分段函数的最值
- 格式:ppt
- 大小:311.50 KB
- 文档页数:10
cognitive - normative - behavioral model对于分段函数,我们可以遍历每一个分段,找出其最大值和最小值。
以下是一个示例,我们创建一个分段函数,然后使用MATLAB 来找出其最值。
假设我们的分段函数如下:f(x) = -x, x < 0f(x) = x^2, 0 <= x < 5f(x) = 3x - 5, x >= 5在MATLAB 中,我们可以如下编写代码来找出这个分段函数的最值:matlab复制代码% 分段函数的定义f = @(x) -x; % 当 x < 0f = @(x) x.^2; % 当 0 <= x < 5f = @(x) 3*x - 5; % 当 x >= 5% 定义搜索的区间x_min = -10; % 最小值可能存在的区间左端点x_max = 10; % 最大值可能存在的区间右端点% 使用二分法查找最值[x_min_val, f_min_val] = min_bisection(f, x_min, x_max);[x_max_val, f_max_val] = max_bisection(f, x_min, x_max);fprintf('最小值在 x = %f 时取得,值为 %f\n', x_min_val, f_min_val);fprintf('最大值在 x = %f 时取得,值为 %f\n', x_max_val, f_max_val);其中min_bisection和max_bisection是使用二分法在指定区间内查找最小值和最大值的函数。
以下是这两个函数的实现:matlab复制代码function[x, f] = min_bisection(f, a, b)while (b-a) > 1e-6% 精度要求,可以根据需要调整c = (a+b)/2;if f(c) < f(a) % 如果中间值比左端点小,说明最小值在右半部分a = c;else% 否则最小值在左半部分b = c;endendx = a;f = f(a);endfunction[x, f] = max_bisection(f, a, b)while (b-a) > 1e-6% 精度要求,可以根据需要调整c = (a+b)/2;if f(c) > f(a) % 如果中间值比左端点大,说明最大值在右半部分b = c;else% 否则最大值在左半部分a = c;endendx = a;f = f(a);end。
分段函数的极限分段函数是指由多个函数按照不同的自变量范围组合而成的一个函数。
在数学中,分段函数的极限是一个非常重要的概念和计算方法。
本文将介绍什么是分段函数的极限,以及如何计算分段函数的极限。
一、分段函数的定义分段函数是由多个函数组合而成的一个函数。
具体地说,它是指在不同的自变量范围内对应的函数是不同的。
例如,在区间(-∞,-1)内,我们定义f(x)=-x;在区间[-1,1]内,我们定义f(x)=x²;在区间(1,∞)内,我们定义f(x)=x+1。
这三个函数组合在一起,就构成了一个分段函数f(x)。
二、分段函数的极限定义在讨论分段函数的极限之前,我们需要先了解什么是函数的极限。
简单地讲,当自变量x无限接近于某个值a时,函数f(x)的值无限接近于某个数L,我们就称函数f(x)在x趋近于a的过程中极限为L,记为lim(x→a)f(x)=L。
例如,当x趋近于1时,f(x)=x²的极限为1。
与一般函数不同,分段函数在每个自变量范围内都有不同的函数式,因此在计算分段函数的极限时,我们需要对每个自变量范围内的函数分别进行讨论。
具体来说,我们需要分别讨论当x趋近于各个自变量范围中的端点时,函数值的趋势,以决定函数是否存在极限。
三、分段函数的极限计算方法对于一个分段函数f(x),我们可以在每个自变量范围内对应的函数上分别计算极限。
然后,我们需要比较每个自变量范围内的函数极限,以确定整个分段函数的极限是否存在。
以下是具体的计算步骤:(1)先找出函数f(x)的定义域和值域。
(2)对于每个自变量范围内的函数,我们需要使用极限的定义来计算它的极限。
例如,当x趋近于-2时,f(x)=x²-2x的极限为6;当x趋近于0时,f(x)=x+3的极限为3。
(3)比较每个自变量范围内的函数极限。
如果存在某个自变量范围,其内部的函数极限不存在或者不唯一,那么我们就认为分段函数的极限不存在。
否则,我们可以得出整个分段函数的极限为各个自变量范围内的函数极限的"局部极限"中的极限值。
分段函数常见题型例析所谓“分段函数”是指在定义域的不同部分,有不同对应关系的函数,因此分段函数不是几个函数而是一个函数,它在解题中有着广泛的应用,不少同学对此认识不深,解题时常出现错误.现就分段函数的常见题型例析如下:1.求分段函数的定义域、值域例1.求函数)(x f =⎪⎩⎪⎨⎧->-≤+)2(,2)2(,42x x x x x 的值域.解:当x ≤-2时,4)2(422-+=+=x x x y , ∴ y ≥-4.当x >-2时,y =2x , ∴y >22-=-1. ∴ 函数)(x f 的值域是{y ∣y ≥-4,或y >-1}={y ∣y ≥-4}. 评注:分段函数的定义域是各段函数解析式中自变量取值集合的并集;分段函数的值域是各段函数值集合的并集.2.作分段函数的图象例2 已知函数2(2)()3[22)3[2)x f x x x x -∈-∞-⎧⎪=+∈-⎨⎪∈+∞⎩,,,,,,,画函数(f x 解:函数图象如图1所示.评注:分段函数有几段,其图象就由几条曲线组成,作图的关键是根据定义域的不同,分别由表达式做出其图象.作图时,一要注意每段自变量的取值范围;二要注意间断函数的图象中每段的端点的虚实. 3.求分段函数的函数值例3.已知)(x f =⎪⎩⎪⎨⎧<=>+)0.(0)0(,)0(,1x x x x π 求(((3)))f f f -的值.解:∵ -3<0 ∴ f (-3)=0,∴ f (f (-3))=f (0)=π又π>0 ∴(((3)))f f f -=f (π)=π+1. 