初中数学《二次函数》复习教案
- 格式:doc
- 大小:122.00 KB
- 文档页数:7
二次函数教案(优秀5篇)(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如教学心得体会、工作心得体会、学生心得体会、综合心得体会、党员心得体会、培训心得体会、军警心得体会、观后感、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, this store provides various types of practical materials for everyone, such as teaching experience, work experience, student experience, comprehensive experience, party member experience, training experience, military and police experience, observation and feedback, essay collection, other materials, etc. If you want to learn about different data formats and writing methods, please pay attention!二次函数教案(优秀5篇)课件是根据教学大纲的要求,经过教学目标确定,教学内容和任务分析,教学活动结构及界面设计等环节,而加以制作的课程软件。
二次函数复习教学设计一、教材分析二次函数是中考的重点内容之一,二次函数的应用是培养学生数学建模和数学思想的重要素材,是每年必考的压轴题。
本部分包括了初中代数的所有数学思想和方法,复习时必须高度重视。
二次函数在学习函数内容上起着承上启下的作用,与前面学习的二次三项式、一元二次方程有着密切联系,为今后学习高中的函数和不等式打下基础,积累经验,提供可以借鉴的方法。
通过对二次函数的复习,加深学生对函数知识的理解和应用。
复习目标:1、理解二次函数的意义,会画二次函数的图象,会求二次函数的解析式。
2、会用配方法把二次函数的表达式化为顶点式,并能利用性质解决简单的实际问题,体会模型思想。
3、会利用二次函数的图象求一元二次方程的近似解。
复习重点:二次函数的图象、性质和应用。
复习难点:二次函数的应用和图象法解一元二次方程。
二、教材处理针对初三复习时间紧、任务重的实际情况,我决定利用以题代纲的复习方法,以问题组的形式展开复习,每一道题让学生说出知识点和考点及其解题的思路,每一部分在整个知识体系中的位置等等,刚开始学生说不全,其他同学再补充,时间长了,学生就能掌握。
在复习时将二次函数部分分为四个模块,(一)二次函数的图象和性质(二)二次函数的平移(三)二次函数解析式的求法(四)二次函数的应用。
对学生容易出错的知识点,可进行形式多样的变式练习,以提高学生运用知识分析问题、解决实际问题的能力。
三、学情分析二次函数部分在年前学习时由于时间比较紧,大部分同学掌握不好,有的学生二次函数的顶点坐标公式都忘了;再者,函数是初中数学的难点,学生理解和学习起来有一定的难度,所以,基础比较差一些。
现在学生已经复习了一次函数和反比例函数,对函数的认识有了一定程度的加深,复习起来应该比讲新授课时要顺利的多。
在复习时要针对学生的实际,先掌握基础知识,再让学生构建二次函数的知识体系,然后通过一些应用性的题目提升学生的能力。
一轮复习一定要注重基础,要注重实效。
《二次函数复习课》教学设计教材分析:函数是初中数学中最基本的概念之一,从八年级首次接触到函数的概念,就学习了正比例函数、一次函数,九年级上册学习了二次函数,下册学习了反比例函数,贯穿于整个初中数学体系中,也是生活实际中构建数学模型的重要工具之一。
二次函数在初中数学教学中占有及其重要的地位,不仅是初中代数内容的引申,更为高中的学习打下基础。
在历届中考题中,二次函数都是压轴题中不可缺少的内容。
二次函数的图像和性质体现了数形结合的数学思想,对学生基本数学思想和素养的形成起到了很好的推动作用。
并且二次函数与方程、不等式等只是的联系,使学生能更好地对自己所学知识进行融会贯通。
教学目标:1.能用给定不共线的三点坐标确定二次函数的解析式。
2.通过函数的图象掌握二次函数的性质,结合图象灵活运用对称性和增减性,会求二次函数的最大值和最小值,并能确定相应自变量的值,能解决实际问题。
3.掌握二次函数与方程、不等式的关系。
