈(1,+∞).B中,当1≤x≤2时,﹣1≤x﹣2≤0,f(x―2)=f(2―x)≤2―x=f(x).当2<x≤3时,0<x―2≤1,f(x―2)≤x―2=f(x).当3<x≤4时,1<x―2≤2,f(x―2)=2―(x―2)=4―x≤x―2=f(x).当x≤4,x―2≥2,恒有f(x―2)<f(x),所以B不正确,A也不正确;C中,从图象上看,x∈[0,+∞),f(x)≤x.令t=f(x),则t≥0所以f(t)≤t,即f(f(x))≤f(x),故C正确,D不正确.故选:C.【点睛】本题考查了函数图象的应用,考查了分段函数.本题关键是分别画出三个函数的图象.在画y=|f(x)|的函数图象时,一般地,先画出y=f(x)的图象,再将x轴下方的图象向上翻折即可.7.设函数f(x)=(x―a)2,x≤0x2―2x+3+a,x>0,若f(0)是函数f(x)的最小值,则实数a的取值范围是() A.[﹣1,2]B.(―1,2)C.[0,2)D.[0,2]【答案】D【分析】通过分类讨论a的取值范围,并利用一元二次函数的性质即可求解.【详解】由题意,不妨设g(x)=(x―a)2,ℎ(x)=x2―2x+3+a,①当a<0时,由一元二次函数的性质可知,g(x)=(x―a)2在[a,0]上单调递增,故对于∀x∈[a,0],f(x)=g(x)<g(0)=f(0),这与f(0)是函数f(x)的最小值矛盾;②当a=0时,g(x)=x2,ℎ(x)=x2―2x+3=(x―1)2+2,由一元二次函数的性质可知,g(x)=x2在(―∞,0]单调递减,故对于∀x∈(―∞,0],f(x)=g(x)>g(0)=f(0)=0,当x>0时,f(x)=ℎ(x)=x2―2x+3=(x―1)2+2在x=1时取得最小值2,从而当a=0时,满足f(0)是函数f(x)的最小值;③当a>0时,由一元二次函数性质,g(x)=(x―a)2在(―∞,0]上单调递减,故对于∀x∈(―∞,0],f(x)=g(x)>g(0)=f(0)=a2,当x>0时,f(x)=ℎ(x)=x2―2x+3=(x―1)2+2+a在x=1时取得最小值2+a,若使f(0)是函数f(x)的最小值,只需a2≤2+a且a>0,解得,0<a≤2.综上所述,实数a的取值范围是[0,2].故选:D.8.设函数y=f(x)在R上有定义,对于任一给定的正数p,定义f p(x)=f(x),f(x)>pp,f(x)≤p则称函数y=f p(x)为y=f(x)的“p下界函数”.若给定f(x)=x2―2x―1,p=2,则下列结论不正确的是()A.f p(f(0))>f f p(0)B.f p(f(1))>f f p(1)C.f(f(2))=f p f p(2)D.f(f(3))>f p f p(3)【答案】D【分析】根据已知条件求出f2(x)的解析式,再分别求函数值即可得正确选项.【详解】因为f(x)=x2―2x―1,p=2,由f(x)>p即x2―2x―1>2,可得x2―2x―3>0,解得:x<―1或x>3,由f(x)<p即x2―2x―1<2,可得x2―2x―3<0,解得:―1<x<3,所以f2(x)=x2―2x―1,x∈(―∞,―1)∪(3,+∞)2,x∈[―1,3]对于A:f(0)=―1,f2(f(0))=f2(―1)=2,f2(0)=2,f f p(0)=f(2)=―1,所以f p(f(0))>f f p(0)成立,对于B:f(1)=―2,f2(f(1))=f2(―2)=(―2)2―2×(―2)―1=7,f2(1)=2,f(f2(1))=f(2)=22―2×2―1=―1,所以f p(f(1))>f f p(1)成立,对于C:f(2)=22―2×2―1=―1,f(f(2))=f(―1)=(―1)2―2×(―1)―1=2,f2(2)=2,f2(f2(2))=f2(2)=2,所以f(f(2))=f p f p(2)成立,对于D:f(3)=32―2×3―1=2,f(f(3))=f(2)=―1,f2(3)=2,f2(f2(3))=f2(2)=2,所以f(f(3))>f p f p(3)不成立,所以选项D不正确,故选:D.二、多选题9.为了保护水资源,提倡节约用水,某城市对居民生活用水实行“阶梯水价”,计费办法如下表:每户每月用水量x(m3)水价不超过12m3的部分3元/m3超过12m3但不超过18m3的部分6元/m3超过18m3的部分9元/m3则下列说法正确的是()A.若某户居民某月用水量为10m3,则该用户应缴纳水费30元B.若某户居民某月用水量为16m3,则该用户应缴纳水费96元C.若某户居民某月缴纳水费54元,则该用户该月用水量为15m3D.若甲、乙两户居民某月共缴纳水费93元,且甲户该月用水量未超过12m3,乙户该月用水量未超过18m3,则该月甲户用水量为9m3(甲,乙两户的月用水量均为整数)【答案】AC【分析】根据表格中的“阶梯水价”,逐一选项进行计算并判断正误即可【详解】对于A选项,居民用水量未超过12m3,则按3元/m3计算,故应缴水费为3×10=30元,故A 选项正确;对于B选项,居民用水量超过12m3,但未超过18m3,因此其中12m3,按3元/m3计算;剩余的4m3,按6元/m3计算;故应缴水费为3×12+4×6=60元,故B选项错误;对于C选项,根据居民所缴水费,可以判断居民用水量超过12m3,但未超过18m3,设居民用水量为x,则有3×12+6×(x―12)=54,解得:x=15,故C选项正确;对于D选项,根据题意,设甲居民用水量为x,乙居民用水量为y,则根据已知条件可得:3x+3×12+6 (y―12)=93,整理可得:x+2y=43.通过方程无法确定甲居民用水量一定为9m3,故D选项错误.故选:AC10.已知函数f(x)=2x 2,x≥1f(x+1),x<1,则下列正确的是()A.f[f(0)]=8B.f[f(1)]D.f(x)的值域为C.f=81211.已知全集为R,对于给定数集A,定义函数f(x)=1,x0,x∉A为集合A的特征函数,若函数f(x)是数集A 的特征函数,函数g(x)是数集B的特征函数,则()A.y=f(x)g(x)是数集A∩B的特征函数B.y=f(x)+g(x)―f(x)g(x)是数集A∪B的特征函数C.y=f(x)―f(x)g(x)是数集A∩(∁R B)的特征函数D.y=f(x)+g(x)―2f(x)g(x)是集合∁R(A∩B)的特征函数【答案】ABC【分析】根据特征函数的定义,一一验证选项中的函数是否满足特征函数的定义,即可判断出答案.【详解】对于A,由集合A的特征函数的定义可知A不为空集,则A∩B不为空集,如图示:Ⅰ部分表示A∩B,Ⅱ表示A∩(∁R B),Ⅲ表示表示B∩(∁R A),Ⅳ表示(∁R A)∩(∁R B),,当x∈A∩B时,f(x)=1,g(x)=1,故f(x)g(x)=1,当x∉A∩B时,f(x),g(x)中至少有一个为0,,此时f(x)g(x)=0,符合特征函数的定义,即y=f(x)g(x)是数集A∩B的特征函数,A正确;对于B,当x∈A∪B时,如上图,若x取值在Ⅰ部分,则f(x)=1,g(x)=1,则f(x)+g(x)―f(x)g(x)=1;若x取值在Ⅱ部分,则f(x)=1,g(x)=0,则f(x)+g(x)―f(x)g(x)=1;若x取值在Ⅲ部分,则f(x)=0,g(x)=1,则f(x)+g(x)―f(x)g(x)=1,当x ∉A ∪B 时,f (x )=0,g (x )=0,则f (x )+g (x )―f (x )g (x )=0,符合特征函数的定义,即y =f (x )+g (x )―f (x )g (x )是数集A ∪B 的特征函数,B 正确;对于C ,当x ∈A ∩(∁R B )时,f (x )=1,g (x )=0,则f(x)―f(x)g(x)=1;当x ∉A ∩(∁R B )时,即x 取值在Ⅰ、Ⅲ、Ⅳ部分,若x 取值在Ⅰ部分,f (x )=1,g (x )=1,则f(x)―f(x)g(x)=0,若x 取值在Ⅲ部分,f (x )=0,g (x )=1,则f(x)―f(x)g(x)=0,若x 取值在Ⅳ部分,f (x )=0,g (x )=0,则f(x)―f(x)g(x)=0,故此时符合特征函数的定义,即y =f(x)―f(x)g(x)是数集A ∩(∁R B )的特征函数,C 正确;对于D ,当x ∈∁R (A ∩B )时,即x 取值在Ⅱ、Ⅲ、Ⅳ部分,当x 取值在上图中Ⅳ部分时,此时f (x )=0,g (x )=0,则f(x)+g(x)―2f(x)g(x)=0,不符合特征函数定义,故y =f(x)+g(x)―2f(x)g(x)不是集合∁R (A ∩B)的特征函数,D 错误,故选:ABC【点睛】关键点睛:解答本题的关键在于要理解集合A 的特征函数的定义,明确其含义,从而结合定义去判断一个函数是否为一个数集的特征函数.三、填空题12.已知f (x )=2x 2+3,x ∈[―6,―1)1x,x ∈[―1,1)x,x ∈[1,6]则f = .min {f (x ),g (x )},则M (x )的最大值为 .【答案】3【分析】作出函数f (x ),g (x )的图象,根据定义作出M (x )的图象,求出交点B 的坐标即可得解.【详解】作出函数f (x ),g (x )的图象如图:根据定义可得M (x )的图象如图:由y =x +2y =4―x 2解得x =―2y =0 或x =1y =3,得B (1,3),所以M (x )的最大值为3.故答案为:314.已知关于实数t (―1≤t ≤1)的方程|t ―t 1|+|t ―t 2|=m 和|t ―t 1|―|t ―t 2|=n 对任意t 1,t 2 (―1≤t 2≤t 1≤1)有解,则m +n 的值的集合为 .【答案】{2}【分析】构造函数g (t )=|t ―t 1|+|t ―t 2|与ℎ(t )=|t ―t 1|―|t ―t 2|,分类讨论t 的取值范围,分别作出g (t ),ℎ(t )的图像,分析它们的值域,从而确定m,n 的值,由此得解.【详解】因为―1≤t 2≤t 1≤1,则0≤t 1―t 2≤2,令g (t )=|t ―t 1|+|t ―t 2|=―2t +t 1+t 2,―1≤t ≤t 2t 1―t 2,t 2<t <t 12t ―t 1―t 2,t 1≤t ≤1,其图象如图所示,其值域为[t 1―t 2,max {―2t +t 1+t 2,2t ―t 1―t 2}],由t 1―t 2∈[0,2]可知m ≥2;由(―2t +t 1+t 2)max ≥2或(2t ―t 1―t 2)max ≥2可知m ≤2;所以m =2.令ℎ(t )=|t ―t 1|―|t ―t 2|=t 1―t 2,―1≤t ≤t 2t 1+t 2―2t,t 2<t <t 1t 2―t 1,t 1≤t ≤1,其图象如图所示,其值域为[t 2―t 1,t 1―t 2],由t 2―t 1≤0可知n ≥0;由t 1―t 2≥0可知n ≤0;所以n =0.综上:m =2,n =0,m +n =2,故答案为:{2}.四、解答题15.已知函数f (x )的解析式为f (x )=3x +5,x ≤0x +5,0<x ≤1―2x +8,x >1.(1)求 f (―1)的值;(2)画出这个函数的图象;在函数y =3x +5的图象上截取在函数y =x +5的图象上截取在函数y =―2x +8的图象上截取图中实线组成的图形就是函数16.已知函数f(x)=2|x―2|+|x+1|.(2)请根据f(x)的图像直接写出f(x)>4的解集(无需说明理由)..(2)由题得,当x<―1时,当―1≤x≤2时,―x+5>当x>2时,3x―3>4,解得综上,f(x)>4的解集为x|x17.水培植物需要一种植物专用营养液,已知每投放浓度y(克/升)随着时间x(天)变化的函数关系式近似为y =af(x),其中f(x)=2+x6―x ,x ∈[0,4]5―12x ,x ∈(4,10] ,若多次投放,则某一时刻水中的营养液浓度为每次投放的营养液在相应时刻所释放的浓度之和,根据经验,当水中营养液的浓度不低于4(克/升)时,它才能有效.(1)若只投放一次4个单位的营养液,则有效时间最多可能持续几天?(2)若先投放2个单位的营养液,6天后再投放m 个单位的营养液,要使接下来的4天中,营养液能够持续有效,试求m 的最小值.(x )[0,1](x )(x )0<m <1),存在x 0∈[0,1―m ],使得f (x 0)=f (x 0+m ),则称f (x )具有性质P (m ).(1)已知函数f (x )=x ,x ∈[0,1],判断f (x )是否具有性质(2)已知函数f(x)=―4x+1,0≤x≤144x―1,14<x<34―4x+5,34≤x≤1,若f(x)具有性质P(m),求m的最大值.19.已知集合A为数集,定义f A(x)=1,x∈A0,x∈A.若A,B⊆{x|x≤8,x∈N∗},定义:d(A,B)=|f A(1)―f B(1)| +|f A(2)―f B(2)|+⋅⋅⋅+|f A(8)―f B(8)|.(1)已知集合A={1,2},直接写出f A(1),f A(2)及f A(8)的值;(2)已知集合A={1,2,3},B={2,3,4},C=∅,求d(A,B),d(A,C)的值;(3)若A,B,C⊆{x∣x≤8,x∈N*}.求证:d(A,B)+d(A,C)≥d(B,C).【答案】(1)f A(1)=1,f A(2)=1,f A(8)=0;(2)d(A,B)=2,d(A,C)=3;(3)详见解析【分析】(1)利用题给f A(x)=1,x∈A0,x∈A定义即可求得f A(1),f A(2)及f A(8)的值;(2)利用题给d(A,B)定义即可求得d(A,B),d(A,C)的值;(3)先转化d(A,B)的含义,再利用文氏图即可证得d(A,B)+d(A,C)≥d(B,C)成立.【详解】(1)集合A={1,2},f A(x)=1,x∈A 0,x∈A则f A(1)=1,f A(2)=1,f A(8)=0(2)集合A={1,2,3},B={2,3,4},C=∅,d(A,B)=|f A(1)―f B(1)|+|f A(2)―f B(2)|+⋅⋅⋅+|f A(8)―f B(8)|=|1―0|+|1―1|+|1―1|+|0―1|+|0―0|+|0―0|+|0―0|+|0―0|=2 d(A,C)=|f A(1)―f C(1)|+|f A(2)―f C(2)|+⋅⋅⋅+|f A(8)―f C(8)|=|1―0|+|1―0|+|1―0|+|0―0|+|0―0|+|0―0|+|0―0|+|0―0|=3(3)由d(A,B)=|f A(1)―f B(1)|+|f A(2)―f B(2)|+⋅⋅⋅+|f A(8)―f B(8)|,可得d(A,B)的值即为两集合A,B中相异元素个数,定义Card(A)为集合A中元素个数,则d(A,B)=Card({x|x∈A∪B,x∉A∩B})令M,N,P,Q,R,S,T⊆{x|x≤8,x∈N∗},M∩N∩P∩Q∩R∩S∩T=∅,A=M∪N∪R∪S,B=N∪P∪Q∪R,C=Q∪R∪S∪T,则d(A,B)=Card(M)+Card(P)+Card(Q)+Card(S)d(A,C)=Card(M)+Card(N)+Card(Q)+Card(T)d(B,C)=Card(N)+Card(P)+Card(S)+Card(T)则d(A,B)+d(A,C)=2Card(M)+Card(N)+Card(P)+2Card(Q)+Card(S)+Card(T)d(A,B)+d(A,C)―d(B,C)=2Card(M)+2Card(Q)≥0,故有d(A,B)+d(A,C)≥d(B,C).。
2023届高考数学专项(分段函数)题型归纳与练习【题型归纳】题型一 、分段函数的求值问题由于分段函数的答案解析式与对应的定义域有关,因此求值时要代入对应的答案解析式。