评注:求分段函数的函数值时,首先应确定自变量在定义域中所在的范围,然后按相应的对应关系求值.4.求分段函数的最值x 图1例4.已知函数)(x f =22(0)(0)x x x ⎧⎨<⎩,≥, 求出这个函数的最值.解:由于本分段函数有两段,所以这个函数的图象由两部分组成,其中一部分是一段抛物线,另一部分是一条射线,如图2所示.因此易得,函数最小值为0,没有最大值.5.表达式问题例5. 如图3,动点P 从边长为1的正方形ABCD 的顶点A 出发顺次经过B C D ,,再回到A ,设x 表示P 点的行程,y 表示PA 的长度,求y 关于x 的表达式.解:如图3所示,当P 点在AB 上运动时,PA x =;当P 点在BC 上运动时,由PBA △Rt ,求得PA =;当P 点在CD 上运动时,由PDA Rt △求出PA =;当P 点在DA 上运动时,4PA x =-,所以y 关于x的表达式是01122343 4.x x x y x x x ⎧<=<-<⎩, ≤≤,≤, ≤,, ≤ 在此基础上,强调“分段”的意义,指出分段函数的各段合并成一个整体,必须用符号“{”来表示,以纠正同学们的错误认识. A BP 图3。
MATLAB求分段函数最大值如何用MATLAB求分段函数的最小值和最大值分段函数是一个由多个子函数组成的函数,每个子函数在定义域的不同区间上有不同的定义。
它通常用于描述真实世界中的非连续现象,如电子设备的开关状态或者非线性系统的行为。
要用MATLAB求解分段函数的最小值和最大值,我们可以按照以下步骤进行:1. 定义分段函数。
首先,我们需要将分段函数表示为一个MATLAB函数。
这可以通过使用if-else语句来实现。
以一个简单的分段函数为例,假设我们要计算以下分段函数在定义域[0,10]上的最小值和最大值:f(x)=x^2,0<=x<5f(x)=10,5<=x<=10我们可以用以下代码来定义这个分段函数:```function y = piecewise_function(x)if x >= 0 && x < 5y=x^2;elseif x >= 5 && x <= 10y=10;elsey=NaN;%处理定义域之外的情况endend```2.创建一个数值范围。
要计算分段函数的最小值和最大值,我们需要在定义域内创建一个数值范围。
在本例中,定义域为[0,10],我们可以用以下代码来创建一个包含许多离散点的数值范围:```x_range = linspace(0, 10, 100); % 在0到10之间创建100个离散点```这将创建一个包含100个离散点的向量x_range,这些点均匀分布在[0,10]之间。
3. 计算分段函数的值。
使用定义的数值范围和分段函数定义的MATLAB函数,我们可以计算每个离散点的函数值。
我们可以使用一个for 循环来实现这一点:```y_values = zeros(1, length(x_range)); % 创建一个包含每个离散点函数值的向量for i = 1:length(x_range)y_values(i) = piecewise_function(x_range(i));end```这将计算每个离散点的函数值,并将它们存储在一个向量y_values 中。
高一分段函数知识点总结分段函数是高中数学中的重要内容,它在应用题中常常能够帮助我们建立正确的数学模型,解决实际问题。
下面是对高一分段函数知识点的总结。
1. 分段函数的定义分段函数由定义域的不同范围内的多个子函数组成,每个子函数的定义域是不重叠的,它们只在各自的定义域内有效。
2. 分段函数的表示方法分段函数可以用解析式、表格和图像三种方式表示。
解析式表示:f(x) = {f1(x), a ≤ x ≤ b; f2(x), c ≤ x ≤ d; ...}表格表示:在一张表格中列出各个子函数的定义域和函数值。
图像表示:在坐标系中绘制出各个子函数的图像。
3. 分段函数的性质分段函数的性质包括奇偶性、单调性、最值等。
要根据具体的子函数来分析其性质。
奇偶性:如果子函数f(x)满足f(-x) = f(x),则该子函数是偶函数;如果子函数f(x)满足f(-x) = -f(x),则该子函数是奇函数;否则为非奇非偶函数。
单调性:对于定义域内部的某个子函数,如果$f'(x)>0$,则该子函数在该区间上是递增的;如果$f'(x)<0$,则该子函数在该区间上是递减的。
最值:要求分段函数取得最大值或最小值,需要分别分析各个子函数的最值,并比较它们之间的大小。
4. 分段函数的应用分段函数在实际问题中的应用非常广泛。
以下列举几个常见的应用:(1) 阶梯函数:描述单位价格不同的商品数量与费用之间的关系。
在一定范围内的商品数量对应一个固定的价格,超过该范围则需要按照不同的价格计算。
(2) 温度转换:将摄氏温度转换为华氏温度或开尔文温度。
(3) 隶属度函数:用于模糊逻辑和模糊集合,描述某个元素对于某种属性或事物的隶属程度。
(4) 门函数:在数字电路中,描述逻辑电平之间的转换关系。
5. 分段函数的解析式的求法当已知分段函数的表达式或图像时,可以根据具体情况,通过以下几种方法求出分段函数的解析式:(1) 分段函数的拼接法:将各个子函数在其定义域范围内的解析式进行拼接。
探究分段函数的几个常见问题河南正阳高级中学 吕玉光分段函数在教材中是以例题的形式出现的,并未作深入说明.学生对此认识比较肤浅,理解上有些吃力,由于它在理解和掌握函数的定义、函数的性质等知识的考察上有较好的作用,时常在高考试题中“闪亮”登场,本文就分段函数的有关问题整理、归纳如下:1.分段函数的含义所谓“分段函数”,习惯上指在定义域的不同部分,有不同的对应法则的函数.对它应有以下两点基本认识:(1)分段函数是一个函数,不要把它误认为是几个函数;(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集. 2.分段函数的定义域和值域例1.求函数1222[1,0];()(0,2);3[2,);x x f x xx x +∈-⎧⎪=-∈⎨⎪∈+∞⎩的定义域、值域. 解析:作图, 利用“数形结合”易知()f x 的定义域为[1,)-+∞, 值域为(1,3]-. 