教学重点:二次函数解析式的求法教学难点:利用二次函数的性质结合图像解决问题教学方法:自主探究与练习相结合教学过程:教 学 活 动设计意图创设情景 引入新课引例:已知二次函数2y ax bx c =++的图象如图所示,你能从右图中得到哪些信息?追问:增加一些条件(-1,0),(3,0),(0,-3),你能得到哪些性质?(展示函数图像)这样导入简单省时,能够吸引学生的注意力,激发学生的学习积极性。
一题多变已知,引例中的函数解析式为:223y x x =--(1) 若1231(2,),(,),(2,)2y y y -在该函数图象上,则123,,y y y 的大小关系______________(2)当21x -≤≤-时,y 的最小值_________,此时x 取________.当02x ≤≤时,y 的最小值_________,此时x 取________.当24x ≤≤时,y 的最小值_________,此时x 取________.(3)结合图象直接写出下列方程的解和不等式的解集。
初中数学二次函数教案(5篇)学校数学二次函数教案篇1一、说课内容:人教版九班级数学下册的二次函数的概念及相关习题二、教材分析:1、教材的地位和作用这节课是在同学已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。
二次函数是学校阶段讨论的最终一个详细的函数,也是最重要的,在历年来的中考题中占有较大比例。
同时,二次函数和以前学过的一元二次方程、一元二次不等式有着亲密的联系。
进一步学习二次函数将为它们的解法供应新的方法和途径,并使同学更为深刻的理解数形结合的重要思想。
而本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。
所以这节课在整个教材中具有承上启下的重要作用。
2、教学目标和要求:(1)学问与技能:使同学理解二次函数的概念,把握依据实际问题列出二次函数关系式的方法,并了解如何依据实际问题确定自变量的取值范围。
(2)过程与方法:复习旧知,通过实际问题的引入,经受二次函数概念的探究过程,提高同学解决问题的力量.(3)情感、态度与价值观:通过观看、操作、沟通归纳等数学活动加深对二次函数概念的理解,进展同学的数学思维,增加学好数学的愿望与信念.3、教学重点:对二次函数概念的理解。
4、教学难点:由实际问题确定函数解析式和确定自变量的取值范围。
三、教法学法设计:1、从创设情境入手,通过学问再现,孕伏教学过程2、从同学活动动身,通过以旧引新,顺势教学过程3、利用探究、讨论手段,通过思维深化,领悟教学过程四、教学过程:(一)复习提问1.什么叫函数?我们之前学过了那些函数?(一次函数,正比例函数,反比例函数)2.它们的形式是怎样的?(y=kx+b,ky=kx ,ky= , k0)3.一次函数(y=kx+b)的自变量是什么?函数是什么?常量是什么?为什么要有k0的条件? k值对函数性质有什么影响?【设计意图】复习这些问题是为了关心同学弄清自变量、函数、常量等概念,加深对函数定义的理解.强调k0的条件,以备与二次函数中的a进行比较.(二)引入新课函数是讨论两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。
教材:初中数学九年级上册复习目标:1.理解二次函数的概念和特征。
2.掌握二次函数的基本性质和图像的特点。
3.熟练运用二次函数解决实际问题。
4.理解抛物线的性质及其与二次函数的关系。
一、概念复习1.二次函数:通过变量的平方项表达的函数。
2.顶点:二次函数图像的最高点或最低点,表示为(a,b)。
3.对称轴:二次函数图像的对称轴,表示为x=a。
4.开口方向:二次函数图像的开口方向,由二次项的系数决定。
二、性质复习1.零点:二次函数与x轴交点的横坐标。
2.判别式:用来判断二次函数的零点个数的式子。
当Δ=b^2-4ac>0时,二次函数有两个不相等的零点。
当Δ=b^2-4ac=0时,二次函数有两个相等的零点。
当Δ=b^2-4ac<0时,二次函数没有实数零点。
3.最大值与最小值:当二次函数开口向上时,最小值是顶点的纵坐标。
当二次函数开口向下时,最大值是顶点的纵坐标。
三、图像特点复习1.开口方向:当a>0时,二次函数开口向上。
当a<0时,二次函数开口向下。
2.对称轴:对称轴与顶点的横坐标相等。
3.零点:零点是二次函数与x轴交点的横坐标。
零点的个数由判别式Δ决定。
四、实际问题复习1.利用二次函数解决实际问题的步骤:(1)明确问题中有关条件。
(2)设出二次函数的表达式。
(3)求出二次函数的最值或零点。
(4)用解出的最值或零点回答问题。
2.举例:问题:商场的营业额可以用二次函数y=2x^2+3x+4来表示,其中x表示时间(以小时计),y表示营业额(以万元计)。
求该商场的最大营业额,并在什么时间实现。