含有抽象函数的分段函数,在处理里首先要明确目标,即让自变量向有具体答案解析式的部分靠拢,其次要理解抽象函数的含义和作用(或者对函数图象的影响)例1、(2021∙江西南昌市∙高三期末(理))已知定义在R 上的奇函数满足,且当时,,其中a 为常数,则的值为( ) A .2B .C .D . 变式1、(辽宁省沈阳市2020‐2021学年高三联考)函数21,13()(4),3x x f x f x x --≤<⎧=⎨-≥⎩,则(9)f = ______. 变式2、(2021∙山东临沂市∙高三二模)已知奇函数,则( )A .B .C .7D .11变式3、(2020届浙江省杭州市建人高复高三4月模拟)对于给定正数k ,定义(),()(),()k f x f x kf x k f x k ≤⎧=⎨>⎩,设22()252f x ax ax a a =--++,对任意x ∈R 和任意(,0)a ∈-∞恒有()()k f x f x =,则( ) A .k 的最大值为2 B .k 的最小值为2C .k 的最大值为1D .k 的最小值为1题型二、与分段函数有关的方程或不等式含分段函数的不等式在处理上通常是两种方法:一种是利用代数手段,通过对x 进行分类讨论将不等式转变为具体的不等式求解。
另一种是通过作出分段函数的图象,数形结合,利用图像的特点解不等式例2、【2018年高考浙江】已知λ∈R ,函数f (x )=24,43,x x x x x λλ-≥⎧⎨-+<⎩,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________.变式1、(2021∙浙江高三期末)已知,则______;若,则______.变式2、(2021∙山东烟台市∙高三二模)已知函数是定义在区间上的偶函数,且当()f x ()(6)f x f x =-03x ≤<21),01()2(2),13a x x f x x x ++≤≤⎧⎪=⎨-<<⎪⎩(2019)(2020)(2021)f f f ++2-1212-()()31,0,0x x f x g x x ⎧-<⎪=⎨>⎪⎩()()12f g -+=11-7-(),201,0x x f x x x ⎧≥=⎨-+<⎩()2f =()2f α=α=()f x ()(),00,-∞+∞时,,则方程根的个数为( )A .3B .4C .5D .6变式3、(2021∙山东高三其他模拟)已知,,则方程的解的个数是( ) A .B .C .D .题型三、分段函数的单调性分段函数单调性的判断:先判断每段的单调性,如果单调性相同,则需判断函数是连续的还是断开的,如果函数连续,则单调区间可以合在一起,如果函数不连续,则要根据函数在两段分界点出的函数值(和临界值)的大小确定能否将单调区间并在一起。
x高中数学-分段函数及题型【解析】4x 3 (x0)例1 •求函数f(x)x 3 (0 x 1)的最大值.x 5 (x1)【解析】当x时,fmax(x)f(0)3,当 0 x 1 时,f max (X ) f (1) 4,当 x 1 时,x 51 5 4,综上有f max (x)4 .【经典例题赏析】例2.在同一平面直角坐标系中 x 0,f( x)(x)2( 1) x 2(x0, x 0, f( x)x)2( x1)任意 x R 都有 f( x)f (x),所以f(x)为偶函数.例4 •判断函数 f(x)x 3 x (x 0)2 x的单调性.(x 0)1) f (x),当 x2x (x 1) f (x)因此,对于函数y f(x)和y g(x)的图象关于直线 y x 对称,现将y g(x)的图象沿x 轴向左平移2个单位 ,再沿y 轴向上平移1个单位,所得的图象是由两条线段组成的折线 (如图所示),则函数f (x)的表达式为(B. C. 2x 2 (1x 0) x 22 (0x 2) y i f k2x 2 (1 x 0) 3'/x 2 2 (0x 2)2 “7 2x 2 (1 x 2)/x 21 (2 x 4) -2 -1o12x 6 (1 x 2)x2 3 (2 x 4)例3 •判断函数f(x)x 2(x 1)x 2(x(x 0) 的奇偶性.1)(x0)答案A.)f(x)f(x)f(x)► x D. f(x)【解析】显然f(x)连续.当x 0时,f (x) 3x 21 1恒成立,所以f(x)是单调递增函数,当x 0时,在R 上是单调递增函数 例5•写岀函数 f(x) |12x| |2 x|的单调减区间.3x 1 (x2)【解析】f (x)3 x (; x 2),画图易知单调减区间为(,;]3x 1(x 2)2 x 1 (x0)例6 •设函数f(X )1,若f (x 0) 1,则x 0得取值范围是()答案Dx 2(x 0)故选A 项.A.( 1,1)B.( 1,)C.( J2)(x1)2(x 1)例7 •设函数 f(x)4 - ,x 1(x 1)范围为()A •(,2] [0,10]B(0, ) D- ( , 1) (1,)则使得f (x) 1的自变量x 的取值 (,2] [0,1]f '(x)2x 0恒成立,f (x)也是单调递增函数所以f (x)在R 上是单调递增函数或画图易知f(x)C. ( , 2] [1,10]【解析】D. [ 2,0] [1,10]2当 x 1 时,f (X )1 (x 1)x 2或x 0 , 所以x2或 0 x 1 ,当 x 1 时,f(x) 14 、、x 1 1 1 3 x 10,所以1 x 10,综上所述x 2或 0 x 10,t 20,4.某商品在近30天内每件的销售价格(元)与时间(天)的函数关系是p t 100,该商品的日销售量 Q (件)与时间t (天)的函数关系是 Q t 40 (0 t 金额的最大值,并指岀日销售金额最大的一天是30天中的第几天?2、 针对性课堂训练x 的图象是1 .函数y 函数 A . B. C. y ig x ( 是偶函数,在区间是偶函数,在区间是奇函数,在区间是奇函数,在区间画岀函数y |x 3x 2( 4 3x 2(1 x(0, (0,,0)上单调递增 ,0)上单调递减)上单调递增 )上单调递减1| 1) 3)|2x3 1在区间[4,3)的图象0 t 25,t N, 25 t 30,t N.30, t N ),求这种商品的日销售。
匕5(osxia(小,求 f{f[f(a)]} (avO)的值.分析:求此函数值关键是由内到外逐一求值,即由a<0, f(a)=2a,又0<2a<l,怎又声〉所以,分段函数常见题型及解法分段函数是指口变量在两个或两个以上不同的范围內,有不同的对应法则的函数,它是一个函数, 非儿个函数;它的定义域是各段函数定义域的并集,其值域也是各段函数值域的并集.与分段函数有关的类型题的求解,在教材小只出现了由分段函数作出其图象的题型,并未作深入说明, 因此,对于分段函数类型的求解不少同学感到困难较多,现举例说明其求解方法.1.求分段函数的定义域和值域= xw (o,2);例1・求函数xw[2,+oo);的定义域、值域. 解析:作图,利用“数形结合”易知门兀)的定义域为[一1,+°°),值 域为(-1, 2JU {3}.例2.求函数X®的值或解析:因为当沦0时,x 2+l>l ;当x<0时,-x 2<0.所以,原函数的值域M[1,4-OO )U(-oo,0).2.求分段函数的函数值例1.已知函数(I 兀 1> 1)/[/({)]解析:因为 /(i )=li-i|-2 = -14I 所以皿处心例2.(2知函数注:求分段函数值的关键是根据口变量的取值代入相应的函数段.g(x) = 练1 •设e\x<0. Inx, x > 0.练2.设2广Sv 2), log3(x2-i)3.求分段函数的最值4x + 3 (x<0)/(%) = * x-t-3(0<x< 1)例1.求函数卜小(X>1)的最大值.解析:当兀<° 吋,人ax (X )= /(°)= 3,当° VxWl 时,ZnaxS) = '(」)= ",当 X > 1 吋,~x + 5<-1 + 5 = 4综 |-有 f nax (") — °例2.设a 为实数,函数f(x)=x 2+|x ・a|+l,xWR,求f(x)的最小值. 分析:因为原函数可化为所以,只要分别求出其最小值,再取两者较小者即可.1+<!*■ —解:当 x<a 吋,函数 f(x)=x 2-x+a+l 才4,a < —所以若 S 则函数f(x)在(ga ]上单调递减,从而f(x)在(・oo,a ]上的最小值为f(a)=a 2+l.<i > —/(^ ■三*a若 2,贝ij 函数f (x )^(-oo,a ]上的最小值为24<ji-lJ(-!)---« b _若 2 ,则函数f (x )在[a,+s)上的最小值为 丫 4 ,且 2*若 2 ,则函数f(x)^E [a,+co)±的最小值为f(a)=a2+1.*丄综上,当 3时,函数f(x)的最小值是';当2 2时,函数f(x)的最小值是a'+l ;当 2时,函数f(x)的最小值是 4.注:分段函数最值求解方法是先分别求出各段函数的最值,再进行大小比鮫,从I 何达到求解的冃的.4.求分段函数的解析式当x>a 时, 函数例1.在同一平面直角坐标系中,函数y = 和y = 的图彖关于直线>, = x对称,现将-v =巩兀)的图彖沿兀轴向左平移2个单位,再沿y 轴向上平移1个单位,所得的图彖是由两条线段组成的折线(如图所示),则函数/(X )的表达式为()解析:当"[-2,0]时, 尸和+ 1,将其图象沿兀轴向右平移2个单位,再沿y 轴向下平移1个 单位,得解析式为)=+(兀-2) + 1-1 = *兀-1,所以 f(x) = 2x + 2 (XG [-1,0])?当"[0,1]时, y = 2x + l,将其图彖沿x 轴向右平移2个单位,再沿)'轴向下平移1个单位,得解析式y = 2(x-2) +1 -1 = 2x-4所以 /(x) = y% + 2 (尢c[0,2]),综上可得故选A.例2•某蔬菜基地种植西红柿,由历年市场行情得知,从2刀1 H 起的300天内,西红柿售价与上市时 间的关系用图1的一•条折线表示;西红柿的种植成木与上市时间的关系用图2的抛物线段表示: ⑴写出图1表示的市场售价与时间的函数关系式P=f(t),写出图2表示的种植成本与上市时间的函数关系 式Q=g(t); (II)认定市面上售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?解析:⑴由图I 可得市场售价与时间的关系为300 r (0£/£200))B. C.f(x) =fM =2x + 2 于+ 2 2x-2 7-2[2x-2D. f(x) =2x-6 f-3(-l<x<0)(0 < x < 2)(-l<x<0) (0<x<2) (l<x<2) (2<x<4)(l<x< 2) (2 < x < 4)-• 333 、・ 、 、--- JI/' ■ / i:: ・200 300°图1V23工 153 1 、■、 』1 1 11- •十: 1 11 1 • • 1 ill 0】53 :刃 300 t图22«-300 C200<«<?iJO) 山图2可得种植成本与吋间的函数关系为(0<t<300)o(II)设t 吋间的纯收益为h(t),由题意得丄尸丄“直(pit^2Da ).200 2 2-1^5(200 <Zi300X 2002 2再求h(t)的最大值即可。
函数专题:分段函数的6种常见考法一、分段函数的概念若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.【注意】分段函数是一个函数而不是几个函数二、分段函数问题解题思路1、分段求解时解决分段函数问题的基本原则;当求()0f x 的值时,要先判断0x 属于定义域中的“哪段”,然后再代入相应的解析式求解。
2、有关分段函数的不等式问题,要先按照分段函数的“分段”进行分类讨论,从而将问题转化为简单的不等式组来解。
3、已知分段函数,求参数值,往往要对含参数的自变量属于“哪段”进行分类讨论,然后再代入相应的解析式,列出方程求解,当出现()()f f a 的形式时,应从内往外依次求值。
4、求解分段函数参数的取值范围问题时,一般将参数当成已知,画出分段函数图象,根据函数图象列出满足要求的不等式(组)。
题型一 求分段函数值【例1】已知函数()2,222,2xx x f x x ⎧>⎪=⎨+≤⎪⎩,则()1f =( ) A .1 B .2 C .4 D .8 【答案】C【解析】当2x ≤时,()22x f x =+,()11224f ∴=+=,故选:C.【变式1-1】若()()231log (1)x x f x x x ⎧≤=⎨>⎩,则()()016f f +=_________.【答案】5【解析】因函数()()231log (1)x x f x x x ⎧≤=⎨>⎩,所以()()020163log 16145f f +=+=+=.【变式1-2】若函数()2321,3,log ,3,x x f x x x ⎧+<=⎨⎩则()()2f f =( )A .4B .3C .2D .1 【答案】C【解析】因为()222219f =⨯+=,所以()()()329log 92f f f ===,故选:C.【变式1-3】已知函数()()21log 21,02,0,x x x f x x +⎧+>=⎨≤⎩,则()()2f f -=______.【答案】1【解析】由题意可得()11222f --==,所以()()21log 2122f f f ⎛⎫= ⎪⎝⎭==-.题型二 根据分段函数值求参数【例2】已知函数()2,0,2,0.x x a x f x x ⎧+≤=⎨>⎩若()14f f ⎡⎤-=⎣⎦,且1a >-,则=a ( ) A .12- B .0 C .1 D .2 【答案】C【解析】由题意知,2(1)(1)1f a a -=-+=+,又1a >-,所以10a +>,所以1[(1)](1)24af f f a +-=+==,解得1a =,故选:C【变式2-1】设函数21,1()2,1x a x x f x x -⎧+<=⎨≥⎩,若1124f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,则=a _____________. 【答案】134【解析】因为21,1()2,1x a x x f x x -⎧+<=⎨≥⎩,所以21151224f ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,所以1124f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,得5144f ⎛⎫= ⎪⎝⎭, 所以54124a -=,52422a --=, 所以524a -=-,得134a =,【变式2-2】设函数2,1(),1x a x f x x x ⎧+≥=⎨-<⎩,若()()29f f -=,则实数a 的值为___________. 【答案】5【解析】()22f -=,()()()2249f f f a -==+=,解得:5a =.【变式2-3】(多选)已知()12,0,ln ,0,x x f x x x -≤⎧=⎨>⎩,若()()1f f a =,则实数a 的值可以为( )A .1e 2- B .12 C .1 D .e e 【答案】ACD【解析】因为()12,0,ln ,0,x x f x x x -≤⎧=⎨>⎩,()()1f f a =,所以当0a ≤时,()12>0f a a =-,所以()()()()12ln 121f f a f a a =-=-=, 所以12e a -=,解得1e 02a -=<,所以1e2a -=满足; 当01a <≤时,()ln 0f a a =≤,所以()()()ln 12ln 1f f a f a a ==-=, 所以ln 0a =,解得1a =,满足题意;当>1a 时,()ln >0f a a =,所以()()()()ln ln ln 1f f a f a a ===, 所以ln e a =,解得e e a =,满足题意; 故选:ACD.