3.分段函数的函数值例2.已知函数2|1|2,(||1)()1,(||1)1x x f x x x --≤⎧⎪=⎨>⎪+⎩求12[()]f f . 解析:因为311222()|1|2f =--=-,所以312223214[()]()1()13f f f =-==+-. 4.分段函数的最值例3. 求函数23(0)3(01)5(1)x x y x x x x +≤⎧⎪=+<≤⎨⎪-+>⎩的最小值解析:(方法1) 先求每个分段区间上的最值,后比较求值.当0x ≤时,()23,y f x x ==+此时显然有max (0)3;y f == 当01x <≤时,()3,y f x x ==+此时max (1)4;y f ==当1x >时,y =()5,y f x x ==-+此时y 无最大值.比较可得当x =1时,max 4.y =11o 322-1y x-1(方法2)利用函数的单调性由函数解析式可知,()f x 在(,0)x ∈-∞上是单调递增的,在(0,1)x ∈上也是递增的,而在(1,)x ∈+∞上是递减的,由()f x 的连续性可知()f x 当x =1时有最大值4 (方法3)利用图像,数形结合求得 作函数y =()f x 的图像(图1), 显然当x =1时max 4y =.说明:分段函数的最值常用以上三种方法求得. 5.分段函数的解析式例4.在同一平面直角坐标系中, 函数()y f x =和()y g x =的图象关于直线y x =对称, 现将()y g x =的图象沿x 轴向左平移2个单位,再沿y 轴向上平移1个单位, 所得的图象是由两条线段组成的折线(如图所示), 则函数()f x 的表达式为( )222(10).()2(02)xx x A f x x +-≤≤⎧=⎨+<≤⎩ 222(10).()2(02)xx x B f x x --≤≤⎧=⎨-<≤⎩ 222(12).()1(24)xx x C f x x -≤≤⎧=⎨+<≤⎩ 226(12).()3(24)xx x D f x x -≤≤⎧=⎨-<≤⎩ 解析:当[2,0]x ∈-时,121y x =+,将其图象沿x 轴向右平移2个单位,再沿y 轴向下平移1个单位,得解析式为1122(2)111y x x =-+-=-, 所以()22([1,0])f x x x =+∈-,当[0,1]x ∈时,21y x =+,将其图象沿x 轴向右平移2个单位,再沿y 轴向下平移1个单位,得解析式2(2)1124y x x =-+-=-,所以 12()2([0,2])f x x x =+∈, 综上可得Y4 3 2 10 1 2 3 4 5 x-12131o-2y x222(10)()2(02)xx x f x x +-≤≤⎧=⎨+<≤⎩, 故选A . 6.分段函数的奇偶性例5.判断函数22(1)(0)()(1)(0)x x x f x x x x ⎧-≥⎪=⎨-+<⎪⎩的奇偶性.解析:当0x >时,0x -<, 22()()(1)(1)()f x x x x x f x -=---+=-=, 当0x =时,(0)(0)0f f -==当0x <,0x ->,22()()(1)(1)()f x x x x x f x -=---=-+= 因此, 对于任意x R ∈都有()()f x f x -=, 所以()f x 为偶函数. 7.分段函数的单调性例6.判断函数32(0)()(0)x x x f x xx ⎧+≥⎪=⎨-<⎪⎩的单调性.解析:显然()f x 连续. 当0x ≥时, '2()311f x x =+≥恒成立, 所以()f x 是单调递增函数, 当0x <时, '()20f x x =->恒成立,()f x 也是单调递增函数, 所以()f x 在R 上是单调递增函数; 或画图易知()f x 在R 上是单调递增函数.例7.写出函数()|12||2|f x x x =++-的单调减区间.解析:121231()()3(2)31(2)x x f x x x x x -+≤-⎧⎪=+-<<⎨⎪-≥⎩, 画图易知单调减区间为12(,]-∞-. 8.解分段函数的方程例8.设函数812(,1]()log (1,)x x f x x x -⎧∈-∞=⎨∈+∞⎩, 则满足方程1()4f x =的x 的值为解析:若142x -=, 则222x --=, 得2(,1]x =∉-∞, 所以2x =(舍去), 若1814log x =, 则1481x =, 解得3(1,)x =∈+∞, 所以3x =即为所求. yx52o -12529.解分段函数的不等式例9.设函数1221(0)()(0)x x f x x x -⎧-≤⎪=⎨⎪>⎩, 若0()1f x >, 则0x 得取值范围是( ).(1,1)A - .(1,)B -+∞ .(,2)(0,)C -∞-⋃+∞ .(,1)(1,)D -∞-⋃+∞解析1:首先画出()y f x =和1y =的大致图像, 易知0()1f x >时, 所对应的0x 的取值范围是(,1)(1,)-∞-⋃+∞.解析2:因为0()1f x >, 当00x ≤时, 0211x -->, 解得01x <-, 当00x >时,1201x >, 解得01x >, 综上0x 的取值范围是(,1)(1,)-∞-⋃+∞. 故选D.例10.设函数2(1)(1)()41(1)x x f x x x ⎧+<⎪=⎨--≥⎪⎩, 则使得()1f x ≥的自变量x 的取值范围为( )A .(,2][0,10]-∞-⋃ B. (,2][0,1]-∞-⋃ C. (,2][1,10]-∞-⋃ D. [2,0][1,10]-⋃解析:当1x <时, 2()1(1)120f x x x x ≥⇔+≥⇔≤-≥或, 所以21x x ≤-≤<或0, 当1x ≥时, ()14111310f x x x x ≥⇔--≥⇔-≤⇔≤, 所以110x ≤≤, 综上所述, 2x ≤-或010x ≤≤, 故选A 项.点评: 以上分段函数性质的考查中,不难得到一种解题的重要途径,若能画出其大致图像,定义域、值域、最值、单调性、奇偶性等问题就会迎刃而解, 方程、不等式等可用数形结合思想、等价转化思想、分类讨论思想及函数思想来解,使问题得到大大简化,效果明显.xy1-11。