解答:(1)根据题目,得到二次函数的表达式为y=2x^2+3x+4(2)通过求导数或将二次函数表示为顶点形式,得到该二次函数的顶点为(-3/4,23/8)。
(3)所以,该商场的最大营业额为23/8万元,实现时间为-3/4小时。
五、抛物线的性质复习1. 加入二次函数的f(x)=ax^2+bx+c。
若a>0,抛物线开口向上;若a<0,抛物线开口向下。
《二次函数的应用》教学设计35321212++-=x x y 3532121-2++=x x y 教学环节教学内容 学生活动环节目标 创设情境问题引入 1.已知二次函数 ,求出抛物线的顶点坐标与对称轴。
2.已知二次函数图象的顶点坐标是(6,2.6),且经过点(0,2),求这个二次函数的表达式 。
3.抛物线 c bx x y ++=261-经过点(0,4)经过点(3,217),求抛物线的关系式。
问题:(1)求二次函数顶点坐标的方法 (2)设表达式的思路(3)如何求二次函数与x 轴及y 轴的交点坐标课前布置,独立完成,上课时没完成的继续完成,之后组内批阅,找学生上台板演,并回答老师提出的问题。
这三个小题是后面实际应用问题的答案,学生在复习二次函数基础知识的同时,把后面的计算提到前面来,便于后面把教学重点放在解题思路的分析与掌握上,减少学生的计算量。
探索交流获得新知1例题解析例 1 :这是王强在训练掷铅球时的高度y (m)与水平距离x(m)之间的函数图像,其关系式为 ,则铅球达到的最大高度是_____米,此时离投掷点的水平距离是____米。
铅球出手时的高度是_____米,此次掷铅球的成绩是____米。
2、跟踪练习:如图,排球运动员站在点O 处练习发球,将球从1、学生独立思考后回答问题答案。
2、根据图像回答解题思路。
(前面已经求过前两个空,只计算后面两个即可)引导学生得到解决问题的方法:这四个问题都是求线段的长度,共同点为已知点的一个坐标,可将其代入表达式求另一个坐标,再把坐标转化成线段的长。
O点正上方2 m的A处发出,把球看成点,出手后水平运行6米达到最大高度2.6米,(1) 运行的高度记为y(m),运行的水平距离记为x(m),建立平面平面直角坐标系如图,求y 与x的函数表达式(不要求写出自变量x的取值范围);(2) 若球网与O点的水平距离为9 m,高度为2.43 m,球场的边界距O点的水平距离为18 m。
《二次函数》教案8篇(二次函数应用教案设计)下面是整理的《二次函数》教案8篇(二次函数应用教案设计),欢迎参阅。
《二次函数》教案1教学目标掌握二次函数y=ax2+bx+c的图象与x轴的交点个数与一元二次方程ax2+bx+c=0的解的情况之间的关系。
重点、难点:二次函数y=ax2+bx+c的图象与一元二次方程ax2+bx+c=0的根之间关系的探索。
教学过程:一、情境创设一次函数y=x+2的图象与x轴的交点坐标问题1.任意一次函数的图象与x轴有几个交点?问题2.猜想二次函数图象与x轴可能会有几个交点?可以借助什么来研究?二、探索活动活动一观察在直角坐标系中任意取三点A、B、C,测出它们的纵坐标,分别记作a、b、c,以a、b、c为系数绘制二次函数y=ax2+bx+c的图象,观察它与x轴交点数量的情况;任意改变a、b、c值后,观察交点数量变化情况。
活动二观察与探索如图1,观察二次函数y=x2-x-6的图象,回答问题:(1)图象与x轴的交点的坐标为A(,),B(,)(2)当x=时,函数值y=0。
(3)求方程x2-x-6=0的解。
(4)方程x2-x-6=0的解和交点坐标有何关系?活动三猜想和归纳(1)你能说出函数y=ax2+bx+c的图象与x轴交点个数的其它情况吗?猜想交点个数和方程ax2+bx+c=0的根的个数有何关系。
(2)一元二次方程ax2+bx+c=0的根的个数由什么来判断?这样我们可以把二次函数y=ax2+bx+c的图象与x轴交点、一元二次方程ax2+bx+c=0的实数根和根的判别式三者联系起来。
三、例题分析例1.不画图象,判断下列函数与x轴交点情况。
(1)y=x2-10x+25(2)y=3x2-4x+2(3)y=-2x2+3x-1例2.已知二次函数y=mx2+x-1(1)当m为何值时,图象与x轴有两个交点(2)当m为何值时,图象与x轴有一个交点?(3)当m为何值时,图象与x轴无交点?四、拓展练习1.如图2,二次函数y=ax2+bx+c的图象与x轴交于A、B。
《二次函数》教案(优秀7篇)《二次函数》教案篇一教学目标:1、使学生能利用描点法正确作出函数y=ax2+b的图象。
2、让学生经历二次函数y=ax2+b性质探究的过程,理解二次函数y=ax2+b的性质及它与函数y=ax2的关系。
教学重点:会用描点法画出二次函数y=ax2+b的图象,理解二次函数y =ax2+b的性质,理解函数y=ax2+b与函数y=ax2的相互关系。