题型三 根据分段函数的单调性求参数【例3】若函数()()22212311x ax x f x a x x ⎧--+>⎪=⎨-+≤⎪⎩,,是R 上的减函数,则实数a 的取值范围是( )A .213⎛⎤⎥⎝⎦,B .215⎡⎫-⎪⎢⎣⎭, C .23⎛⎫+∞ ⎪⎝⎭, D .223⎛⎤ ⎥⎝⎦, 【答案】D【解析】由题意得,1a -≤ 解得1a ≥-;230-<a ,解得23a >;当1x =时122231--+≤-+a a ,解得2a ≤. 综上得实数a 的取值范围为223a <≤.故选:D.【变式3-1】已知函数()()2,0112,0x x f x x x a x a x ⎧≤⎪=-⎨⎪--++>⎩在R 上单调递减,则实数a 的取值范围是( )A .()1,0-B .[]1,0-C .()1,-+∞D .[)1,-+∞ 【答案】B【解析】当0x ≤时,()1111x f x x x ==+--单调递减, ()f x 在R 上递减, 102a +∴-≤且()20010201a a ≥--+⨯+-, 解得10a -≤≤,故选:B .【变式3-2】已知函数()()2,211,22x a x x f x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩满足对任意的()1212,x x x x ≠都有()()12120f x f x x x -<-成立,则a 的取值范围为( )A .(),2-∞-B .13,8⎛⎤-∞ ⎥⎝⎦ C .(],2-∞ D .13,28⎡⎫⎪⎢⎣⎭【答案】B【解析】对任意的()1212,x x x x ≠都有()()12120f x f x x x -<-成立,()f x ∴在R 上单调递减,()22011222a a -<⎧⎪∴⎨⎛⎫-≥- ⎪⎪⎝⎭⎩,解得:138a ≤,即实数a 的取值范围为13,8⎛⎤-∞ ⎥⎝⎦.故选:B.【变式3-3】已知(6)4,1()log ,1a a x a x f x x x --<⎧=⎨≥⎩在区间-∞+∞(,)上是单调递增函数,则实数a 的取值范围是( )A .(1,6)B .6[,6)5C .6[1,]5D .(1,)+∞ 【答案】B【解析】()f x 在-∞+∞(,)上为单调递增函数;601(6)14log 1a a a a a ->⎧⎪∴>⎨⎪-⨯-≤⎩,解得665a ≤<;∴实数a 的取值范围为6[,6)5.故选:B .【变式3-4】若2210()(1)(1)20axax x f x a a x ⎧+≥=≠⎨-⋅<⎩,在定义域(,)-∞+∞上是单调函数,则a 的取值范围_______. 【答案】((,21,2⎤-∞⎦.【解析】()f x 在定义域(,)-∞+∞上是单调函数,①函数的单调性是增函数时,可得当0x =时,()20121a -⋅≤即,211a -≤解之得22a -≤0x ≥时,21y ax =+是增函数,0a ∴>0x <时 2(1)2ax a -⋅是增函数,210a ∴->,得1a <-或1a >,综上实数a 的取值范围是12a <≤②函数的单调性是减函数时,可得当0x =时, ()20121a -⋅≥即211a -≥,解之得2a ≤2a ≥0x ≥时,21y ax =+是减函数,0a ∴<又0x <时, 2(1)2axa -⋅减函数,210a ∴->,得1a <-或1a >综上:实数a 的取值范围是2a ≤- 综上所述:a 的取值范围为((,21,2⎤-∞-⎦。
高考数学:分段函数常考题型有这几种,必须要掌握高考数学函数这一块经常会考察到分段函数,题目有的比较简单,有的是比较难。
在这里赵老师给大家总结一下分段函数都考什么题型,每一类题型有哪些规律和技巧!第一,求值。
这一类题目是非常简单的,我们来看几个高考真题:2016二卷理像这类的题目,无非就是先判断要求的式子里面括号内部分处于哪个范围,带入分段函数哪一段。
f(-2)很显然是将-2带入上段函数,可以得到f(-2)=3。
log(2)12的值在3和4之间,所以把log(2)12带入下段函数。
为了方便书写,我们设t=log(2)12。
根据函数的定义,两边都取对数,也就是log(2)12-1=log(2)f(t)根据对数函数运算法则:log(2)【12/f(t)】=1 所以12/f(t)=2 所以f(t)=6 。
所以f(-2)+f(log(2)12)=9第二,求范围。
(给不等式,或者给零点个数,给其他点的个数)这一类题一般来说难度要大一些,但是有一定的技巧,那就是通过图像来解题。
先看一下给不等式的情况:2013一卷理解析:很多学生看到这样的题目可能感觉很懵,那就是按照我们总结的技巧,通过图像来做题。
我们可以先画出f(x)的图像,然后再画出lf(x)l的图像。
要想让lf(x)l≥ax,也就是说y=lf(x)l的图像一直在y=ax函数图像上方,然后看一下怎么画。
上面的图中,第一象限和第三象限合在一块,就是f(x)的图像。
l f(x)l的图像,就是把第三象限翻到第二象限的绿色图像,以及第一象限的对数图像。
要想让l f(x)l≥ax 那么前者图像总是要在一次函数图像上方。
如果a大于0的话,直线y=ax随着x的增加,总有当x大于等于某个值后,图像在l f(x)l的上方。
所以从图像上,很显然,当a<0,且与绿色抛物线图像相切时是临界值,而且切点是原点。
然后再根据导数相关运算可以得到a的临界值是-2。
很显然当直线斜率在【-2,0】时,直线图像永远在l f(x)l图像的下方。
函数的概念和性质考点 分段函数分段函数是指自变量在两个或两个以上不同的范围内, 有不同的对应法则的函数, 它是一个函数, 却又常常被学生误认为是几个函数; 它的定义域是各段函数定义域的并集, 其值域也是各段函数值域的并集. 由于它在理解和掌握函数的定义、函数的性质等知识的程度的考察上有较好的作用, 时常在高考试题中“闪亮”登场, 本文就几种具体的题型做了一些思考, 解析如下:1.求分段函数的定义域和值域例1.求函数1222[1,0];()(0,2);3[2,);x x f x xx x +∈-⎧⎪=-∈⎨⎪∈+∞⎩的定义域、值域.2.求分段函数的函数值例2.已知函数2|1|2,(||1)()1,(||1)1x x f x x x--≤⎧⎪=⎨>⎪+⎩求12[()]f f .3.求分段函数的最值例3.求函数43(0)()3(01)5(1)x x f x x x x x +≤⎧⎪=+<≤⎨⎪-+>⎩的最大值.4.求分段函数的解析式例4.在同一平面直角坐标系中, 函数()y f x =和()y g x =的图象关于直线y x =对称, 现将()y g x =的图象沿x 轴向左平移2个单位, 再沿y 轴向上平移1个单位, 所得的图象是由两条线段组成的折线(如图所示), 则函数()f x 的表达式为( )222(10).()2(02)x x x A f x x +-≤≤⎧=⎨+<≤⎩222(10).()2(02)x x x B f x x --≤≤⎧=⎨-<≤⎩222(12).()1(24)x x x C f x x -≤≤⎧=⎨+<≤⎩226(12).()3(24)x x x D f x x -≤≤⎧=⎨-<≤⎩yx5.作分段函数的图像 例5.函数|ln ||1|x y ex =--的图像大致是( )ACD6.求分段函数得反函数例6已知()y f x =是定义在R 上的奇函数, 且当0x >时, ()31xf x =-, 设()f x 的反函数为()y g x =, 求()g x 的表达式.7.判断分段函数的奇偶性例7.判断函数22(1)(0)()(1)(0)x x x f x x x x ⎧-≥⎪=⎨-+<⎪⎩的奇偶性.8.判断分段函数的单调性例8.判断函数32(0)()(0)x x x f x xx ⎧+≥⎪=⎨-<⎪⎩的单调性.例9.写出函数()|12||2|f x x x =++-的单调减区间.9.解分段函数的方程例10.设函数812(,1]()log (1,)x x f x x x -⎧∈-∞=⎨∈+∞⎩, 则满足方程1()4f x =的x 的值为10.解分段函数的不等式例11.设函数1221(0)()(0)x x f x x x -⎧-≤⎪=⎨⎪>⎩, 若0()1f x >, 则0x 得取值范围是( ).(1,1)A - .(1,)B -+∞ .(,2)(0,)C -∞-⋃+∞ .(,1)(1,)D -∞-⋃+∞例12.设函数2(1)(1)()4(1)x x f x x ⎧+<⎪=⎨-≥⎪⎩, 则使得()1f x ≥的自变量x 的取值范围为( )v1.0 可编辑可修改A .(,2][0,10]-∞-⋃ B. (,2][0,1]-∞-⋃ C. (,2][1,10]-∞-⋃ D. [2,0][1,10]-⋃反馈练习1.(2013新课标全国Ⅰ,5分)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≤0,ln x +1,x >0.若|f (x )|≥ax ,则a 的取值范围是( )A .(-∞,0] B.(-∞,1] C .[-2,1]D .[-2,0]2.(2013福建,4分)已知函数f (x )=⎩⎪⎨⎪⎧2x 3,x <0,-tan x ,0≤x <π2,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫π4=________.3.(2013北京,5分)函数f (x )=⎩⎪⎨⎪⎧log 12x , x ≥1,2x , x <1的值域为________.4.(2012江西,5分)若函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,lg x ,x >1,则f (f (10))=( )A .lg 101B .2C .1D .05.(2011北京,5分)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎪⎨⎪⎧cx ,x <A ,cA ,x ≥A(A ,c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么c 和A 的值分别是( )A .75,25B .75,16C .60,25D .60,166.(2012江苏,5分)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f (12)=f (32),则a +3b 的值为________.7.(2011江苏,5分)已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为________.函数的概念和性质考点一 分段函数分段函数是指自变量在两个或两个以上不同的范围内, 有不同的对应法则的函数, 它是一个函数, 却又常常被学生误认为是几个函数; 它的定义域是各段函数定义域的并集, 其值域也是各段函数值域的并集. 由于它在理解和掌握函数的定义、函数的性质等知识的程度的考察上有较好的作用, 时常在高考试题中“闪亮”登场, 本文就几种具体的题型做了一些思考, 解析如下:1.求分段函数的定义域和值域例1.求函数1222[1,0];()(0,2);3[2,);x x f x xx x +∈-⎧⎪=-∈⎨⎪∈+∞⎩的定义域、值域. 【解析】作图, 利用“数形结合”易知()f x 的定义域为[1,)-+∞, 值域为(1,3]-.2.求分段函数的函数值例2.已知函数2|1|2,(||1)()1,(||1)1x x f x x x --≤⎧⎪=⎨>⎪+⎩求12[()]f f .【解析】因为311222()|1|2f =--=-, 所以312223214[()]()1()13f f f =-==+-.3.求分段函数的最值例3.求函数43(0)()3(01)5(1)x x f x x x x x +≤⎧⎪=+<≤⎨⎪-+>⎩的最大值.【解析】当0x ≤时, max ()(0)3f x f ==, 当01x <≤时, max ()(1)4f x f ==, 当1x >时, 5154x -+<-+=, 综上有max ()4f x =.4.求分段函数的解析式例4.在同一平面直角坐标系中, 函数()y f x =和()y g x =的图象关于直线y x =对称, 现将()y g x =的图象沿x 轴向左平移2个单位, 再沿y 轴向上平移1个单位, 所得的图象是由两条线段组成的折线(如图所示), 则函数()f x 的表达式为( )222(10).()2(02)xx x A f x x +-≤≤⎧=⎨+<≤⎩ 222(10).()2(02)xx x B f x x --≤≤⎧=⎨-<≤⎩ 222(12).()1(24)x x x C f x x -≤≤⎧=⎨+<≤⎩226(12).()3(24)x x x D f x x -≤≤⎧=⎨-<≤⎩【解析】当[2,0]x ∈-时, 121y x =+, 将其图象沿x 轴向右平移2个单位, 再沿y 轴向下平移1个单位, 得解析式为1122(2)111y x x =-+-=-, 所以()22([1,0])f x x x =+∈-, 当[0,1]x ∈时, 21y x =+, 将其图象沿x 轴向右平移2个单位, 再沿y 轴向下平移1个单位, 得解析式2(2)1124y x x =-+-=-, 所以12()2([0,2])f x x x =+∈, 综上可得222(10)()2(02)x x x f x x +-≤≤⎧=⎨+<≤⎩, 故选A .y x5.作分段函数的图像 例5.函数|ln ||1|x y ex =--的图像大致是( )ACD解析:在定义范围讨论,当0<x<1时,11y x x=+-;当x>1时1y =,故选D 6.求分段函数得反函数例6已知()y f x =是定义在R 上的奇函数, 且当0x >时, ()31xf x =-, 设()f x 的反函数为()y g x =, 求()g x 的表达式.【解析】设0x <, 则0x ->, 所以()31xf x --=-, 又因为()f x 是定义在R 上的奇函数,所以()()f x f x -=-, 且(0)0f =, 所以()13xf x -=-, 因此31(0)()0(0)13(0)x x x f x x x -⎧->⎪==⎨⎪-<⎩, 从而可得33log (1)(0)()0(0)log (1)(0)x x g x x x x +>⎧⎪==⎨⎪--<⎩.7.判断分段函数的奇偶性例7.判断函数22(1)(0)()(1)(0)x x x f x x x x ⎧-≥⎪=⎨-+<⎪⎩的奇偶性.【解析】当0x >时, 0x -<, 22()()(1)(1)()f x x x x x f x -=---+=-=, 当0x =时,(0)(0)0f f -==, 当0x <, 0x ->, 22()()(1)(1)()f x x x x x f x -=---=-+=因此, 对于任意x R ∈都有()()f x f x -=, 所以()f x 为偶函数.8.判断分段函数的单调性例8.判断函数32(0)()(0)x x x f x xx ⎧+≥⎪=⎨-<⎪⎩的单调性.【解析】显然()f x 连续. 当0x ≥时, '2()311f x x =+≥恒成立, 所以()f x 是单调递增函数, 当0x <时, '()20f x x =->恒成立, ()f x 也是单调递增函数, 所以()f x 在R 上是单调递增函数; 或画图易知()f x 在R 上是单调递增函数.例9.写出函数()|12||2|f x x x =++-的单调减区间.【解析】121231()()3(2)31(2)x x f x x x x x -+≤-⎧⎪=+-<<⎨⎪-≥⎩, 画图易知单调减区间为12(,]-∞-.9.