分段函数知识点分段函数,也称为分段定义函数,是指由多个不同定义域上的函数组成的一个整体。
在一个给定的定义域上,该函数按照不同的规则进行定义,因此其函数图像通常由多个不连续的线段或曲线段组成。
一、分段函数的定义分段函数可以通过以下形式进行定义:f(x) = { f1(x), x∈D1f2(x), x∈D2...fn(x), x∈Dn其中,f1(x), f2(x), ..., fn(x) 分别表示在不同的定义域 D1, D2, ..., Dn 上的函数,每个定义域 Dn 为函数 f(x) 的某个区间。
二、分段函数的图像分段函数的图像通常由多段曲线或线段组成。
每一段的形状和位置由该段定义的函数决定。
在各个定义域的交界处,函数的图像通常出现不连续的情况,也可能存在间断点。
三、分段函数的性质1. 定义域:分段函数的定义域为各个函数定义域的并集,即 D = D1 ∪ D2 ∪ ... ∪ Dn。
2. 奇偶性:分段函数的奇偶性由各个函数分别决定,具体取决于各个函数的奇偶性质。
3. 连续性:分段函数在各个定义域的内部是连续的,但在定义域之间的交界处可能是不连续的,具体取决于函数定义的方式。
4. 极值:分段函数的极值可能出现在每个定义域的端点,以及在各个定义域之间的交界点处。
5. 最值:分段函数在定义域上的最值由各个函数的最值决定,需要分别找到各个函数的最大值和最小值进行比较。
四、常见的分段函数1. 绝对值函数:f(x) = |x| = { x, x≥0-x, x<02. 阶梯函数:f(x) = ⌊x⌋,表示小于等于 x 的最大整数。
3. 取整函数:f(x) = [x],表示不大于 x 的最大整数。
4. 符号函数:f(x) = { -1, x<00, x=01, x>0五、分段函数的应用分段函数在数学和实际应用中有广泛的应用,如经济学中的需求函数、供给函数;物理学中的速度、加速度函数;计算机科学中的条件运算等。
分段函数最值问题及解题技巧1. 问题描述分段函数是由若干个不同部分组成的函数,每个部分在定义域内具有不同的表达式或函数关系。
分段函数的最值问题是指在给定定义域上,如何找到分段函数的最大值或最小值。
在解决这类问题时,需要注意以下几个方面:2. 解题技巧2.1 分段函数分类通常,分段函数可以分为线性分段函数和非线性分段函数两类。
- 线性分段函数:线性分段函数:线性分段函数是由线性函数组成的函数,如:$f(x) = ax + b$。
求线性分段函数的最值可以通过计算斜率来确定。
- 非线性分段函数:非线性分段函数:非线性分段函数是由非线性函数组成的函数,如:$f(x) =\begin{cases} g(x), & \text{if } x < a \\ h(x), & \text{if } x \geq a\end{cases}$。
求非线性分段函数的最值需要分别计算不同区间上的最值,然后比较得出最终结果。
2.2 寻找定义域在解决分段函数的最值问题时,首先需要明确函数的定义域。
定义域是指函数的自变量的取值范围。
通过分析函数的定义,结合问题的条件,可以确定函数的定义域。
确定了定义域之后,才能在该范围内寻找最值。
2.3 区间的开闭性在找分段函数的最值时,需要理解区间的开闭性。
开区间不包含端点,闭区间包含端点。
在计算函数在特定区间上的最值时,要注意对区间的开闭情况进行考虑。
比如,对于一个闭区间,需要将区间内所有的极值进行比较,而对于一个开区间,则需要排除区间端点的极值。
2.4 极值点的确定极值点是指函数在定义域内的局部最值点,即函数的斜率为零或者不存在。
在求解分段函数的最值问题时,需要找到函数在各个区间内的极值点。
可以通过计算导数或者利用函数的图像进行分析来确定极值点。
2.5 特殊情况的处理在解决分段函数的最值问题时,需要注意处理特殊情况。
比如,在分段函数中存在分段点,即两个部分函数的交点,此时需要特别处理这些交点,以确定函数的最值。
函数的概念和性质考点 分段函数分段函数是指自变量在两个或两个以上不同的范围内, 有不同的对应法则的函数, 它是一个函数, 却又常常被学生误认为是几个函数; 它的定义域是各段函数定义域的并集, 其值域也是各段函数值域的并集. 由于它在理解和掌握函数的定义、函数的性质等知识的程度的考察上有较好的作用, 时常在高考试题中“闪亮”登场, 本文就几种具体的题型做了一些思考, 解析如下:1.求分段函数的定义域和值域例1.求函数1222[1,0];()(0,2);3[2,);x x f x xx x +∈-⎧⎪=-∈⎨⎪∈+∞⎩的定义域、值域.2.求分段函数的函数值例2.已知函数2|1|2,(||1)()1,(||1)1x x f x x x--≤⎧⎪=⎨>⎪+⎩求12[()]f f .3.求分段函数的最值例3.求函数43(0)()3(01)5(1)x x f x x x x x +≤⎧⎪=+<≤⎨⎪-+>⎩的最大值.4.求分段函数的解析式例4.在同一平面直角坐标系中, 函数()y f x =和()y g x =的图象关于直线y x =对称, 现将()y g x =的图象沿x 轴向左平移2个单位, 再沿y 轴向上平移1个单位, 所得的图象是由两条线段组成的折线(如图所示), 则函数()f x 的表达式为( )222(10).()2(02)x x x A f x x +-≤≤⎧=⎨+<≤⎩222(10).()2(02)x x x B f x x --≤≤⎧=⎨-<≤⎩222(12).()1(24)x x x C f x x -≤≤⎧=⎨+<≤⎩226(12).()3(24)x x x D f x x -≤≤⎧=⎨-<≤⎩yx5.作分段函数的图像 例5.函数|ln ||1|x y ex =--的图像大致是( )ACD6.求分段函数得反函数例6已知()y f x =是定义在R 上的奇函数, 且当0x >时, ()31xf x =-, 设()f x 的反函数为()y g x =, 求()g x 的表达式.7.判断分段函数的奇偶性例7.判断函数22(1)(0)()(1)(0)x x x f x x x x ⎧-≥⎪=⎨-+<⎪⎩的奇偶性.8.