教学难点:正确理解二次函数y=ax2+b的性质,理解抛物线y=ax2+b 与抛物线y=ax2的关系。
教学过程:一、提出问题导入新课1.二次函数y=2x2的图象具有哪些性质?2.猜想二次函数y=2x2+1的图象与二次函数y=2x2的图象开口方向、对称轴和顶点坐标是否相同?二、学习新知1、问题1:画出函数y=2x2和函数y=2x2+1的图象,并加以比较问题2,你能在同一直角坐标系中,画出函数y=2x2与y=2x2+1的图象吗?同学试一试,教师点评。
问题3:当自变量x取同一数值时,这两个函数的函数值(既y)之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?让学生观察两个函数图象,说出函数y=2x2+1与y=2x2的图象开口方向、对称轴相同,顶点坐标,函数y=2x2的图象的顶点坐标是(0,0),而函数y=2x2+1的图象的顶点坐标是(0,1)。
师:你能由函数y=2x2的性质,得到函数y=2x2+1的一些性质吗?小组相互说说(一人记录,其余组员补充)2、小组汇报:分组讨论这个函数的性质并归纳:当x<0时,函数值y随x的增大而减小;当x>0时,函数值y随x的增大而增大,当x=0时,函数取得最小值,最小值y=1。
3、做一做在同一直角坐标系中画出函数y=2x2-2与函数y=2x2的图象,再作比较,说说它们有什么联系和区别?三、小结 1、在同一直角坐标系中,函数y=ax2+k的图象与函数y=ax2的图象具有什么关系? 2.你能说出函数y=ax2+k具有哪些性质?四、作业:在同一直角坐标系中,画出 (1)y=-2x2与y=-2x2-2;的图像五:板书《二次函数》教案篇二1、会用描点法画二次函数=ax2+bx+c的图象。
《二次函数》的复习教学设计数学《二次函数》优秀教案篇一一、教材分析本节课在讨论了二次函数y=a(x-h)2+k(a≠0)的图像的基础上对二次函数y=ax2+bx+c(a≠0)的图像和性质进行研究。
主要的研究方法是通过配方将y=ax2+bx+c(a≠0)向y=a(x-h)2+k(a≠0)转化,体会知识之间在内的联系。
在具体探究过程中,从特殊的例子出发,分别研究a0和a0的情况,再从特殊到一般得出y=ax2+bx+c(a≠0)的图像和性质。
二、学情分析本节课前,学生已经探究过二次函数y=a(x-h)2+k(a≠0)的图像和性质,面对一般式向顶点式的转化,让学上体会化归思想,分析这两个式子的区别。
三、教学目标(一)知识与能力目标1、经历求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标的过程;2、能通过配方把二次函数y=ax2+bx+c(a≠0)化成y=a(x-h)2+k(a≠0)的形式,从而确定开口方向、顶点坐标和对称轴。
(二)过程与方法目标通过思考、探究、化归、尝试等过程,让学生从中体会探索新知的方式和方法。
(三)情感态度与价值观目标1、经历求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标的过程,渗透配方和化归的思想方法;2、在运用二次函数的知识解决问题的过程中,亲自体会到学习数学知识的价值,从而提高学生学习数学知识的兴趣并获得成功的体验。
四、教学重难点1、重点通过配方求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标。
2、难点二次函数y=ax2+bx+c(a≠0)的图像的性质。
五、教学策略与设计说明本节课主要渗透类比、化归数学思想。
对比一般式和顶点式的区别和联系;体会式子的恒等变形的重要意义。
六、教学过程教学环节(注明每个环节预设的时间)(一)提出问题(约1分钟)教师活动:形如y=a(x-h)2+k(a≠0)的抛物线的对称轴、顶点坐标分别是什么?那么对于一般式y=ax2+bx+c(a≠0)顶点坐标和对称轴又怎样呢?图像又如何?学生活动:学生快速回答出第一个问题,第二个问题引起学生的思考。
九年级数学二次函数教案(优秀9篇)二次函数教学教案参考篇一教学目标(一)教学知识点1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。
2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根。
3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。
(二)能力训练要求1.经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神。
2.通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想。