解分段函数的方程例10.(01年上海)设函数812(,1]()log (1,)x x f x x x -⎧∈-∞=⎨∈+∞⎩, 则满足方程1()4f x =的x 的值为【解析】 若142x-=, 则222x--=, 得2(,1]x =∉-∞, 所以2x =(舍去), 若1814log x =,则1481x =, 解得3(1,)x =∈+∞, 所以3x =即为所求.x10.解分段函数的不等式 例11.设函数1221(0)()(0)x x f x xx -⎧-≤⎪=⎨⎪>⎩, 若0()1f x >,则0x 得取值范围是( ).(1,1)A - .(1,)B -+∞.(,2)(0,)C -∞-⋃+∞ .(,1)(1,)D -∞-⋃+∞【解析1】首先画出()y f x =和1y =的大致图像, 易知0()1f x >时, 所对应的0x 的取值范围是(,1)(1,)-∞-⋃+∞.【解析2】因为0()1f x >, 当00x ≤时, 0211x-->, 解得01x <-, 当00x >时, 1201x >, 解得01x >, 综上0x 的取值范围是(,1)(1,)-∞-⋃+∞. 故选D.例12.设函数2(1)(1)()4(1)x x f x x ⎧+<⎪=⎨-≥⎪⎩, 则使得()1f x ≥的自变量x 的取值范围为( )A .(,2][0,10]-∞-⋃ B. (,2][0,1]-∞-⋃ C. (,2][1,10]-∞-⋃ D. [2,0][1,10]-⋃ 【解析】当1x <时, 2()1(1)120f x x x x ≥⇔+≥⇔≤-≥或, 所以21x x ≤-≤<或0, 当1x ≥时, ()141310f x x ≥⇔⇔⇔≤, 所以110x ≤≤, 综上所述, 2x ≤-或010x ≤≤, 故选A 项.【点评:】xyv1.0 可编辑可修改以上分段函数性质的考查中, 不难得到一种解题的重要途径, 若能画出其大致图像, 定义域、值域、最值、单调性、奇偶性等问题就会迎刃而解, 方程、不等式等可用数形结合思想、等价转化思想、分类讨论思想及函数思想来解, 使问题得到大大简化, 效果明显.反馈练习1.(2013新课标全国Ⅰ,5分)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≤0,ln x +1,x >0.若|f (x )|≥ax ,则a 的取值范围是( )A .(-∞,0] B.(-∞,1] C .[-2,1]D .[-2,0]解析:本题考查一次函数、二次函数、对数函数、分段函数及由不等式恒成立求参数的取值范围问题,意在考查考生的转化能力和利用数形结合思想解答问题的能力.当x ≤0时,f (x )=-x 2+2x =-(x -1)2+1≤0,所以|f (x )|≥ax 化简为x 2-2x ≥ax ,即x 2≥(a +2)x ,因为x ≤0,所以a +2≥x 恒成立,所以a ≥-2;当x >0时,f (x )=ln(x +1)>0,所以|f (x )|≥ax 化简为ln(x +1)>ax 恒成立,由函数图象可知a ≤0,综上,当-2≤a ≤0时,不等式|f (x )|≥ax 恒成立,选择D.答案:D2.(2013福建,4分)已知函数f (x )=⎩⎪⎨⎪⎧2x 3,x <0,-tan x ,0≤x <π2,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫π4=________.解析:本题主要考查分段函数的求值,意在考查考生的应用能力和运算求解能力.∵f ⎝ ⎛⎭⎪⎫π4=-tan π4=-1,∴f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫π4=f (-1)=2×(-1)3=-2. 答案:-23.(2013北京,5分)函数f (x )=⎩⎪⎨⎪⎧log 12x , x ≥1,2x , x <1的值域为________.解析:本题主要考查分段函数的概念、性质以及指数函数、对数函数的性质,意在考查考生对函数定义域、值域掌握的熟练程度.分段函数是一个函数,其定义域是各段函数定义域的并集,值域是各段函数值域的并集.当x ≥1时,log 12x ≤0,当x <1时,0<2x<2,故值域为(0,2)∪(-∞,0]=(-∞,2).答案:(-∞,2)4.(2012江西,5分)若函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,lg x ,x >1,则f (f (10))=( )A .lg 101B .2C .1D .0解析:f (10)=lg 10=1,故f (f (10))=f (1)=12+1=2. 答案:B5.(2011北京,5分)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎪⎨⎪⎧cx ,x <A ,cA ,x ≥A(A ,c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么c 和A 的值分别是( )A .75,25B .75,16C .60,25D .60,16解析:因为组装第A 件产品用时15分钟,所以c A =15(1),所以必有4<A ,且c 4=c2=30(2),联立(1)(2)解得c =60,A =16.答案:D6.(2012江苏,5分)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f (12)=f (32),则a +3b 的值为________.解析:因为f (x )是定义在R 上且周期为2的函数,所以f (32)=f (-12),且f (-1)=f (1),故f (12)=f (-12),从而12b +212+1=-12a +1,3a +2b =-2. ①由f (-1)=f (1),得-a +1=b +22,故b =-2a . ②由①②得a =2,b =-4,从而a +3b =-10. 答案:-107.(2011江苏,5分)已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为________.解析:①当1-a <1,即a >0时,此时a +1>1,由f (1-a )=f (1+a ),得2(1-a )+a =-(1+a )-2a ,计算得a =-32(舍去);②当1-a >1,即a <0时,此时a +1<1,由f (1-a )=f (1+a ),得2(1+a )+a =-(1-a )-2a ,计算得a =-34,符合题意,所以综上所述,a =-34.答案:-34。
【知识要点】分段函数问题是高中数学中常见的题型之一,也是高考经常考查的问题.主要考查分段函数的解析式、求值、解不等式、奇偶性、值域(最值)、单调性和零点等问题.1、 求分段函数的解析式,一般一段一段地求,最后综合.即先分后总.注意分段函数的书写格式为:1122()()()()n n n f x x D f x x D f x x D f x x D ∈⎧⎪∈⎪=⎨∈⎪⎪∈⎩,不要写成1122()()()()n n ny f x x D y f x x D f x x D y f x x D =∈⎧⎪=∈⎪=⎨∈⎪⎪=∈⎩.注意分段函数的每一段的自变量的取值范围的交集为空集,并集为函数的定义域D .一般左边的区域写在上面,右边的区域写在下面.2、分段函数求值,先要看自变量在哪一段,再代入那一段的解析式计算.如果不能确定在哪一段,就要分类讨论.注意小分类要求交,大综合要求并.3、分段函数解不等式和分段函数求值的方法类似,注意小分类要求交,大综合要求并.4、分段函数的奇偶性的判断,方法一:定义法.方法二:数形结合.5、分段函数的值域(最值),方法一:先求每一段的最大(小)值,再把每一段的最大(小)值比较,即得到函数的最大(小)值. 方法二:数形结合.6、分段函数的单调性的判断,方法一:数形结合,方法二:先求每一段的单调性,再写出整个函数的单调性.7、分段函数的零点问题,方法一:解方程,方法二:图像法,方法三:方程+图像法. 和一般函数的零点问题的处理方法是一样的.虽然分段函数是一种特殊的函数,在处理这些问题时,方法其实和一般的函数大体是一致的. 【方法讲评】【例1】已知函数)(x f 对实数R x ∈满足)1()1(,0)()(+=-=-+x f x f x f x f ,若当[)1,0∈x 时,21)23(),1,0()(-=≠>+=f a a b a x f x .(1)求[]1,1-∈x 时,)(x f 的解析式;(2)求方程0log )(4=-x x f 的实数解的个数.(2) )()2()1()1(,0)()(x f x f x f x f x f x f =+∴+=-=-+ )(x f ∴是奇函数,且以2为周期.方程0log )(4=-x x f 的实数解的个数也就是函数x y x f y 4log )(==和的交点的个数.在同一直角坐标系中作出这俩个函数的图像,由图像得交点个数为2,所以方程0log )(4=-x x f 的实数解的个数为2.【点评】(1)本题的第一问,根据题意要把[1,1]-分成三个部分,即(1,0),1,(0,1)x x x ∈-=±∈,再一段一段地求. 在求函数的解析式时,要充分利用函数的奇偶性、对称性等. (2)本题第2问解的个数,一般利用数形结合解答.【检测1】已知定义在R 上的函数()()22f x x =-.(Ⅰ)若不等式()()223f x t f x +-<+对一切[]0,2x ∈恒成立,求实数t 的取值范围;(Ⅱ)设()g x =,求函数()g x 在[]0,(0)m m >上的最大值()m ϕ的表达式.【例2】已知函数()()22log 3,2{21,2x x x f x x ---<=-≥ ,若()21f a -= ,则()f a = ( )A. 2-B. 0C. 2D. 9【解析】当22a -< 即0a >时, ()()211log 3211,22a a a ---=⇒+==- (舍); 当22a -≥ 即0a ≤时, ()2222111log 42a a f a ---=⇒=-⇒=-=- ,故选A.【点评】(1)要计算(2)f a -的值,就要看自变量2a -在分段函数的哪一段,但是由于无法确定,所以要就2222a a -<-≥和分类讨论. (2)分类讨论时,注意数学逻辑,小分类要求交,大综合要求并.当0a >时 ,解得12a =-,要舍去.【例3】【2017山东,文9】设()()121,1x f x x x <<=-≥⎪⎩,若()()1f a f a =+,则1f a ⎛⎫=⎪⎝⎭( ) A. 2 B. 4 C. 6 D. 8【点评】(1)要化简()()1f a f a =+,必须要讨论a 的范围,要分1a ≥和01a <<讨论.当1a≥时,可以解方程2(1)2(11)a a -=+-,得方程没有解.也可以直接由2(1)y x =-单调性得到()()1f a f a ≠+.【检测2】已知函数210()0xx f x x -⎧-≤⎪=>,若0[()]1f f x =,则0x = .【例3】已知函数则的解集为( )A.B.C.D.【点评】(1)本题中()f x 的自变量x 不确定它在函数的哪一段,所以要分类讨论. (2)当20x -<<时,计算()f x -要注意确定x -的范围,02x <-<,所以求()f x -要代入第一段的解析式.数学思维一定要注意逻辑和严谨. (3)分类讨论时,一定要注意数学逻辑,小分类要求交,大综合要求并.【检测3】已知函数()()()22log 2,02,{2,20,x x f x f x x --+≤<=---<<则()2f x ≤的解集为__________.【检测4】【2017课标3,理15】设函数10()20x x x f x x +≤⎧=⎨>⎩,,,,则满足1()()12f x f x +->的x 的取值范围是_________.【例4】判断函数⎩⎨⎧>+-<+=)0()0()(22x x x x x x x f 的奇偶性 【解析】由题得函数的定义域关于原点对称.设0,x <2()f x x x =+,则0x ->,222()()()()f x x x x x x x f x -=---=--=-+=- 设0,x >2()f x x x =-+则0x -<,222()()()()f x x x x x x x f x -=--=-=--+=- 所以函数()f x 是奇函数.【点评】(1)对于分段函数奇偶性的判断,也是要先看函数的定义域,再考虑定义,由于它是分段函数,所以要分类讨论. (2)注意,当0x <时,求()f x -要代入下面的解析式,因为0x ->,不是还代入上面一段的解析式.【检测5】已知函数()f x 是定义在R 上的奇函数,且当0x ≥时22)(+=x xx f . (1)求()f x 的解析式;(2)判断()f x 的单调性(不必证明);(3) 若对任意的t R ∈,不等式0)2()3(22≤++-t t f t k f 恒成立,求k 的取值范围.【例5】若函数62()3log 2a x x f x x x -+≤⎧=⎨+>⎩(01)a a >≠且的值域是[4,)+∞,则实数a 的取值范围是 .【点评】(1)分段函数求最值(值域),方法一:先求每一段的最大(小)值,再把每一段的最大(小)值比较,即得到函数的最大(小)值. 方法二:数形结合.(2)本题既可以用方法一,也可以利用数形结合分析解答. (3)对于对数函数log a y x =,如果没有说明a 与1的大小关系,一般要分类讨论.【检测6】设()()2,014,0x a x f x x a x x ⎧-≤⎪=⎨+++⎪⎩,>若()0f 是()f x 的最小值,则a 的取值范围为( ) A. []2,3- B. []2,0- C. []1,3 D. []0,3【检测7】已知函数()()222log 23,1{1,1x ax a x f x x x -+≥=-<的值域为R ,则常数a 的取值范围是( )A. ][()1123-,,B. ][()12-∞+∞,,C. ()[)1123-,,D. (,0]-∞{}[)123,【例6】若()()3,1{log ,1a a x a x f x x x --<=> 是(),-∞+∞上的增函数,那么a 的取值范围是( ).A. ()1,+∞B. 3,32⎡⎫⎪⎢⎣⎭C. (),3-∞D. ()1,3【点评】(1)函数是一个分段函数是增函数必须满足两个条件,条件一:分段函数的每一段必须是增函数;条件二:左边一段的最大值必须小于等于右边一段的最小值. 函数是一个分段函数是减函数必须满足两个条件,条件一:分段函数的每一段必须是减函数;条件二:左边一段的最小值必须大于等于右边一段的最大值. (3)一个分段函数是增函数,不能理解为只需每一段是增函数. 这是一个必要不充分条件.【检测8】已知函数()[)()232,0,32,,0x x f x x a a x ⎧∈+∞⎪=⎨+-+∈-∞⎪⎩在区间(),-∞+∞上是增函数,则常数a 的取值范围是 ( )A .()1,2B .(][),12,-∞+∞C .[]1,2D .()(),12,-∞+∞【例7】已知函数()21,0,{log ,0,x x f x x x +≤=>则函数()()1y ff x =+的所有零点构成的集合为__________.【点评】(1)分段函数的零点问题,一般有三种方法,方法一:解方程,方法二:图像法,方法三:方程+图像法. 和一般函数的零点问题的处理方法是一样的. (2)本题由于函数()()1y f f x =+的图像不方便作出,所以选择解方程的方法解答. (3)在函数()()1y f f x =+中,由于没有确定x 的取值范围,所以要分类讨论.【例8()()g x f x k =-仅有一个零点,则k 的取值范围是________.【解析】函数()()22,1{91,1x xf x x x x >=-≤ ,若函数()()g x f x k =- 仅有一个零点,即()f x k = ,只有一个解,在平面直角坐标系中画出, ()y f x =的图象,结合函数图象可知,方程只有一个解时,)4,23⎛⎫ ⎪⎝⎭ )4,23⎛⎫⎪⎝⎭.【点评】(1)直接画()()g x f x k =-的图像比较困难,所以可以利用方程+图像的方法. 分离参数得到()f x k =,再画图数形结合分析. 学.科.网【例9】已知函数关于的方程,有不同的实数解,则的取值范围是( )A. B.C. D.【解析】【点评】本题考查了类二次方程实数根的相关问题,以及数形结合思想方法的体现,这种嵌入式的方程形式也是高考考查的热点,这种嵌入式的方程首先从二次方程的实数根入手,一般因式分解后都能求实根,得到和,然后再根据导数判断函数的单调性和极值等性质,画出函数的图象,若直线和函数的交点个数得到参数的取值范围.【检测9】已知函数()()1114{(1)x x f x lnx x +≤=>,则方程()f x ax =恰有两个不同的实根时,实数a 的取值范围是( )(注: e 为自然对数的底数)A. 10,e ⎛⎫ ⎪⎝⎭B. 10,4⎛⎫ ⎪⎝⎭C. 11,4e ⎡⎫⎪⎢⎣⎭D. 1,e 4⎡⎫⎪⎢⎣⎭高中数学常见题型解法归纳及反馈检测第15讲:分段函数中常见题型解法参考答案【反馈检测1答案】(Ⅰ)11t -<<(Ⅱ)()222,011,112,1m m m m m m m m ϕ⎧-+<≤⎪⎪=<≤+⎨⎪->⎪⎩方法二:不等式恒成立等价于恒成立 .即等价于对一切恒成立,即恒成立,得恒成立, 当时,,,因此,实数t 的取值范围是11t -<<.【反馈检测2答案】或1【反馈检测2详细解析】当时,,则,即 ;当时,,则,即。