判断分段函数的单调性例8.判断函数32(0)()(0)x x x f x xx ⎧+≥⎪=⎨-<⎪⎩的单调性.例9.写出函数()|12||2|f x x x =++-的单调减区间.9.解分段函数的方程例10.设函数812(,1]()log (1,)x x f x x x -⎧∈-∞=⎨∈+∞⎩, 则满足方程1()4f x =的x 的值为10.解分段函数的不等式例11.设函数1221(0)()(0)x x f x x x -⎧-≤⎪=⎨⎪>⎩, 若0()1f x >, 则0x 得取值范围是( ).(1,1)A - .(1,)B -+∞ .(,2)(0,)C -∞-⋃+∞ .(,1)(1,)D -∞-⋃+∞例12.设函数2(1)(1)()4(1)x x f x x ⎧+<⎪=⎨-≥⎪⎩, 则使得()1f x ≥的自变量x 的取值范围为( )v1.0 可编辑可修改A .(,2][0,10]-∞-⋃ B. (,2][0,1]-∞-⋃ C. (,2][1,10]-∞-⋃ D. [2,0][1,10]-⋃反馈练习1.(2013新课标全国Ⅰ,5分)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≤0,ln x +1,x >0.若|f (x )|≥ax ,则a 的取值范围是( )A .(-∞,0] B.(-∞,1] C .[-2,1]D .[-2,0]2.(2013福建,4分)已知函数f (x )=⎩⎪⎨⎪⎧2x 3,x <0,-tan x ,0≤x <π2,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫π4=________.3.(2013北京,5分)函数f (x )=⎩⎪⎨⎪⎧log 12x , x ≥1,2x , x <1的值域为________.4.(2012江西,5分)若函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,lg x ,x >1,则f (f (10))=( )A .lg 101B .2C .1D .05.(2011北京,5分)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎪⎨⎪⎧cx ,x <A ,cA ,x ≥A(A ,c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么c 和A 的值分别是( )A .75,25B .75,16C .60,25D .60,166.(2012江苏,5分)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f (12)=f (32),则a +3b 的值为________.7.(2011江苏,5分)已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为________.函数的概念和性质考点一 分段函数分段函数是指自变量在两个或两个以上不同的范围内, 有不同的对应法则的函数, 它是一个函数, 却又常常被学生误认为是几个函数; 它的定义域是各段函数定义域的并集, 其值域也是各段函数值域的并集. 由于它在理解和掌握函数的定义、函数的性质等知识的程度的考察上有较好的作用, 时常在高考试题中“闪亮”登场, 本文就几种具体的题型做了一些思考, 解析如下:1.求分段函数的定义域和值域例1.求函数1222[1,0];()(0,2);3[2,);x x f x xx x +∈-⎧⎪=-∈⎨⎪∈+∞⎩的定义域、值域. 【解析】作图, 利用“数形结合”易知()f x 的定义域为[1,)-+∞, 值域为(1,3]-.2.求分段函数的函数值例2.已知函数2|1|2,(||1)()1,(||1)1x x f x x x --≤⎧⎪=⎨>⎪+⎩求12[()]f f .【解析】因为311222()|1|2f =--=-, 所以312223214[()]()1()13f f f =-==+-.3.求分段函数的最值例3.求函数43(0)()3(01)5(1)x x f x x x x x +≤⎧⎪=+<≤⎨⎪-+>⎩的最大值.【解析】当0x ≤时, max ()(0)3f x f ==, 当01x <≤时, max ()(1)4f x f ==, 当1x >时, 5154x -+<-+=, 综上有max ()4f x =.4.求分段函数的解析式例4.在同一平面直角坐标系中, 函数()y f x =和()y g x =的图象关于直线y x =对称, 现将()y g x =的图象沿x 轴向左平移2个单位, 再沿y 轴向上平移1个单位, 所得的图象是由两条线段组成的折线(如图所示), 则函数()f x 的表达式为( )222(10).()2(02)xx x A f x x +-≤≤⎧=⎨+<≤⎩ 222(10).()2(02)xx x B f x x --≤≤⎧=⎨-<≤⎩ 222(12).()1(24)x x x C f x x -≤≤⎧=⎨+<≤⎩226(12).()3(24)x x x D f x x -≤≤⎧=⎨-<≤⎩【解析】当[2,0]x ∈-时, 121y x =+, 将其图象沿x 轴向右平移2个单位, 再沿y 轴向下平移1个单位, 得解析式为1122(2)111y x x =-+-=-, 所以()22([1,0])f x x x =+∈-, 当[0,1]x ∈时, 21y x =+, 将其图象沿x 轴向右平移2个单位, 再沿y 轴向下平移1个单位, 得解析式2(2)1124y x x =-+-=-, 所以12()2([0,2])f x x x =+∈, 综上可得222(10)()2(02)x x x f x x +-≤≤⎧=⎨+<≤⎩, 故选A .y x5.作分段函数的图像 例5.函数|ln ||1|x y ex =--的图像大致是( )ACD解析:在定义范围讨论,当0<x<1时,11y x x=+-;当x>1时1y =,故选D 6.