3.通过学生共同观察和讨论,培养大家的合作交流意识。
(三)情感与价值观要求1.经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。
2.具有初步的创新精神和实践能力。
教学重点1.体会方程与函数之间的联系。
2.理解何时方程有两个不等的实根,两个相等的实数和没有实根。
3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。
教学难点1.探索方程与函数之间的联系的过程。
2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。
教学方法讨论探索法。
教具准备投影片二张第一张:(记作§2.8.1A)第二张:(记作§2.8.1B)教学过程Ⅰ.创设问题情境,引入新课[师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系。
当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解。
现在我们学习了一元二次方程ax2+bx+c=0(a≠0)和二次函数y=ax2+bx+c(a≠0),它们之间是否也存在一定的关系呢?本节课我们将探索有关问题。
九年级数学《二次函数》教案最新7篇九年级数学上册二次函数教案2021模板篇一一、素质教育目标(一)知识教学点使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系。
(二)能力训练点逐步培养学生观察、比较、分析、综合、抽象、概括的逻辑思维能力。
(三)德育渗透点培养学生独立思考、勇于创新的精神。
二、教学重点、难点1.重点:使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系并会应用。
2.难点:一个锐角的正弦(余弦)与它的余角的余弦(正弦)之间的关系的应用。
三、教学步骤(一)明确目标1.复习提问(1)、什么是∠A的正弦、什么是∠A的余弦,结合图形请学生回答。
因为正弦、余弦的概念是研究本课内容的知识基础,请中下学生回答,从中可以了解教学班还有多少人不清楚的,可以采取适当的补救措施。
(2)请同学们回忆30°、45°、60°角的正、余弦值(教师板书).(3)请同学们观察,从中发现什么特征?学生一定会回答“sin30°=cos60°,sin45°=cos45°,sin60°=cos30°,这三个角的正弦值等于它们余角的余弦值”。
2.导入新课根据这一特征,学生们可能会猜想“一个锐角的正弦(余弦)值等于它的余角的余弦(正弦)值。
”这是否是真命题呢?引出课题。
(二)、整体感知关于锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,是通过30°、45°、60°角的正弦、余弦值之间的关系引入的,然后加以证明。
引入这两个关系式是为了便于查“正弦和余弦表”,关系式虽然用黑体字并加以文字语言的证明,但不标明是定理,其证明也不要求学生理解,更不应要求学生利用这两个关系式去推证其他三角恒等式。
在本章,这两个关系式的用处仅仅限于查表和计算,而不是证明。
(三)重点、难点的学习和目标完成过程1.通过复习特殊角的三角函数值,引导学生观察,并猜想“任一锐角的正弦(余弦)值等于它的余角的余弦(正弦)值吗?”提出问题,激发学生的学习热情,使学生的思维积极活跃。
二次函数数学教案(优秀11篇) 二次函数教案作为一名无私奉献的老师,时常需要用到教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。
那么大家知道正规的教案是怎么写的吗?它山之石可以攻玉,本页是爱岗敬业的小编小月月给大家整理的二次函数数学教案【优秀11篇】,希望对大家有所帮助。
《1.1二次函数》教学设计篇一【知识与技能】1.理解具体情景中二次函数的意义,理解二次函数的概念,掌握二次函数的一般形式。
2.能够表示简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围。
【过程与方法】经历探索,分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系。
【情感态度】体会数学与实际生活的密切联系,学会与他人合作交流,培养合作意识。
【教学重点】二次函数的概念。
【教学难点】在实际问题中,会写简单变量之间的二次函数关系式教学过程。