分段函数的几种常见题型及解法分段函数是指自变量在两个或两个以上不同的范围内, 有不同的对应法则的函数, 它是一个函数, 却又常常被学生误认为是几个函数; 它的定义域是各段函数定义域的并集, 其值域也是各段函数值域的并集. 由于它在理解和掌握函数的定义、函数的性质等知识的程度的考察上有较好的作用, 时常在高考试题中“闪亮”登场, 笔者就几种具体的题型做了一些思考, 解析如下:1.求分段函数的定义域和值域例1.求函数122[1,0];()(0,2);3[2,);x x f x xx x +∈-⎧⎪=-∈⎨⎪∈+∞⎩的定义域、值域.【解析】作图, 利用“数形结合”易知()f x 的定义域为[1,)-+∞, 值域为(1,3]-.2.求分段函数的函数值例2.(05年浙江理)已知函数2|1|2,(||1)()1,(||1)1x x f x x x--≤⎧⎪=⎨>⎪+⎩求1[()]f f . 【解析】因为311222()|1|2f =--=-, 所以312223214[()]()1()13f f f =-==+-.3.求分段函数的最值例3.求函数43(0)()3(01)5(1)x x f x x x x x +≤⎧⎪=+<≤⎨⎪-+>⎩的最大值.【解析】当0x ≤时, max ()(0)3f x f ==, 当01x <≤时, max ()(1)4f x f ==,当1x >时, 5154x -+<-+=, 综上有max ()4f x =.4.求分段函数的解析式例4.在同一平面直角坐标系中, 函数()y f x =和()y g x =的图象关于直线y x =对称, 现将()y g x =的图象沿x 轴向左平移2个单位, 再沿y 轴向上平移1个单位, 所得的图象是由两条线段组成的折线(如图所示), 则函数()f x 的表达式为( )222(10).()2(02)xx x A f x x +-≤≤⎧=⎨+<≤⎩ 22(10).()2(02)xx x B f x x --≤≤⎧=⎨-<≤⎩ 222(12).()1(24)xx x C f x x -≤≤⎧=⎨+<≤⎩ 226(12).()3(24)xx x D f x x -≤≤⎧=⎨-<≤⎩ 【解析】当[2,0]x ∈-时, 11y x =+, 将其图象沿x 轴向右平移2个单位, 再沿y 轴向下平移1个单位, 得解析式为1122(2)111y x x =-+-=-, 所以()22([f x x x =+∈-, 当[0,1]x ∈时, 21y x =+, 将其图象沿x 轴向右平移2个单位, 再沿y 轴向下平移1个单位, 得解析式2(2)1124y x x =-+-=-, 所以12()2([0,2])f x x x =+∈, 综上可得222(10)()2(02)xx x f x x +-≤≤⎧=⎨+<≤⎩, 故选A .5.作分段函数的图像 例5.函数|ln ||1|x y ex =--的图像大致是( )yxACD6.判断分段函数的奇偶性例7.判断函数22(1)(0)()(1)(0)x x x f x x x x ⎧-≥⎪=⎨-+<⎪⎩的奇偶性.【解析】当0x >时, 0x -<, 22()()(1)(1)()f x x x x x f x -=---+=-=, 当0x =时,(0)(0)0f f -==, 当0x <, 0x ->, 22()()(1)(1)()f x x x x x f x -=---=-+=因此, 对于任意x R ∈都有()()f x f x -=, 所以()f x 为偶函数.7.判断分段函数的单调性例8.判断函数32(0)()(0)x x x f x x x ⎧+≥⎪=⎨-<⎪⎩的单调性.【解析】显然()f x 连续. 当0x ≥时, '2()311f x x =+≥恒成立, 所以()f x 是单调递增函数, 当0x <时, '()20f x x =->恒成立, ()f x 也是单调递增函数, 所以()f x 在R上是单调递增函数; 或画图易知()f x 在R 上是单调递增函数.例9.写出函数()|12||2|f x x x =++-的单调减区间.【解析】121231()()3(2)31(2)x x f x x x x x -+≤-⎧⎪=+-<<⎨⎪-≥⎩, 画图易知单调减区间为1(,]-∞-.8.解分段函数的方程例10.(01年上海)设函数812(,1]()log (1,)x x f x x x -⎧∈-∞=⎨∈+∞⎩, 则满足方程1()4f x =的x 的值为【解析】 若142x -=, 则222x--=, 得2(,1]x =∉-∞, 所以2x =(舍去), 若1814log x =, 则1481x =, 解得3(1,)x =∈+∞, 所以3x =即为所求.9.解分段函数的不等式例11.设函数1221(0)()(0)x x f x xx -⎧-≤⎪=⎨⎪>⎩, 若0()1f x >, 则0x 得取值范围是( ).(1,1)A - .(1,)B -+∞ .(,2)(0,)C -∞-⋃+∞ .(,1)(1,)D -∞-⋃+∞【解析1】首先画出()y f x =和1y =的大致图像, 易知0()1f x >时, 所对应的0x 的取值范围是(,1)(1,)-∞-⋃+∞.【解析2】因为0()1f x >, 当00x ≤时, 0211x -->, 解得01x <-, 当00x >时,xxy1201x >, 解得01x >, 综上0x 的取值范围是(,1)(1,)-∞-⋃+∞. 故选D.例12.设函数2(1)(1)()4(1)x x f x x ⎧+<⎪=⎨-≥⎪⎩, 则使得()1f x ≥的自变量x 的取值范围为( )A .(,2][0,10]-∞-⋃ B. (,2][0,1]-∞-⋃ C. (,2][1,10]-∞-⋃ D. [2,0][1,10]-⋃ 【解析】当1x <时, 2()1(1)120f x x x x ≥⇔+≥⇔≤-≥或, 所以21x x ≤-≤<或0, 当1x ≥时, ()141310f x x ≥⇔⇔⇔≤, 所以110x ≤≤, 综上所述, 2x ≤-或010x ≤≤, 故选A 项.【点评:】以上分段函数性质的考查中, 不难得到一种解题的重要途径, 若能画出其大致图像, 定义域、值域、最值、单调性、奇偶性等问题就会迎刃而解, 方程、不等式等可用数形结合思想、等价转化思想、分类讨论思想及函数思想来解, 使问题得到大大简化, 效果明显.。
可编辑修改精选全文完整版分段函数知识点及常见题型总结资料编号:20190726 一、分段函数的定义有些函数在其定义域内,对于自变量x的不同取值区间,有着不同的对应关系,这样的函数称为分段函数.关于分段函数:(1)分段函数的定义域是各段函数定义域的并集.注意各段函数定义域的交集为空集; (2)分段函数的值域是各段函数值域的并集;(3)分段函数包括几段,它的图象就有几条曲线组成.采用“分段作图”法画分段函数的图象:在同一平面直角坐标系中,依次画出各段函数的图象,这些函数的图象组合在一起就是分段函数的图象;(4)分段函数是一个函数,而不是几个函数;(5)分段函数在书写时要用大括号把各段函数合并写成一个函数的形式,并在各段解析式的后面标明相应的自变量的取值范围;(6)处理分段函数问题时,首先要确定自变量的取值在哪一段函数的区间内,再选取相应的对应关系.二、几种常见的分段函数1.取整函数[]xy=([]x表示不大于x的最大整数).其图象如图(1)所示.图(1)取整函数的图象图(2)绝对值函数的图象2.绝对值函数 含有绝对值符号的函数.如函数()()⎩⎨⎧-<---≥+=+=22222x x x x x y ,其图象如图(2)所示,为一条折线.解决绝对值函数的问题时,先把绝对值函数化为对应的分段函数,然后分段解决. 3.自定义函数如函数()()()⎪⎩⎪⎨⎧>-≤<----≤--=2221211)(2x x x x x x x x f 为自定义的分段函数,其图象如图(3)所示.4.符号函数x y sgn =符号函数()()()⎪⎩⎪⎨⎧<-=>==010001sgn )(x x x x x f ,其图象如图(4)所示.符号函数的性质: x x x sgn =.图(3)图(4)符号函数的图象说明:函数的图象既可以是连续的曲线,也可以是直线、折线或离散的点. 三.分段函数的常见题型 1.求分段函数的函数值.求分段函数的函数值的方法是:先确定自变量的值属于哪一个区间段,然后代入该段的解析式求值.当出现))((a f f 的形式时,应从内到外依次求值.例1. 已知函数⎪⎩⎪⎨⎧≤+>-+=,2,2,2,21)(2x x x x x x f ,则))1((f f 的值为【 】 (A )21-(B )2 (C )4 (D )11 解:∵21<,∴()32112=+=f ,∴()3))1((f f f = ∵23>,∴()423133=-+=f ,∴4))1((=f f .【 C 】. 习题1. 已知函数⎩⎨⎧>-≤++=,0,3,0,34)(2x x x x x x f ,则=))5((f f 【 】(A )0 (B )2- (C )1- (D )1 2.已知分段函数的函数值,求自变量的值.方法是:先假设函数值在分段函数的各段上取得,解关于自变量的方程,求出各段上自变量的值.注意:所求出的自变量的值应在相应的各段函数定义域内,不在的应舍去.例2. 已知函数⎩⎨⎧<<--≤+=)21()1(2)(2x x x x x f ,若3)(=x f ,则=x _________.解:当1-≤x 时,32=+x ,解之得:1=x ,不符合题意,舍去;当21<<-x 时,32=x ,解之得:3±=x ,其中13-<-=x ,舍去,∴3=x 综上,3=x .习题2. 已知函数⎩⎨⎧>-≤+=)0(2)0(1)(2x x x x x f ,若5)(=x f ,则x 的值是【 】(A )2- (B )2或25-(C )2或2- (D )2或2-或25-习题3. 已知⎩⎨⎧≤+>=)0(1)0(2)(x x x x x f ,若0)1()(=+-f a f ,则实数a 的值等于_________.3.求分段函数自变量的取值范围在分段函数的前提下,求某条件下自变量的取值范围的方法是:先假设自变量的值在分段函数的各段上,然后求出在相应各段定义域上自变量的取值范围,再求它们的并集即可.例3. 已知函数⎩⎨⎧<+-≥-=)1(32)1(23)(22x x x x x x f ,求使2)(<x f 成立的x 的取值范围. 解:由题意可得:⎩⎨⎧<-≥22312x x x 或⎩⎨⎧<+-<23212x x 解不等式组⎩⎨⎧<-≥22312x x x 得:1≤371+<x ;解不等式在⎩⎨⎧<+-<23212x x 得:22-<x 或122<<x ∴使2)(<x f 成立的x 的取值范围为⎭⎬⎫⎩⎨⎧⎩⎨⎧+<<-<3712222x x x 或.习题4. 已知()()⎩⎨⎧<≥=0001)(x x x f ,则不等式x x xf +)(≤2的解集为【 】(A )][1,0 (B )][2,0 (C )](1,∞- (D )](2,∞-习题5. 设函数()()⎩⎨⎧<+≥+-=06064)(2x x x x x x f ,则不等式)1()(f x f >的解集是____________.习题6. 函数()()()⎪⎩⎪⎨⎧≥<<-+-≤=434212)(x x x x x x x f ,若3)(-<a f ,则实数a 的取值范围是_________.例4. 已知0≠a ,函数()()⎩⎨⎧≥--<+=1212)(x a x x a x x f ,若()()a f a f +=-11,则a 的值为_________.解:当11<-a ,即0>a 时,11>+a∴()()a a a a f -=+-=-2121,()a a a a f 31211--=---=+ ∵()()a f a f +=-11 ∴a a 312--=-,解之得:023<-=a ,不符合题意,舍去; 当11>-a ,即0<a 时,11<+a()()a a a a f --=---=-1211,()()a a a a f 32121+=++=+∵()()a f a f +=-11图(5)∴a a 321+=--,解之得:43-=a ,符合题意. 综上,a 的值为43-. 习题7. 设()⎩⎨⎧≥-<<=)1(12)10()(x x x x x f ,若)1()(+=a f a f ,则=⎪⎭⎫⎝⎛a f 1_________.习题8. 设函数⎩⎨⎧<≥=)0()0()(2x x x x x f ,⎩⎨⎧>-≤=)2()2()(2x x x x x ϕ,则当0<x 时,=))((x f ϕ【 】(A )x - (B )2x - (C )x (D )2x习题9. 设函数⎪⎪⎩⎪⎪⎨⎧<≥-=)0(1)0(121)(x xx x x f ,若a a f =)(,则实数a 的值为【 】(A )1± (B )1- (C )2-或1- (D )1±或2- 4.求分段函数的定义域分段函数的定义域是各段函数定义域的并集.例5. 函数⎪⎩⎪⎨⎧≥+<<+≤≤=)2(12)21(1)10(2)(x x x x x x x f 的定义域是_________.解:由各段函数的定义域可知该分段函数的定义域为[]())[)[∞+=∞+,0,22,11,0 . 5.求分段函数的值域分段函数的值域是各段函数值域的并集.对于某些简单的分段函数,可画出其图象,由图象的最高点和最低点求值域(图象法). 例6. 设∈x R ,求函数x x y 312--=的值域.解:当x ≥1时,()2312--=--=x x x y ; 当0≤1<x 时,()25312+-=--=x x x y ;当0<x 时,()2312+=+-=x x x y .综上所述,⎪⎩⎪⎨⎧<+<≤+-≥--=)0(2)10(25)1(2x x x x x x y图(6)其图象如图(5)所示,由图象可知其值域为](2,∞-. 另解:由上面可知:⎪⎩⎪⎨⎧<+<≤+-≥--=)0(2)10(25)1(2x x x x x x y当x ≥1时,函数2--=x y 的值域为](3,-∞-; 当0≤1<x 时,函数25+-=x y 的值域为(]2,3-; 当0<x 时,函数2+=x y 的值域为)(2,∞-.∴函数x x y 312--=的值域为]( 3,-∞-(] 2,3-)(=∞-2,](2,∞-.例7. 若∈x R ,函数)(x f 是x y x y =-=,22这两个函数值中的较小者,则函数)(x f 的最大值为【 】(A )2 (B )1 (C )1- (D )无最大值 解:解不等式22x -≥x 得:2-≤x ≤1 ∴当2-≤x ≤1时,x x f =)(,其值域为[]1,2-; 解不等式x x <-22得:1>x 或2-<x∴当1>x 或2-<x 时,22)(x x f -=,其值域为()1,∞-综上所述,⎩⎨⎧-<>-≤≤-=)21(2)12()(2x x x x x x f 或 函数)(x f 的值域为[] 1,2-()](1,1,∞-=∞- ∴函数)(x f 在其值域内的最大值为1. 函数)(x f 的图象如图(6)所示.习题10. 若函数⎪⎩⎪⎨⎧<≤<≤<<=)2015(5)1510(4)100(2)(x x x x f ,则函数)(x f 的值域是【 】(A ){}5,4,2 (B )()5,2 (C )()4,2 (D )()5,4习题11. 函数⎪⎩⎪⎨⎧≥<<≤≤=)2(3)21(2)10(2)(2x x x x x f 的值域是【 】(A )R (B ))[∞+,0 (C )[]3,0 (D )[]{}32,0 习题12. 已知函数()2221)(≤<--+=x x x x f .(1)用分段函数的形式表示该函数; (2)画出该函数的图象; (3)写出该函数的值域.习题13. 已知函数⎪⎩⎪⎨⎧<-=>-=)0(21)0(2)0(3)(2x x x x x x f .(1)画出函数)(x f 的图象;(2)求))(1(2R a a f ∈+,))3((f f 的值; (3)当)(x f ≥2时,求x 的取值范围.图(7)。