求分段函数得反函数例6已知()y f x =是定义在R 上的奇函数, 且当0x >时, ()31xf x =-, 设()f x 的反函数为()y g x =, 求()g x 的表达式.【解析】设0x <, 则0x ->, 所以()31xf x --=-, 又因为()f x 是定义在R 上的奇函数,所以()()f x f x -=-, 且(0)0f =, 所以()13xf x -=-, 因此31(0)()0(0)13(0)x x x f x x x -⎧->⎪==⎨⎪-<⎩, 从而可得33log (1)(0)()0(0)log (1)(0)x x g x x x x +>⎧⎪==⎨⎪--<⎩.7.判断分段函数的奇偶性例7.判断函数22(1)(0)()(1)(0)x x x f x x x x ⎧-≥⎪=⎨-+<⎪⎩的奇偶性.【解析】当0x >时, 0x -<, 22()()(1)(1)()f x x x x x f x -=---+=-=, 当0x =时,(0)(0)0f f -==, 当0x <, 0x ->, 22()()(1)(1)()f x x x x x f x -=---=-+=因此, 对于任意x R ∈都有()()f x f x -=, 所以()f x 为偶函数.8.判断分段函数的单调性例8.判断函数32(0)()(0)x x x f x xx ⎧+≥⎪=⎨-<⎪⎩的单调性.【解析】显然()f x 连续. 当0x ≥时, '2()311f x x =+≥恒成立, 所以()f x 是单调递增函数, 当0x <时, '()20f x x =->恒成立, ()f x 也是单调递增函数, 所以()f x 在R 上是单调递增函数; 或画图易知()f x 在R 上是单调递增函数.例9.写出函数()|12||2|f x x x =++-的单调减区间.【解析】121231()()3(2)31(2)x x f x x x x x -+≤-⎧⎪=+-<<⎨⎪-≥⎩, 画图易知单调减区间为12(,]-∞-.9.解分段函数的方程例10.(01年上海)设函数812(,1]()log (1,)x x f x x x -⎧∈-∞=⎨∈+∞⎩, 则满足方程1()4f x =的x 的值为【解析】 若142x-=, 则222x--=, 得2(,1]x =∉-∞, 所以2x =(舍去), 若1814log x =,则1481x =, 解得3(1,)x =∈+∞, 所以3x =即为所求.x10.解分段函数的不等式 例11.设函数1221(0)()(0)x x f x xx -⎧-≤⎪=⎨⎪>⎩, 若0()1f x >,则0x 得取值范围是( ).(1,1)A - .(1,)B -+∞.(,2)(0,)C -∞-⋃+∞ .(,1)(1,)D -∞-⋃+∞【解析1】首先画出()y f x =和1y =的大致图像, 易知0()1f x >时, 所对应的0x 的取值范围是(,1)(1,)-∞-⋃+∞.【解析2】因为0()1f x >, 当00x ≤时, 0211x-->, 解得01x <-, 当00x >时, 1201x >, 解得01x >, 综上0x 的取值范围是(,1)(1,)-∞-⋃+∞. 故选D.例12.设函数2(1)(1)()4(1)x x f x x ⎧+<⎪=⎨-≥⎪⎩, 则使得()1f x ≥的自变量x 的取值范围为( )A .(,2][0,10]-∞-⋃ B. (,2][0,1]-∞-⋃ C. (,2][1,10]-∞-⋃ D. [2,0][1,10]-⋃ 【解析】当1x <时, 2()1(1)120f x x x x ≥⇔+≥⇔≤-≥或, 所以21x x ≤-≤<或0, 当1x ≥时, ()141310f x x ≥⇔⇔⇔≤, 所以110x ≤≤, 综上所述, 2x ≤-或010x ≤≤, 故选A 项.【点评:】xyv1.0 可编辑可修改以上分段函数性质的考查中, 不难得到一种解题的重要途径, 若能画出其大致图像, 定义域、值域、最值、单调性、奇偶性等问题就会迎刃而解, 方程、不等式等可用数形结合思想、等价转化思想、分类讨论思想及函数思想来解, 使问题得到大大简化, 效果明显.反馈练习1.(2013新课标全国Ⅰ,5分)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≤0,ln x +1,x >0.若|f (x )|≥ax ,则a 的取值范围是( )A .(-∞,0] B.(-∞,1] C .[-2,1]D .[-2,0]解析:本题考查一次函数、二次函数、对数函数、分段函数及由不等式恒成立求参数的取值范围问题,意在考查考生的转化能力和利用数形结合思想解答问题的能力.当x ≤0时,f (x )=-x 2+2x =-(x -1)2+1≤0,所以|f (x )|≥ax 化简为x 2-2x ≥ax ,即x 2≥(a +2)x ,因为x ≤0,所以a +2≥x 恒成立,所以a ≥-2;当x >0时,f (x )=ln(x +1)>0,所以|f (x )|≥ax 化简为ln(x +1)>ax 恒成立,由函数图象可知a ≤0,综上,当-2≤a ≤0时,不等式|f (x )|≥ax 恒成立,选择D.答案:D2.(2013福建,4分)已知函数f (x )=⎩⎪⎨⎪⎧2x 3,x <0,-tan x ,0≤x <π2,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫π4=________.解析:本题主要考查分段函数的求值,意在考查考生的应用能力和运算求解能力.∵f ⎝ ⎛⎭⎪⎫π4=-tan π4=-1,∴f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫π4=f (-1)=2×(-1)3=-2. 答案:-23.(2013北京,5分)函数f (x )=⎩⎪⎨⎪⎧log 12x , x ≥1,2x , x <1的值域为________.解析:本题主要考查分段函数的概念、性质以及指数函数、对数函数的性质,意在考查考生对函数定义域、值域掌握的熟练程度.分段函数是一个函数,其定义域是各段函数定义域的并集,值域是各段函数值域的并集.