一、情境导入,初步认识1.教材p2“动脑筋”中的两个问题:矩形植物园的面积s(m2)与相邻于围墙面的每一面墙的长度x(m)的关系式是s=-2x2+100x,(0x50);电脑价格y(元)与平均降价率x的关系式是y=6000x2-1+6000,(0x1).它们有什么共同点?一般形式是y=ax2+bx+c(a,b,c为常数,a≠0)这样的函数可以叫做什么函数?二次函数。
2.对于实际问题中的二次函数,自变量的取值范围是否会有一些限制呢?有。
二、思考探究,获取新知二次函数的概念及一般形式在上述学生回答后,教师给出二次函数的定义:一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数,其中x是自变量,a,b,c分别是函数解析式的二次项系数、一次项系数和常数项。
注意:①二次函数中二次项系数不能为0.②在指出二次函数中各项系数时,要连同符号一起指出。
《1.1二次函数》教学设计篇二二次函数的教学设计马玉宝教学内容:人教版九年义务教育初中第三册第108页教学目标:1. 1. 理解二次函数的意义;会用描点法画出函数y=ax2的图象,知道抛物线的有关概念;2. 2. 通过变式教学,培养学生思维的敏捷性、广阔性、深刻性;3. 3. 通过二次函数的教学让学生进一步体会研究函数的一般方法;加深对于数形结合思想认识。
第22章二次函数复习课教案教材分析:函数是初中数学中最基本的概念之一,从八级首次接触到函数的概念,就学习了正比例函数、一次函数,然后九年级上册学习了反比例函数,九年级下册学习了二次函数,函数贯穿于整个初中数学体系之中,也是生活实际中构建数学模型的重要工具之一。
二次函数在初中数学教学中占有极其重要的地位,它不仅中初中代数内容的引申,更为高中学习一元二次不等式等内容打下基础。
在历届中考试题中,二次函数都是压轴题中不可缺少的内容。
二次函的图象和性质体现了数形结合的数学思想,对学生基本数学思想和素养的形成起到了很好的推动作用。
并且二次函数与一元二次方程、不等式等知识的联系,使学生能更好地对自己所学的知识融会贯通。
学情分析:九年级的学生在新课的学习中已经掌握了二次函数的定义、会作二次函数的图象并能根据图象对二次函数的性质进行简单地分析。
并且经过一段时间的练习,学生的分析能力和理解能力都较学习新课时有所提高,学生的学习热情较高,有了一定的自主探究和合作学习能力。
不过,学生学习能力差异较大,两级分化过于明显。
复习目标:知识与技能目标:1.回忆所学二次函数的基础知识,进一步理解掌握2.灵活运用基础知识解决相关问题,提高学生解决问题的能力过程与方法目标:1.学生自查遗忘的知识点,回答问题,提出问题。
2.经历例题习题的解答,提高技能。
3.讨论、交流,教师答疑、解惑、指导。
情感、态度与价值观目标:渗透二次函数在实践中的运用,使学生知道学为所用,树立服务社会的思想。
复习重点、难点:二次函数的基础知识回忆及灵活运用。
复习方法:自主探究、分组合作交流复习过程:一、知识梳理(学生以小组为单位,课前已独立完成)学生分组汇报本章相关知识点,各组互相补充:1、二次函数的概念:若两个变量x 、y 之间的对应关系可以表示成c bx ax y ++=2(a 、b 、c 是常数,0≠a )的形式,则称y 是x 的二次函数。
一组选派代表出示相关练习,由一组指定某一组完成练习,汇报结果,评价打分。
二次函数数学教案优秀5篇初二二次函数教案篇一一。
学习目标1.经历对实际问题情境分析确定二次函数表达式的过程,体会二次函数意义。
2.了解二次函数关系式,会确定二次函数关系式中各项的系数。
二。
知识导学(一)情景导学1.一粒石子投入水中,激起的波纹不断向外扩展,扩大的圆的面积S与半径r之间的函数关系式是。
2.用16米长的篱笆围成长方形的生物园饲养小兔,怎样围可使小兔的活动范围较大?设长方形的长为x 米,则宽为米,如果将面积记为y平方米,那么变量y与x之间的函数关系式为.3.要给边长为x米的正方形房间铺设地板,已知某种地板的价格为每平方米240元,踢脚线的价格为每米30元,如果其他费用为1000元,门宽0.8米,那么总费用y为多少元?在这个问题中,地板的费用与有关,为元,踢脚线的费用与有关,为元;其他费用固定不变为元,所以总费用y(元)与x(m)之间的函数关系式是。
(二)归纳提高。
上述函数函数关系有哪些共同之处?它们与一次函数、反比例函数的关系式有什么不同?一般地,我们称表示的函数为二次函数。
其中是自变量,函数。
一般地,二次函数中自变量x的取值范围是,你能说出上述三个问题中自变量的取值范围吗?(三)典例分析例1、判断:下列函数是否为二次函数,如果是,指出其中常数a.b.c的值。