ʏ黎 丽分段函数是 自变量取不同范围时所使用的解析式不同 ,所以求解分段函数要时刻盯着自变量的范围是否发生变化,即 分段函数分区间研究其性质 ㊂题型1:分段函数的求值问题例1已知函数f (x )=x (x +4),x ȡ0,x (x -4),x <0,{求f (1),f (-3),f (a +1)的值㊂解:根据自变量取不同的范围求值㊂因为f (x )=x (x +4),x ȡ0,x (x -4),x <0,{所以f (1)=1ˑ(1+4)=5,f (-3)=-3ˑ(-3-4)=21,f (a +1)=(a +1)(a +5),a ȡ-1,(a +1)(a -3),a <-1㊂{分段函数求值时,依据自变量的值选择对应的解析式代入求值㊂当自变量不确定时,合理分类,利用区间上的解析式求值㊂题型2:分段函数的不等式问题例2已知函数f (x )=1x -1,1<x ɤ2,12x ,x >2,ìîíïïïï则满足f (a )>3的实数a 的取值范围是㊂解:依据a 的分类求解㊂若1<a ɤ2,则f (a )=1a -1>3,解得1<a <43;若2<a ,则f (a )=12a >3,解得6<a ㊂故实数a 的取值范围是1,43()ɣ(6,+ɕ)㊂求解分段函数不等式,关键在于对整体变量合理分类,构建不等式求解㊂题型3:分段函数的单调性问题例3已知函数f (x )=(2a -1)x +4a ,x <1,-x +1,x ȡ1{是定义在R 上的减函数,则a 的取值范围为( )㊂A.0,12() B .13,12[)C .16,12[) D .13,12[]解:利用减函数和分界点处的函数值的大小关系,构建不等式求参数范围㊂因为f (x )是定义在R 上的减函数,所以2a -1<0,(2a -1)ˑ1+4a ȡ-1+1,{解得16ɤa <12㊂应选C㊂分段函数由区间单调到实数集R 上单调,要考虑分界点处的函数值的大小关系,可借助图像变化趋势求解㊂题型4:分段函数的实际应用问题例4 某单位为鼓励职工节约用水,作出如下规定:每位职工每月用水不超过10m 3,按每立方米3元收费;用水超过10m 3,超过的部分按每立方米5元收费㊂某职工某月缴水费55元,则该职工这个月实际用水为m 3㊂解:依据题设构建所交水费与用水量的分段函数,借助分段函数的函数值构建方程求对应的自变量㊂设职工的月实际用水量为x m 3,所缴水费为y (元)㊂由题意得y =3x ,0ɤx ɤ10,y =30+5(x -10),x >10,{化简整理得y =3x ,0ɤx ɤ10,5x -20,x >10㊂{根据已知条件得该职工实际用水量超过10m 3,所以5x -20=55,解得x =15㊂故该职工这个月实际用水为15m 3㊂分段函数的实际应用问题,要在阅读理解的基础上构建分段函数模型求解㊂作者单位:重庆市巫山中学(责任编辑 郭正华)21 知识结构与拓展 高一数学 2022年10月Copyright ©博看网. All Rights Reserved.。
分段函数的几种常见题型及解法 【2 】分段函数是指自变量在两个或两个以上不同的规模内, 有不同的对应轨则的函数, 它是一个函数, 却又常常被学生误认为是几个函数; 它的界说域是各段函数界说域的并集, 其值域也是各段函数值域的并集. 因为它在懂得和控制函数的界说.函数的性质等常识的程度的考核上有较好的感化, 时常在高测验题中“闪亮”登场, 笔者就几种具体的题型做了一些思虑, 解析如下:1.求分段函数的界说域和值域例1.求函数1222[1,0];()(0,2);3[2,);x x f x xx x +∈-⎧⎪=-∈⎨⎪∈+∞⎩的界说域.值域.【解析】作图, 应用“数形联合”易知()f x 的界说域为[1,)-+∞, 值域为(1,3]-.2.求分段函数的函数值例2.(05年浙江理)已知函数2|1|2,(||1)()1,(||1)1x x f x x x --≤⎧⎪=⎨>⎪+⎩求12[()]f f . 【解析】因为311222()|1|2f =--=-, 所以312223214[()]()1()13f f f =-==+-. 3.求分段函数的最值例3.求函数43(0)()3(01)5(1)x x f x x x x x +≤⎧⎪=+<≤⎨⎪-+>⎩的最大值.【解析】当0x ≤时,max ()(0)3f x f ==, 当01x <≤时,max ()(1)4f x f ==,当1x >时, 5154x -+<-+=, 综上有max ()4f x =.4.求分段函数的解析式例4.在统一平面直角坐标系中, 函数()y f x =和()y g x =的图象关于直线y x =对称, 现将()y g x =的图象沿x 轴向左平移2个单位, 再沿y 轴向上平移1个单位, 所得的图象是由两条线段构成的折线(如图所示), 则函数()f x 的表达式为( )222(10).()2(02)xx x A f x x +-≤≤⎧=⎨+<≤⎩ 222(10).()2(02)xx x B f x x --≤≤⎧=⎨-<≤⎩ 222(12).()1(24)xx x C f x x -≤≤⎧=⎨+<≤⎩ 226(12).()3(24)xx x D f x x -≤≤⎧=⎨-<≤⎩【解析】当[2,0]x ∈-时,121y x =+, 将其图象沿x 轴向右平移2个单位, 再沿y 轴向下平移1个单位, 得解析式为1122(2)111y x x =-+-=-, 所以()22([1,0])f x x x =+∈-, 当[0,1]x ∈时, 21y x =+, 将其图象沿x 轴向右平移2个单位, 再沿y 轴向下平移1个单位, 得解析式2(2)1124y x x =-+-=-, 所以12()2([0,2])f x x x =+∈, 综上可得222(10)()2(02)xx x f x x +-≤≤⎧=⎨+<≤⎩, 故选A . 5.作分段函数的图像例5.函数|ln ||1|x y e x =--的图像大致是( ) AxCD6.求分段函数得反函数例6已知()y f x =是界说在R 上的奇函数, 且当0x >时,()31xf x =-, 设()f x 得反函数为()yg x =, 求()g x 的表达式.【解析】设0x <, 则0x ->, 所以()31xf x --=-, 又因为()f x 是界说在R 上的奇函数, 所以()()f x f x -=-, 且(0)0f =, 所以()13xf x -=-, 是以31(0)()0(0)13(0)x x x f x x x -⎧->⎪==⎨⎪-<⎩, 从而可得33log (1)(0)()0(0)log (1)(0)x x g x x x x +>⎧⎪==⎨⎪--<⎩.7.断定分段函数的奇偶性例7.断定函数22(1)(0)()(1)(0)x x x f x x x x ⎧-≥⎪=⎨-+<⎪⎩的奇偶性. 【解析】当0x >时, 0x -<,22()()(1)(1)()f x x x x x f x -=---+=-=, 当0x =时, (0)(0)0f f -==, 当0x <, 0x ->, 22()()(1)(1)()f x x x x x f x -=---=-+=是以, 对于随意率性x R ∈都有()()f x f x -=, 所认为()f x 偶函数.8.断定分段函数的单调性例8.断定函数32(0)()(0)x x x f x x x ⎧+≥⎪=⎨-<⎪⎩的单调性.【解析】显然()f x 持续. 当0x ≥时,'2()311f x x =+≥恒成立, 所所以()f x 单调递增函数, 当0x <时, '()20f x x =->恒成立, ()f x 也是单调递增函数, 所以()f x 在R上是单调递增函数; 或绘图易知()f x 在R 上是单调递增函数.例9.写出函数()|12||2|f x x x =++-的单调减区间.【解析】121231()()3(2)31(2)x x f x x x x x -+≤-⎧⎪=+-<<⎨⎪-≥⎩, 绘图易知单调减区间为12(,]-∞-.9.解分段函数的方程例10.(01年上海)设函数812(,1]()log (1,)x x f x x x -⎧∈-∞=⎨∈+∞⎩, 则知足方程1()4f x =的x 的值为【解析】 若142x -=, 则222x--=, 得2(,1]x =∉-∞, 所以2x =(舍去), 若1814log x =, 则1481x =, 解得3(1,)x =∈+∞, 所以3x =即为所求.10.解分段函数的不等式例11.设函数1221(0)()(0)x x f x x x -⎧-≤⎪=⎨⎪>⎩, 若0()1f x >, 则x 得取值规模是( ).(1,1)A -.(1,)B -+∞ .(,2)(0,)C -∞-⋃+∞ .(,1)(1,)D -∞-⋃+∞【解析1】起首画出()y f x =和1y =的大致图像, 易知0()1f x >时, 所对应的0x的取值规模是(,1)(1,)-∞-⋃+∞.xxy【解析2】 因为0()1f x >, 当00x ≤时, 0211x -->, 解得01x <-, 当00x >时,1201x >, 解得01x >, 综上x 的取值规模是(,1)(1,)-∞-⋃+∞. 故选D.例12.设函数2(1)(1)()4(1)x x f x x ⎧+<⎪=⎨-≥⎪⎩, 则使得()1f x ≥的自变量x 的取值规模为( )A .(,2][0,10]-∞-⋃ B. (,2][0,1]-∞-⋃ C. (,2][1,10]-∞-⋃ D. [2,0][1,10]-⋃ 【解析】当1x <时,2()1(1)120f x x x x ≥⇔+≥⇔≤-≥或, 所以21x x ≤-≤<或0, 当1x ≥时, ()141310f x x ≥⇔⇔⇔≤, 所以110x ≤≤, 综上所述, 2x ≤-或010x ≤≤, 故选A 项.【点评:】以上分段函数性质的考核中, 不可贵到一种解题的主要门路, 若能画出其大致图像, 界说域.值域.最值.单调性.奇偶性等问题就会水到渠成, 方程.不等式等可用数形联合思惟.等价转化思惟.分类评论辩论思惟及函数思惟来解, 使问题得到大大简化, 后果显著.。
分段函数常见题型解析所谓“分段函数”是指在定义域的不同部分,有不同对应关系的函数,因此分段函数不是几个函数而是一个函数,它在解题中有着广泛的应用,不少同学对此认识不深,解题时常出现错误.现就分段函数的常见题型例析如下:1.求分段函数的定义域、值域例1.求函数)(x f =⎪⎩⎪⎨⎧->-≤+)2(,2)2(,42x x x x x 的值域.解:当x ≤-2时,4)2(422-+=+=x x x y , ∴ y ≥-4.当x >-2时,y =2x , ∴y >22-=-1. ∴ 函数)(x f 的值域是{y ∣y ≥-4,或y >-1}={y ∣y ≥-4}. 评注:分段函数的定义域是各段函数解析式中自变量取值集合的并集;分段函数的值域是各段函数值集合的并集.2.作分段函数的图象例2 已知函数2(2)()3[22)3[2)x f x x x x -∈-∞-⎧⎪=+∈-⎨⎪∈+∞⎩,,,,,,,画函数()f 的图象. 解:函数图象如图1所示.评注:分段函数有几段,其图象就由几条曲线组成,作图的关键是根据定义域的不同,分别由表达式做出其图象.作图时,一要注意每段自变量的取值范围;二要注意间断函数的图象中每段的端点的虚实.3.求分段函数的函数值例3.已知)(x f =⎪⎩⎪⎨⎧<=>+)0.(0)0(,)0(,1x x x x π 求(((3)))f f f -的值.解:∵ -3<0 ∴ f (-3)=0,∴ f (f (-3))=f (0)=π又π>0 ∴(((3)))f f f -=f (π)=π+1. 图1x y O 1 评注:求分段函数的函数值时,首先应确定自变量在定义域中所在的范围,然后按相应的对应关系求值.4.求分段函数的最值例4.已知函数)(x f =22(0)(0)x x x ⎧⎨<⎩,≥,求出这个函数的最值. 解:由于本分段函数有两段,所以这个函数的图象由两部分组成,其中一部分是一段抛物线,另一部分是一条射线,如图2所示.因此易得,函数最小值为0,没有最大值.5.表达式问题例5. 如图3,动点P 从边长为1的正方形ABCD 的顶点A 出发顺次经过B C D ,,再回到A ,设x 表示P 点的行程,y 表示PA 的长度,求y 关于x 的表达式.解:如图3所示,当P 点在AB 上运动时,PA x =;当P 点在BC 上运动时,由PBA △Rt ,求得21(1)PA x =+-;当P 点在CD 上运动时,由PDA Rt △求出21(3)PA x =+-;当P 点在DA 上运动时,4PA x =-, 所以y 关于x 的表达式是220122126102343 4.x x x x x y x x x x x ⎧⎪-+<⎪=⎨-+<⎪⎪-<⎩, ≤≤,, ≤,, ≤,, ≤ 在此基础上,强调“分段”的意义,指出分段函数的各段合并成一个整体,必须用符号“{”来表示,以纠正同学们的错误认识.图3。
函数的概念和性质
考点分段函数
分段函数是指自变量在两个或两个以上不同的范围内
, 有不同的对应法则的函数, 它是一个函数, 却又常常被学生误认为是几个函数
; 它的定义域是各段函数定义域的并集, 其值域也是各段函数值域的并集
. 由于它在理解和掌握函数的定义、函数的性质等知识的程度的考察上有较好的作用
, 时常在高考试题中“闪亮”登场, 本文就几种具体的题型做了
一些思考, 解析如下:1.求分段函数的定义域和值域
例1.求函数1
222[1,0];
()(0,2);
3[2,
);x x f x x x x 的定义域、值域. 2.求分段函数的函数值
例2.已知函数2|1|2,(||1)
()1
,(||1)1x x f x x x 求1
2[()]f f .