当x ≥1时,log 12x ≤0,当x <1时,0<2x<2,故值域为(0,2)∪(-∞,0]=(-∞,2).答案:(-∞,2)4.(2012江西,5分)若函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,lg x ,x >1,则f (f (10))=( )A .lg 101B .2C .1D .0解析:f (10)=lg 10=1,故f (f (10))=f (1)=12+1=2. 答案:B5.(2011北京,5分)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎪⎨⎪⎧cx ,x <A ,cA ,x ≥A(A ,c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么c 和A 的值分别是( )A .75,25B .75,16C .60,25D .60,16解析:因为组装第A 件产品用时15分钟,所以c A =15(1),所以必有4<A ,且c 4=c2=30(2),联立(1)(2)解得c =60,A =16.答案:D6.(2012江苏,5分)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f (12)=f (32),则a +3b 的值为________.解析:因为f (x )是定义在R 上且周期为2的函数,所以f (32)=f (-12),且f (-1)=f (1),故f (12)=f (-12),从而12b +212+1=-12a +1,3a +2b =-2. ①由f (-1)=f (1),得-a +1=b +22,故b =-2a . ②由①②得a =2,b =-4,从而a +3b =-10. 答案:-107.(2011江苏,5分)已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为________.解析:①当1-a <1,即a >0时,此时a +1>1,由f (1-a )=f (1+a ),得2(1-a )+a =-(1+a )-2a ,计算得a =-32(舍去);②当1-a >1,即a <0时,此时a +1<1,由f (1-a )=f (1+a ),得2(1+a )+a =-(1-a )-2a ,计算得a =-34,符合题意,所以综上所述,a =-34.答案:-34。
分段函数的几种常见题型及解法关键词:分段函数、定义域、值域或最值、函数值、解析式、图象、奇偶性、单调性、方程、不等式、应用。
分段函数是指自变量在两个或两个以上不同的范围内,有不同对应法则的函数,它是一个函数,它的定义域是各段函数定义域的并集,其值域也是各段函数值域的并集,由于它在理解和掌握函数的定义、函数的性质等知识的程度的考察上有较好的作用,时常在高考试题中“闪亮”登场,笔者就几种具体的题型做了一些思考,解析如下:1、求分段函数的定义域和值域例1、求函数x)=22[1,0]1(0.2)2[2.)3xxx xx+⎧∈-⎪⎪-∈⎨⎪∈+∞⎪⎩的定义域,值域。
解析:的定义域为[-1,0](0,2)[2,+)=[-1, +) X∈[-1,0] 2X+2 ∈[0,2]X∈(0,2) —∈(-1,0)的值域为(-1,0)[0,2]{3}=(-1,2]{3} 2、求分段函数的函数值.例2、(2012福建),设f(x)= 100010x x x >⎧⎪=⎨⎪-<⎩g(x)= 10x x ⎧⎨⎩为有理数为无理数,则f(g(π))的值为( ) A . 1 B.0 C.-1 D. π 解析:=0==0 故选B3、 求分段函数的最值。
例3、求函数f(x)= 43(0)3(01)5(1)x x x x x x +≤⎧⎪+<<⎨⎪-+≥⎩的最大值。
解析:作图:利用“数形结合”易知, max=44、 求分段函数的解析式设X ≥0时,f(x)=2,X<0时f(x)=1,又规定:g(x)= 3(1)(2)2f x f x --- (x>0) ,试写出y=g(x) 的表达式。
解析:当 0<X<1时 X-1<0, X-2<0,∴ g(x)= 312- =1当1≤X<2时 X-1≥0 , X-2<0, ∴ g(x)= 3212⨯-=52当X≥2时 X-1>0 , X-2≥0, ∴ g(x)= 3222⨯-=2 g(x)= 1(01)5(12)2(2)2x x x ⎧<<⎪⎪≤<⎨⎪≥⎪⎩5.作分段函数的图象。
分段函数的极值与最值分段函数是一种由不同函数组合而成的函数形式,它包含了不同函数在不同区间的定义。
在实际问题中,我们常常遇到这样的情形:同一个问题可以用不同的函数来描述,而这些函数的定义域却有所不同,或者说同一个函数在不同的定义域范围内,其表现形式也不尽相同。
分段函数的研究,对于理解函数的本质、掌握其性质和解决实际问题都具有重要的意义。
本文将重点探讨分段函数的极值与最值及其应用。
一、分段函数的定义及基本性质分段函数的一般形式为:$$ y=f(x),\ x\in D $$其中,$D$ 分为 $n$ 个不相交的子集 $D_1,D_2,\cdots,D_n$,即:$$D=D_1\cup D_2\cup\cdots\cup D_n$$在 $D_i$ 上,$f(x)$ 由特定的函数形式表示,即:$$f(x)=\begin{cases}f_1(x),\ x\in D_1\\\ f_2(x),\ x\in D_2\\ \cdots\\ f_n(x),\ x\in D_n\end{cases} $$分段函数的定义域是其所有子集的并集,而值域则是各子函数的值域的并集。
分段函数在各子函数定义域范围内都是普通函数,具有普通函数的一般性质。
但由于各子函数之间在某些点存在“缝隙”,因此在分段点处无法取得定义,也就是说,在分段点处分段函数可能不连续。
为了便于研究其性质,我们通常只考虑每一段的连续性和单调性。
二、(一)分段函数的极值对于普通函数 $y=f(x)$,其极值即为导数为 $0$,或者在导数不存在的点取得的极值。
对于分段函数,我们同样可以通过求导得到其各段函数的极值点。