(1) y=1― (2)y=x(x-5) (3)y=-x+1 (4) y=3x(2-x)+3x2(5)y=(6) y=(7)y=x4+2x2-1 (8)y=ax2+bx+c例2.当k为何值时,函数为二次函数?例3.写出下列各函数关系,并判断它们是什么类型的函数.⑴正方体的表面积S(cm2)与棱长a(cm)之间的函数关系;⑴圆的面积y(cm2)与它的周长x(cm)之间的函数关系;⑴某种储蓄的年利率是1.98%,存入10000元本金,若不计利息,求本息和y(元)与所存年数x之间的函数关系;⑴菱形的两条对角线的和为26cm,求菱形的面积S(cm2)与一对角线长x(cm)之间的函数关系.三。
《二次函数》学情分析二次函数的教学对象是九年级学生,在此之前他们学习了正比例函数,一次函数和反比例函数。
二次函数是描述变量之间关系的重要数学模型,它既是其他学科研究时所采用的重要方法之一,也是某些单变量最优化问题的数学模型,如本章中所提及的求最大利润、最大面积等实际问题。
二次函数的图像抛物线,既是人们最为熟悉的曲线之一,同时抛物线形状在建筑上也有着广泛的应用,如抛物线型拱桥,抛物线型隧道等。
和一次函数、反比例函数一样,二次函数也是一种非常基础的函数,对二次函数的研究将为学生进一步学习函数,体会函数的思想奠定基础和积累经验。
为高中阶段继续学习函数做好铺垫。
学生对一次函数、反比例函数的图象与性质有了一定的基础,对于解析式与图象的结合有了一定的整体把握,具备了一定的函数思想,基本上能运用函数观点解决实际问题。
二次函数的图像是它性质的直观体现,对了解和掌握二次函数的性质具有形象直观的优势,和一次函数、反比例函数一样要教会学生画图像,学会观察图像,借助图像理解与掌握二次函数的图像与性质解决相关问题,并能运用到解决实际问题中。
复习《二次函数》效果分析二次函数在初中数学函数教学中的地位不可忽视,二次函数已经成为中考命题的重点。
根据学生对二次函数的学习及掌握的情况,从梳理知识点出发采用以习题带知识点的形式,我精心准备了《二次函数》的复习课,教学重点为二次函数的图象性质及应用。
下面是我对二次函数的复习课的一些反思感受:首先,我认为在课堂上,我对知识的脉络掌握还是有一些欠缺,把二次函数的应用,用自己的眼光和感受想象的太简单,但是对于学生而言,这又是一个重点,更是一个难点。
所以在课堂上有的习题深度没有掌握好,没有做到面向全体学生。
其次,本节课体现的是分层教学,由于学生的素质不同,部分学生对图像性质掌握的不够扎实,在实际应用的时候不能做到得心应手。
而我只是在后面的习题竞赛中简单的体现分层,对于提问中的分层,习题中的分层还是做的不够好,这说明我对于分层教学的这种方法还是有待于进一步的提高,应该真正的站在学生的角度来分层。
二次函数复习
【知识要点】
1、二次函数解析式的三种形式:一般式y=ax2+bx+c(a≠0),顶点式y=a(x+m)2+k,交
点式y=a(x-x1)(x-x2)分别对应的对称轴及顶点坐标,以及二次函数的增减性和最值。
二次项系数a决定图像的开口和形状大小等性质复习。
2、二次函数图像旋转、对称、平移后确定函数的解析式。
3、利用数形结合的数学思想解决函数的有关问题,以及利用函数图像解决方程、不等
式的问题
【能力要求】
1、经历二次函数图像的旋转、对称、平移后对函数二次项系数的判断和关键点的把握。
2、能较好利用数形结合的思想解决方程、不等式、函数的有关问题。
【情境引入】
1、图片展示NBA赛场的风云人物林书豪,在北京时间2月15日,林书豪投中压哨三分,
包办最后6分,尼克斯完成两位数的逆转,以90-87击败猛龙队。
问:你们能说出林书豪投中的三分球篮球在空中运行轨迹是什么?
2、展示舟上跨海大桥的西堠门大桥,而同学们在学习函数的时候经常把数与形结合起来,
对于数形结合著名数学家华罗庚说:数缺形时少直观,形少数时难入微。
数形结合百般好,隔离分家万事休!下面我们从二次函数的图形,利用数形结合来投入到今天的学习。
【教学过程】
一、如图是抛物线y=ax2+bx+c(a≠0) 的图象,请尽可能多的说出一些结论。
时候进行总结和归类。
通过研究一个具体的函数把二次函数的性质归纳起来主要有以下几点:
1、二次项系数a的符号决定开口方向,绝对值决定形状大小,
2、轴对称性——研究对称轴,顶点坐标,最值,
3、增减性——研究y随x的变化规律。
同时根据特殊点确定函数解析式的方法和函数的图象与方程、不等式之间的紧密联系。
二、方法理解
问题1、如果把抛物线y=-(x+1)2+4绕顶点旋转180°,则该抛物线对应的解析式是
;若把新抛物线关于y轴对称,则该抛物线对应的解析式是;若把抛物线y=(x+1)2 +4向右平移2个单位,向下平移3个单位,则得到抛物线对应的解析式为。
方程-(x+1)2+4=m ①有两个不相等的实数根;
③没有实数根?
问题3、若直线y1=kx+m与抛物线y2=ax2+bx+c(a≠0)交于
A(-3,0),B(-1,4)两点. 观察图像填空:
(1)方程ax2+bx+c=kx+m的解为.