3.求分段函数的最值
例3.求函数43(0)()3(01)5(1)x x
f x x x
x x
的最大值. 4.求分段函数的解析式
例4.在同一平面直角坐标系中
, 函数()y f x 和()y g x 的图象关于直线y x 对称, 现将()y g x 的图象沿x 轴向左平移2个单位, 再沿y 轴向上平移1个单位, 所得的
图象是由两条线段组成的折线(如图所示)
, 则函数()f x 的表达式为()222(1
0).()2(02)
x
x x A f x x 222(10)
.()2(02)
x x x B f x x 222(12)
.()1(24)
x x x C f x x 226(12)
.()3(24)x
x x
D f x x -12131o -2y x。
函数的概念和性质考点 分段函数分段函数是指自变量在两个或两个以上不同的范围内, 有不同的对应法则的函数, 它是一个函数, 却又常常被学生误认为是几个函数; 它的定义域是各段函数定义域的并集, 其值域也是各段函数值域的并集. 由于它在理解和掌握函数的定义、函数的性质等知识的程度的考察上有较好的作用, 时常在高考试题中“闪亮”登场, 本文就几种具体的题型做了一些思考, 解析如下:1.求分段函数的定义域和值域例1.求函数1222[1,0];()(0,2);3[2,);x x f x xx x +∈-⎧⎪=-∈⎨⎪∈+∞⎩的定义域、值域.2.求分段函数的函数值例2.已知函数2|1|2,(||1)()1,(||1)1x x f x x x --≤⎧⎪=⎨>⎪+⎩求12[()]f f .3.求分段函数的最值例3.求函数43(0)()3(01)5(1)x x f x x x x x +≤⎧⎪=+<≤⎨⎪-+>⎩的最大值.4.求分段函数的解析式例4.在同一平面直角坐标系中, 函数()y f x =和()y g x =的图象关于直线y x =对称, 现将()y g x =的图象沿x 轴向左平移2个单位, 再沿y 轴向上平移1个单位, 所得的图象是由两条线段组成的折线(如图所示), 则函数()f x 的表达式为( )222(10).()2(02)xx x A f x x +-≤≤⎧=⎨+<≤⎩ 222(10).()2(02)xx x B f x x --≤≤⎧=⎨-<≤⎩ 222(12).()1(24)x x x C f x x -≤≤⎧=⎨+<≤⎩226(12).()3(24)x x x D f x x -≤≤⎧=⎨-<≤⎩5.作分段函数的图像-12131o-2y x例5.函数|ln ||1|x y ex =--的图像大致是( )A11oyxByx11OCyxO11DyxO116.求分段函数得反函数例6已知()y f x =是定义在R 上的奇函数, 且当0x >时, ()31xf x =-, 设()f x 的反函数为()y g x =, 求()g x 的表达式.7.判断分段函数的奇偶性例7.判断函数22(1)(0)()(1)(0)x x x f x x x x ⎧-≥⎪=⎨-+<⎪⎩的奇偶性.8.判断分段函数的单调性例8.判断函数32(0)()(0)x x x f x xx ⎧+≥⎪=⎨-<⎪⎩的单调性.例9.写出函数()|12||2|f x x x =++-的单调减区间.9.解分段函数的方程例10.设函数812(,1]()log (1,)x x f x x x -⎧∈-∞=⎨∈+∞⎩, 则满足方程1()4f x =的x 的值为10.解分段函数的不等式例11.设函数1221(0)()(0)x x f x x x -⎧-≤⎪=⎨⎪>⎩, 若0()1f x >, 则0x 得取值范围是( ).(1,1)A - .(1,)B -+∞ .(,2)(0,)C -∞-⋃+∞ .(,1)(1,)D -∞-⋃+∞例12.设函数2(1)(1)()41(1)x x f x x x ⎧+<⎪=⎨--≥⎪⎩, 则使得()1f x ≥的自变量x 的取值范围为( )A .(,2][0,10]-∞-⋃ B. (,2][0,1]-∞-⋃ C. (,2][1,10]-∞-⋃ D. [2,0][1,10]-⋃反馈练习1.(2013新课标全国Ⅰ,5分)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≤0,ln x +1x >0.若|f (x )|≥ax ,则a 的取值范围是( )A .(-∞,0] B.(-∞,1] C .[-2,1]D .[-2,0]2.(2013福建,4分)已知函数f (x )=⎩⎪⎨⎪⎧2x 3,x <0,-tan x ,0≤x <π2,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫π4=________.3.(2013北京,5分)函数f (x )=⎩⎪⎨⎪⎧log 12x , x ≥1,2x , x <1的值域为________.4.(2012江西,5分)若函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,lg x ,x >1,则f (f (10))=( )A .lg 101B .2C .1D .05.(2011北京,5分)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎪⎨⎪⎧cx ,x <A ,cA ,x ≥A(A ,c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么c 和A 的值分别是( )A .75,25B .75,16C .60,25D .60,166.(2012江苏,5分)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f (12)=f (32),则a +3b 的值为________.7.(2011江苏,5分)已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为________.函数的概念和性质考点一 分段函数分段函数是指自变量在两个或两个以上不同的范围内, 有不同的对应法则的函数, 它是一个函数, 却又常常被学生误认为是几个函数; 它的定义域是各段函数定义域的并集, 其值域也是各段函数值域的并集. 由于它在理解和掌握函数的定义、函数的性质等知识的程度的考察上有较好的作用, 时常在高考试题中“闪亮”登场, 本文就几种具体的题型做了一些思考, 解析如下:1.求分段函数的定义域和值域例1.求函数1222[1,0];()(0,2);3[2,);x x f x xx x +∈-⎧⎪=-∈⎨⎪∈+∞⎩的定义域、值域. 【解析】作图, 利用“数形结合”易知()f x 的定义域为[1,)-+∞, 值域为(1,3]-.2.求分段函数的函数值例2.已知函数2|1|2,(||1)()1,(||1)1x x f x x x--≤⎧⎪=⎨>⎪+⎩求12[()]f f .【解析】因为311222()|1|2f =--=-, 所以312223214[()]()1()13f f f =-==+-.3.求分段函数的最值例3.求函数43(0)()3(01)5(1)x x f x x x x x +≤⎧⎪=+<≤⎨⎪-+>⎩的最大值.【解析】当0x ≤时, max ()(0)3f x f ==, 当01x <≤时, max ()(1)4f x f ==, 当1x >时, 5154x -+<-+=, 综上有max ()4f x =.11o 322-1y x-14.求分段函数的解析式例4.在同一平面直角坐标系中, 函数()y f x =和()y g x =的图象关于直线y x =对称, 现将()y g x =的图象沿x 轴向左平移2个单位, 再沿y 轴向上平移1个单位, 所得的图象是由两条线段组成的折线(如图所示), 则函数()f x 的表达式为( )222(10).()2(02)xx x A f x x +-≤≤⎧=⎨+<≤⎩ 222(10).()2(02)xx x B f x x --≤≤⎧=⎨-<≤⎩ 222(12).()1(24)xx x C f x x -≤≤⎧=⎨+<≤⎩ 226(12).()3(24)xx x D f x x -≤≤⎧=⎨-<≤⎩ 【解析】当[2,0]x ∈-时, 121y x =+, 将其图象沿x 轴向右平移2个单位, 再沿y 轴向下平移1个单位, 得解析式为1122(2)111y x x =-+-=-, 所以()22([f x x x =+∈-, 当[0,1]x ∈时, 21y x =+, 将其图象沿x 轴向右平移2个单位, 再沿y 轴向下平移1个单位, 得解析式2(2)1124y x x =-+-=-, 所以12()2([0,2])f x x x =+∈, 综上可得222(10)()2(02)x x x f x x +-≤≤⎧=⎨+<≤⎩, 故选A .5.作分段函数的图像 例5.函数|ln ||1|x y ex =--的图像大致是( )-12131o-2y xA11oyxByx11OCyxO11DyxO11解析:在定义范围讨论,当0<x<1时,11y x x=+-;当x>1时1y =,故选D 6.求分段函数得反函数例6已知()y f x =是定义在R 上的奇函数, 且当0x >时, ()31xf x =-, 设()f x 的反函数为()y g x =, 求()g x 的表达式.【解析】设0x <, 则0x ->, 所以()31xf x --=-, 又因为()f x 是定义在R 上的奇函数,所以()()f x f x -=-, 且(0)0f =, 所以()13xf x -=-, 因此31(0)()0(0)13(0)x x x f x x x -⎧->⎪==⎨⎪-<⎩, 从而可得33log (1)(0)()0(0)log (1)(0)x x g x x x x +>⎧⎪==⎨⎪--<⎩.7.判断分段函数的奇偶性例7.判断函数22(1)(0)()(1)(0)x x x f x x x x ⎧-≥⎪=⎨-+<⎪⎩的奇偶性.【解析】当0x >时, 0x -<, 22()()(1)(1)()f x x x x x f x -=---+=-=, 当0x =时,(0)(0)0f f -==, 当0x <, 0x ->, 22()()(1)(1)()f x x x x x f x -=---=-+=因此, 对于任意x R ∈都有()()f x f x -=, 所以()f x 为偶函数.8.判断分段函数的单调性例8.判断函数32(0)()(0)x x x f x xx ⎧+≥⎪=⎨-<⎪⎩的单调性.【解析】显然()f x 连续. 当0x ≥时, '2()311f x x =+≥恒成立, 所以()f x 是单调递增函数, 当0x <时, '()20f x x =->恒成立, ()f x 也是单调递增函数, 所以()f x 在R 上是单调递增函数; 或画图易知()f x 在R 上是单调递增函数.例9.写出函数()|12||2|f x x x =++-的单调减区间.【解析】121231()()3(2)31(2)x x f x x x x x -+≤-⎧⎪=+-<<⎨⎪-≥⎩, 画图易知单调减区间为12(,]-∞-.9.解分段函数的方程例10.(01年上海)设函数812(,1]()log (1,)x x f x x x -⎧∈-∞=⎨∈+∞⎩, 则满足方程1()4f x =的x 的值为【解析】 若142x-=, 则222x--=, 得2(,1]x =∉-∞, 所以2x =(舍去), 若1814log x =,则1481x =, 解得3(1,)x =∈+∞, 所以3x =即为所求.10.解分段函数的不等式例11.设函数1221(0)()(0)x x f x xx -⎧-≤⎪=⎨⎪>⎩, 若0()1f x >, 则0x 得取值范围是( )yx52o -1252.(1,1)A - .(1,)B -+∞ .(,2)(0,)C -∞-⋃+∞ .(,1)(1,)D -∞-⋃+∞【解析1】首先画出()y f x =和1y =的大致图像, 易知0()1f x >时, 所对应的0x 的取值范围是(,1)(1,)-∞-⋃+∞.【解析2】因为0()1f x >, 当00x ≤时, 0211x -->, 解得01x <-, 当00x >时,1201x >, 解得01x >, 综上0x 的取值范围是(,1)(1,)-∞-⋃+∞. 故选D.例12.设函数2(1)(1)()41(1)x x f x x x ⎧+<⎪=⎨--≥⎪⎩, 则使得()1f x ≥的自变量x 的取值范围为( )A .(,2][0,10]-∞-⋃ B. (,2][0,1]-∞-⋃ C. (,2][1,10]-∞-⋃ D. [2,0][1,10]-⋃ 【解析】当1x <时, 2()1(1)120f x x x x ≥⇔+≥⇔≤-≥或, 所以21x x ≤-≤<或0, 当1x ≥时, ()14111310f x x x x ≥⇔--≥⇔-≤⇔≤, 所以110x ≤≤, 综上所述, 2x ≤-或010x ≤≤, 故选A 项.【点评:】以上分段函数性质的考查中, 不难得到一种解题的重要途径, 若能画出其大致图像, 定义域、值域、最值、单调性、奇偶性等问题就会迎刃而解, 方程、不等式等可用数形结合思想、等价转化思想、分类讨论思想及函数思想来解, 使问题得到大大简化, 效果明显.反馈练习1.(2013新课标全国Ⅰ,5分)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≤0,ln x +1x >0.若|f (x )|≥ax ,则xy1-11a 的取值范围是( )A .(-∞,0]B.(-∞,1] C .[-2,1] D .[-2,0]解析:本题考查一次函数、二次函数、对数函数、分段函数及由不等式恒成立求参数的取值范围问题,意在考查考生的转化能力和利用数形结合思想解答问题的能力.当x ≤0时,f (x )=-x 2+2x =-(x -1)2+1≤0,所以|f (x )|≥ax 化简为x 2-2x ≥ax ,即x 2≥(a +2)x ,因为x ≤0,所以a +2≥x 恒成立,所以a ≥-2;当x >0时,f (x )=ln(x +1)>0,所以|f (x )|≥ax 化简为ln(x +1)>ax 恒成立,由函数图象可知a ≤0,综上,当-2≤a ≤0时,不等式|f (x )|≥ax 恒成立,选择D.答案:D2.(2013福建,4分)已知函数f (x )=⎩⎪⎨⎪⎧ 2x 3,x <0,-tan x ,0≤x <π2,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫π4=________. 解析:本题主要考查分段函数的求值,意在考查考生的应用能力和运算求解能力.∵f ⎝ ⎛⎭⎪⎫π4=-tan π4=-1,∴f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫π4=f (-1)=2×(-1)3=-2. 答案:-2 3.(2013北京,5分)函数f (x )=⎩⎪⎨⎪⎧ log 12x , x ≥1,2x , x <1的值域为________.解析:本题主要考查分段函数的概念、性质以及指数函数、对数函数的性质,意在考查考生对函数定义域、值域掌握的熟练程度.分段函数是一个函数,其定义域是各段函数定义域的并集,值域是各段函数值域的并集.当x ≥1时,log 12x ≤0,当x <1时,0<2x<2,故值域为(0,2)∪(-∞,0]=(-∞,2).答案:(-∞,2)4.(2012江西,5分)若函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,lg x ,x >1,则f (f (10))=( ) A .lg 101 B .2 C .1 D .0 解析:f (10)=lg 10=1,故f (f (10))=f (1)=12+1=2.答案:B5.(2011北京,5分)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎪⎨⎪⎧ c x ,x <A ,c A ,x ≥A (A ,c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么c 和A 的值分别是( )A .75,25B .75,16C .60,25D .60,16 解析:因为组装第A 件产品用时15分钟,所以c A =15(1),所以必有4<A ,且c 4=c 2=30(2),联立(1)(2)解得c =60,A =16.答案:D 6.(2012江苏,5分)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f (12)=f (32),则a +3b 的值为________. 解析:因为f (x )是定义在R 上且周期为2的函数,所以f (32)=f (-12),且f (-1)=f (1),故f (12)=f (-12),从而12b +212+1=-12a +1,3a +2b =-2. ① 由f (-1)=f (1),得-a +1=b +22,故b =-2a . ②由①②得a =2,b =-4,从而a +3b =-10.答案:-107.(2011江苏,5分)已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧ 2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为________.解析:①当1-a <1,即a >0时,此时a +1>1,由f (1-a )=f (1+a ),得2(1-a )+a =-(1+a )-2a ,计算得a =-32(舍去);②当1-a >1,即a <0时,此时a +1<1,由f (1-a )=f (1+a ),得2(1+a )+a =-(1-a )-2a ,计算得a =-34,符合题意,所以综上所述,a =-34. 答案:-34。
分段函数常见题型及解法分段函数是指自变量在两个或两个以上不同的范围内,有不同的对应法则的函数, 它是一个函数,非几个函数;它的定义域是各段函数定义域的并集,其值域也是各段函数值域的并集.与分段函数有关的类型题的求解,在教材中只出现了由分段函数作出其图象的题型,并未作深入说明,因此,对于分段函数类型的求解不少同学感到困难较多,现举例说明其求解方法.1.求分段函数的定义域和值域例1.求函数的定义域、值域.解析:作图, 利用“数形结合”易知的定义域为, 值域为(-1,2]U {3}.例2.求函数的值域.解析:因为当x≥0时,x 2+1≥1;当x<0时,-x 2<0.所以,原函数的值域是[1,+∞)∪(-∞,0).2.求分段函数的函数值例1.已知函数求. 解析:因为, 所以. 例2.已知函数 ,求f{f[f(a)]} (a<0)的值.分析: 求此函数值关键是由内到外逐一求值,即由 a<0, f(a)=2a ,又0<2a<1,,,所以,.注:求分段函数值的关键是根据自变量的取值代入相应的函数段.练1.设则__________练2.设则__________3.求分段函数的最值1222[1,0];()(0,2);3[2,);x x f x xx x +∈-⎧⎪=-∈⎨⎪∈+∞⎩()f x [1,)-+∞2|1|2,(||1)()1,(||1)1x x f x x x --≤⎧⎪=⎨>⎪+⎩12[()]f f 311222()|1|2f =--=-312223214[()]()1()13f f f =-==+-,0.(),0.x e x g x lnx x ⎧≤=⎨>⎩1(())2g g =1232(2),()(1)(2).log x x f x x e x -⎧<⎪=⎨-≥⎪⎩[(2)]f f =例1.求函数的最大值.解析:当时, , 当时, , 当时,, 综上有.例2.设a 为实数,函数f(x)=x 2+|x-a|+1,x ∈R,求f(x)的最小值. 分析:因为原函数可化为所以,只要分别求出其最小值,再取两者较小者即可.解:当x<a 时,函数f(x)=x 2-x+a+1,所以若,则函数f(x)在(-∞,a]上单调递减,从而f(x)在(-∞,a]上的最小值为f(a)=a 2+1.若,则函数f(x)在(-∞,a]上的最小值为,且;当x≥a 时,函数;若,则函数f(x)在[a,+∞)上的最小值为,且.若,则函数f(x)在[a,+∞)上的最小值为f(a)=a2+1.综上,当时,函数f(x)的最小值是;当时,函数f(x)的最小值是a 2+1;当时,函数f(x)的最小值是.注:分段函数最值求解方法是先分别求出各段函数的最值,再进行大小比较,从而达到求解的目的. 4.求分段函数的解析式例1.在同一平面直角坐标系中, 函数和的图象关于直线对称, 现将的图象沿轴向左平移2个单位, 再沿轴向上平移1个单位, 所得的图象是由两条线段组成43(0)()3(01)5(1)x x f x x x x x +≤⎧⎪=+<≤⎨⎪-+>⎩0x ≤max ()(0)3f x f ==01x <≤max ()(1)4f x f ==1x >5154x -+<-+=max ()4f x =()y f x =()yg x =y x =()y g x =x y的折线(如图所示), 则函数的表达式为( )解析:当时,, 将其图象沿轴向右平移2个单位, 再沿轴向下平移1个单位, 得解析式为, 所以, 当时,, 将其图象沿轴向右平移2个单位, 再沿轴向下平移1个单位, 得解析式, 所以, 综上可得, 故选A.例2.某蔬菜基地种植西红柿,由历年市场行情得知,从2月1日起的300天内,西红柿售价与上市时间的关系用图1的一条折线表示;西红柿的种植成本与上市时间的关系用图2的抛物线段表示:(I)写出图l 表示的市场售价与时间的函数关系式P=f(t),写出图2表示的种植成本与上市时间的函数关系式Q=g(t); (II)认定市面上售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?解析:(I)由图l 可得市场售价与时间的关系为由图2可得种植成本与时间的函数关系为(0≤t≤300)。
(II)设t 时间的纯收益为h(t),由题意得()f x 222(10).()2(02)xx x A f x x +-≤≤⎧=⎨+<≤⎩222(10).()2(02)xx x B f x x --≤≤⎧=⎨-<≤⎩222(12).()1(24)xx x C f x x -≤≤⎧=⎨+<≤⎩226(12).()3(24)xx x D f x x -≤≤⎧=⎨-<≤⎩[2,0]x ∈-121y x =+x y 1122(2)111y x x =-+-=-()22([1,0])f x x x =+∈-[0,1]x ∈21y x =+x y 2(2)1124y x x =-+-=-12()2([0,2])f x x x =+∈222(10)()2(02)xx x f x x +-≤≤⎧=⎨+<≤⎩h(t)=f(t)-g(t)再求h(t)的最大值即可。
注:观察图1,知f(t)应是一个关于t 的一次分段函数,观察图2可知g(t)是关于t 的二次函数,可设为顶点式,即设g(t)=a(t-150)2+100。
5.作分段函数的图像例1.函数的图像大致是( )例2.已知函数f(x)=|x 2-2x-3|的图象与直线y=a 有且仅有3个交点,求a 的值. 解:∵ f(x)=|(x-1)2-4|=|(x+1)(x-3)|,所以由图象易知a=4.注:此题可以根据函数图像的对称性直接画出函数图像,再根据数形结合的方法求出,不用写出函数解析式,更简单.例3.已知函数f(x)=|x2-2x-3|的图象与直线y=a 有且仅有3个交点,求a 的值. 解:∵ f(x)=|(x-1)2-4|=|(x+1)(x-3)|,∴由图象易知a=4.|ln ||1|x y e x =--Byx11OCyxO11D yxO11注:此题可以根据函数图像的对称性直接画出函数图像,再根据数形结合的方法求出,不用写出函数解析式,更简单.6.求分段函数得反函数例1.求函数的反函数.解:∵ f(x)在R 上是单调减函数, ∴ f(x)在R 上有反函数. ∵ y=x2+1(x≤0)的反函数是(x≥1),y=1-x(x>0)的反函数是y=1-x(x<1),∴ 函数f(x)的反函数是注 :求分段函数的反函数只要分别求出其反函数即可.例2.已知是定义在上的奇函数, 且当时,, 设得反函数为, 求的表达式.解析:设, 则, 所以, 又因为是定义在上的奇函数, 所以, 且, 所以, 因此, 从而可得.例3.已知 ⎩⎨⎧ -log3(x + 1)(x>6) 3x -6(x ≤6),若记为的反函数,且则__________.7.判断分段函数的奇偶性例1.判断函数的奇偶性. 解析:当时, ,, 当时, , 当, , 因此, 对于任意都有, 所以为偶函数.注:分段函数奇偶性必须对x 值分类,从而比较f(-x)与f(x)的关系,得出f(x)是否是奇偶函数结论.8.判断分段函数的单调性()y f x =R 0x >()31xf x =-()f x ()yg x =()g x 0x <0x ->()31xf x --=-()f x R ()()f x f x -=-(0)0f =()13x f x -=-31(0)()0(0)13(0)x x x f x x x -⎧->⎪==⎨⎪-<⎩33log (1)(0)()0(0)log (1)(0)x x g x x x x +>⎧⎪==⎨⎪--<⎩=)(x f )(1x f -)(x f ),91(1-=fa =+)4(a f 22(1)(0)()(1)(0)x x x f x x x x ⎧-≥⎪=⎨-+<⎪⎩0x >0x -<22()()(1)(1)()f x x x x x f x -=---+=-=0x =(0)(0)0f f -==0x <0x ->22()()(1)(1)()f x x x x x f x -=---=-+=x R ∈()()f x f x -=()f x例1.判断函数的单调性.解一:分析:由于x ∈R ,所以对于设x1>x2必须分成三类: 1.当x 1>x 2>0时,则f(x 1)-f(x 2)==(x 1-x 2)(x 1+x 2)>0;2.当0>x 1>x 2时,则;3.当x 1>0>x 2时,则综上所述:x ∈R ,且x 1>x 2时,有f(x 1)-f(x 2)>0。
所以函数f(x)是增函数.注:分段函数的单调性的讨论必须对自变量的值分类讨论.解二:显然连续. 当时, 恒成立, 所以是单调递增函数, 当时, 恒成立, 也是单调递增函数, 所以在上是单调递增函数;或画图易知在上是单调递增函数.例2.写出函数的单调减区间.解析:, 画图知单调减区间为. 9.解分段函数的方程例1.设函数, 则满足方程的的值为__________ 解析:若, 则, 得, 所以(舍去), 若, 则, 解得, 所以即为所求.例2.设函数, 则满足方程的的值为__________ 解析:若, 则, 得, 所以(舍去), 若, 则, 解得, 所以即为所求.练1:函数f(x)=,如果方程f(x)=a 有且只有一个实根,那么a 满足A.a<0B.0≤a<1C.a=1D.a>132(0)()(0)x x x f x x x ⎧+≥⎪=⎨-<⎪⎩()f x 0x ≥'2()311f x x =+≥()f x 0x <'()20f x x =->()f x ()f x R ()f x R ()|12||2|f x x x =++-121231()()3(2)31(2)x x f x x x x x -+≤-⎧⎪=+-<<⎨⎪-≥⎩12(,]-∞-812(,1]()log (1,)x x f x x x -⎧∈-∞=⎨∈+∞⎩1()4f x =x 142x -=222x --=2(,1]x =∉-∞2x =1814log x =1481x =3(1,)x =∈+∞3x =812(,1]()log (1,)x x f x x x -⎧∈-∞=⎨∈+∞⎩1()4f x =x 142x -=222x --=2(,1]x =∉-∞2x =1814log x =1481x =3(1,)x =∈+∞3x =⎪⎩⎪⎨⎧>≤-)1|(|||)1|(|12x x x x练2:设定义为R 的函数则关于的方程有7个不同的实数解的充要条件是( )A. 且B. 且C. 且D. 且练3:设函数在上满足,,且在闭区间上,只有.(Ⅰ)试判断函数的奇偶性;(Ⅱ)试求方程在闭区间上的根的个数,并证明你的结论.10.解分段函数的不等式例1:设函数, 若, 则得取值范围是( )解一:首先画出和的大致图像, 易知时, 所对应的的取值范围是.解二:因为, 当时, , 解得, 当时, , 解得, 综上的取值范围是. 故选D.例2:设函数, 则使得的自变量的取值范围为( ) A . B. C. D.解析:当时,, 所以, 当时, , 所以, 综上所述, 或, 故选A 项.lg 1,1,()0,0.x x f x x ⎧-≠⎪=⎨=⎪⎩x 2()()0f x bf x c ++=0b <0c >0b >0c <0b <0c =0b ≥0c =()f x (,)-∞+∞(2)(2)f x f x -=+(7)f x -=(7)f x +[0,7](1)(3)0f f ==()y f x =()0f x =[2005,2005]-1221(0)()(0)x x f x x x -⎧-≤⎪=⎨⎪>⎩0()1f x >0x .(1,1)A -.(1,)B -+∞.(,2)(0,)C -∞-⋃+∞.(,1)(1,)D -∞-⋃+∞()y f x =1y =0()1f x >0x (,1)(1,)-∞-⋃+∞0()1f x >00x ≤0211x -->01x <-00x >1201x >01x >0x (,1)(1,)-∞-⋃+∞2(1)(1)()41(1)x x f x x x ⎧+<⎪=⎨--≥⎪⎩()1f x ≥x (,2][0,10]-∞-⋃(,2][0,1]-∞-⋃(,2][1,10]-∞-⋃[2,0][1,10]-⋃1x <2()1(1)120f x x x x ≥⇔+≥⇔≤-≥或21x x ≤-≤<或01x ≥()14111310f x x x x ≥⇔--≥⇔-≤⇔≤110x ≤≤2x ≤-010x ≤≤例3:设函数, 则使得的自变量的取值范围为( ) A . B. C. D.解析:当时,, 所以, 当时, , 所以, 综上所述, 或, 故选A 项.练1:已知,则不等式的解集是________ 练2:设f(x)= 则不等式f(x)>2的解集为________(A)(1,2)(3,+∞)(B)(,+∞)(C)(1,2) ( ,+∞)(D)(1,2)练3:设(x)=,使所有x 均满足x ·(x)≤(x)的函数g(x)是( )A .(x)=sinxB .(x)=xC .(x)=x2D .(x)=|x|点评:以上分段函数性质的考查中,不难得到一种解题的重要途径, 若能画出其大致图像, 定义域、值域、最值、单调性、奇偶性等问题就会迎刃而解,方程、不等式等可用数形结合思想、等价转化思想、分类讨论思想及函数思想来解,使问题得到大大简化,效果明显.2(1)(1)()4(1)x x f x x ⎧+<⎪=⎨-≥⎪⎩()1f x ≥x (,2][0,10]-∞-⋃(,2][0,1]-∞-⋃(,2][1,10]-∞-⋃[2,0][1,10]-⋃1x <2()1(1)120f x x x x ≥⇔+≥⇔≤-≥或21x x ≤-≤<或01x ≥()141310f x x ≥⇔-≥⇔≤⇔≤110x ≤≤2x ≤-010x ≤≤1(0)()1(0)x f x x ≥⎧=⎨-<⎩ (2)(2)5x x f x +++≤1232,2,log (1),2,x e x x x -⎧<⎪⎨-≥⎪⎩⋃10⋃10f 1()0x x ⎧⎨⎩为有理数(为无理数)f g g g g g。