(2)不等式ax 2+bx+c >kx+m 的解为 . (3)不等式ax 2+bx+c <kx+m 的解为 。
三、巩固反馈
1. 方程 实数解的个数为( )
A 、3个
B 、2个
C 、1个
D 、0个
2、二次函数y=ax 2+bx+c(a ≠0)的图象如图所示,则在下列各不等式中成立的是_________ ① 2a+b=0 ② abc<0 ③ a+b+c <0 ④ a+c > b ⑤b 2-4ac>0
3、若一元二次方程ax2+bx+c=0(a ≠0)的系数满足 a + b + c <0, a – b + c=2,则该方程( ) A 、必有两个不相等的实数根;
B 、必有两个相等的实数根;
C 、必无实数根;
D 、无法确定. 四、拓展提高
问题4:若点P 为抛物线CB 之间上的一动点(点P 与C 、B 不重合)PQ ⊥AC 于点Q ,H 为对称轴与x 轴的交点。
当△PCQ 与△ACH 相似时,求点P 的坐标。
x
x 112=+
五.分享收获
一个核心:数形结合思想(用数表达,用形释义);
二项性质:轴对称性(图像特征),增减性(变化规律);三种表示:
y=a x22+b x+c=a(x+m)22+k=a(x-x
11)(x-x
22
)(a≠0);
四点注意:
①a的意义…②二次函数的函数值大小…
③抛物线的平移…
④方程,不等式(数)的问题…
六、布置作业:甬真作业本24、24页。
基于目标达成的二度开发导学案
学习目标:1、二次函数解析式的三种形式:一般式y=ax2+bx+c(a≠0),顶点式y=a(x+m)2+k,交点式y=a(x-x1)(x-x2)分别对应的对称轴及交点坐标,以及二次函数的增减性和最值。
二次项系数a决定图象的开口和形状大小等性质的复习。
2、二次函数图象旋转、对称、平移后确定函数的解析式。
3、利用数形结合的数学思想解决函数的有关问题,以及利用函数图象解决方程、不等式的问题
学习重难点(含关键点):
本节学习的重点是复习函数性质以及利用数形结合的数学思想方法解决函数、方程、不等式的问题,学习难点为拓展提高(问题4)。
一、知识整合(教学流程设计)
二、巩固练习:
2、方程 实数解的个数为( ) A 、3个 B 、2个 C 、1个 D 、0个
3、二次函数y=ax 2+bx+c(a ≠0)的图像如图所示,则在下列各不等式中成立的是_________ ① 2a+b=0 ② abc<0 ③ a+b+c <0 ④ a+c > b ⑤b 2-4ac>0
4、若一元二次方程ax2+bx+c=0(a ≠0)的系数满足 a + b + c <0, a – b + c=2,则该方程( ) A 、必有两个不相等的实数根;
B 、必有两个相等的实数根;
C 、必无实数根;
D 、无法确定.
x
x 112=+
三、当堂检测(小组合作检查)
四、学习体会
五、巩固与拓展:(从难度上来分:A —基本; B —应用; C —拓展) (A )组
1、抛物线y =(x -2)2+3的顶点坐标是( )
A . (-2,3)
B .(2,3)
C .(-2,-3)
D .(2,-3) 2、二次函数y =ax 2+bx +c 的图象如图1 所示,则下列结论正确的是( ) A . a ﹥0,b ﹤0,c ﹥0 B . a ﹤0,b ﹤0,c ﹥0 C . a ﹤0,b ﹥0,c ﹤0 D . a ﹤0,b ﹥0,c ﹥0
3、如图,已知抛物线y =x 2
+bx +c 的对称轴为x =2,点A 、B 均在抛物线上,且AB 与x 轴平行,其中点A 的坐标为(0,3),则点B 的坐标为( )
A .(2,3)
B .(3,2)
C .(3,3)
D .(4,3)
4、平移抛物线y =x 2+2x -8,使它经过原点,写出平移后抛物线的一个解析式 .
5、若二次函数y =-x 2
+2x +k 的部分图象如图所示,则关于x 的一元二次方程-x 2+2x +k =0的一个解x 1=3,另一个解x 2=________.
(B )组
1、二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,那么关于此二次函数的下列四个结论: ① a ﹤0;② c ﹥0;③ b 2-4ac ﹥0 ;④
0 a
b
中,正确的结论有( ) A .1个 B . 2个 C .3个 D . 4个 2、函数y =x 2-2x -2的图象如下图所示,根据其中提供的信
图1
第1题图
息,可求得使y ≥1成立的x 的取值范围是( )
A .-1≤x ≤3
B .-1<x<3
C .x<-1或x>3
D .x ≤-1或x ≥3
3、如图,是二次函数y =ax 2+bx +c 图象的一部分,其对称轴为直线x =1,若其与x 轴一交点为A(3,0),则由图象可知,不等式ax 2+bx +c<0的解集是________.
(C )组
问题4:若点P 为抛物线y=-(x+1)2+4上CB 之间上的一动点(点P 与C 、B 不重合)PQ ⊥AC 于点Q ,H 为对称轴与x 轴的交点。
当△PCQ 与△ACH 相似时,求点P 的坐标。