假设 $f(x)$ 在 $x_i$ 点的右侧是一段 $n$ 次可导的函数,那么可以通过求 $f(x)$ 在 $(x_i,x_i+\Delta x)$ 区间内的导数来确定$x_i$ 点的极值。
具体来说,我们可以分三种情况来讨论:1. 当 $n=0$ 时,即 $f(x)$ 在 $x_i$ 右侧是一个常函数,则其导数为 $0$,$x_i$ 就是 $f(x)$ 的极值点。
函数的概念和性质考点分段函数分段函数是指自变量在两个或两个以上不同的范围内,有不同的对应法则的函数它是一个函数,却又常常被学生误认为是几个函数;它的定义域是各段函数定义域的并集,其值域也是各段函数值域的并集•由于它在理解和掌握函数的定义、函数的性质等知识的程度的考察上有较好的作用,时常在高考试题中“闪亮”登场,本文就几种具体的题型做了一些思考,解析如下:1 •求分段函数的定义域和值域3 •求分段函数的最值2x 2 x[1,0];4x x(0,2);的定义域、值域3x[2,);例1 •求函数f (X)例2 .已知函数f(x)|X 1|11 X22,(|x| 1)(|x| 1)4x 3 (x 0)x 3 (0 x 1)的最大值•x 5 (x 1)4 •求分段函数的解析式例4.在同一平面直角坐标系中,函数y f (x)和y g(x)的图象关于直线y x对称,现将y g(x)的图象沿x轴向左平移2个单位,再沿y轴向上平移1个单位,所得的图象是由两条线段组成的折线(如图所示) ,则函数f (x)的表达式为()2x2(1x0)A.f(x)2x~2(0x2)2x2(1x0)B.f(x)2x~2(0x2)2x2(1x2)C.f(x)_x~21(2x4)f(x)2x6(1x2)D.x23(2x4) 5 •作分段函数的图像例3•求函数f (x)例5.函数y e|ln x| | x 1|的图像大致是( ) 6.求分段函数得反函数例 6 已知y f(x) 是f(x) 的反函数为y g(x) , 义在R上的奇函数,且当x 0时,f(x) 3x求g(x) 的表达式.1,设7.判断分段函数的奇偶性例7.判断函数f(x)2x2(x 1) (x 0) x2(x1)(x 0)的奇偶性.8.判断分段函数的单调性例8.判断函数f(x)3x x(x2x (x0)的单调性.0)例9•写出函数f(x) |1 2x| |2 x|的单调减区间9 •解分段函数的方程1则满足方程f (x)—的x 的值为4例10.设函数f (x)2 x x ( ,1] log 8i x x (1,)2 x 1 (x0)例 11 .设函数 f(x)1x 2(x0) A. ( 1,1)B.( 1, )C.(例.设函数(x 1)2(x 1)12f(x)4 x 1 (x 1)()A. (,2] [0,10]B.( C. ( ,2][1,10]D.[若f(X o ) 1 ,则X 。
分段函数的图像与特点在数学中,分段函数是指由不同的方程组成的函数,每个方程在定义域中分别成立。
这种函数只能在若干个子区间内定义并成立,整个定义域是所有子区间的并。
分段函数在图像上展现出来是由若干条线段或曲线段组成的图像。
本文将介绍分段函数的图像及其特点。
一、分段函数的图像分段函数的图像是具有特殊的规律和特点的。
以下以示例分别说明。
1. 绝对值函数$$f(x)=\begin{cases}x & ,x\geq0 \\-x & ,x<0\end{cases}$$这个函数的图像是一个V型的图形,其中$x>0$和$x<0$两部分线段在$x=0$处相接。
在$x\geq0$时,$f(x)=x$,它是一条斜率为正的直线。
在$x<0$时,$f(x)=-x$,也是一条斜率为正的直线,与$x\geq0$时的直线关于$x$轴对称。
因此,这个函数的图像是对称的。
2. 分段常函数$$f(x)=\begin{cases}a & , x\in [0,1) \\b & , x\in [1,2]\end{cases}$$这个函数在$x\in[0,1)$时函数值为$a$,其图像是定义在$[0,1)$上的一条水平线段。
在$x\in[1,2]$时函数值为$b$,它的图像是定义在$(1,2]$上的另一条水平线段。
这个函数的图像由两条水平线段组成,它们之间垂直于$x$轴。
3. 分段多项式函数$$f(x)=\begin{cases}mx + k_1 & , x\in [a, b]\\nx + k_2 & , x\in (b, c]\\px + k_3 & , x\in (c, d]\\\end{cases}$$这个函数的图像是由三条线段组成的,分别在$x \in [a,b]$、$x \in (b,c]$、$x \in (c,d]$的区间内定义。
在每个区间内,函数都是一个一次函数,因此$x$的增加会导致函数值的增加。
分段函数的极值与最值定理在数学中,分段函数是指由不同的函数拼接而成的函数。
其定义域可以被分成几个不重合的区间,每个区间用不同的函数来定义。
这样的函数在许多实际问题中都有应用,并且它们也常常涉及到一些有趣的性质。
在这篇文章中,我们将探讨分段函数的极值和最值定理。
这些概念是分段函数的重要性质,对于理解和应用分段函数都具有很大的帮助。
一、定义首先来回顾一下极值和最值的定义。
给定一个函数 f(x),在x=a 处,如果存在一个小的正数ε,使得当x不等于a且 x落在(a-ε, a+ε)这个开区间内时,有f(x)<f(a),那么a就是函数f(x)在定义域内的一个局部最大值。
如果将“<”改成“>”,那么a就是函数f(x)的局部最小值。
如果在定义域内,函数的取值在所有点上都不小于或不大于其它点,那么它叫做最大值或最小值。
当我们考虑分段函数的时候,需要区分开每个区间内的极值和最值,因为这些值可能仅存在于某个区间内。
二、定理在讨论分段函数的极值和最值之前,需要介绍两个基本的定理。
第一个是最值存在定理,它指出:如果 f(x) 是一个连续函数,定义域是一个有限区间,那么 f(x) 存在最大值和最小值。
证明这个定理只需要使用最大值最小值原理和连续函数的定义即可。
因为函数在有限区间内连续,所以它在此区间上有最大值和最小值,这是因为其值域必须是一个紧致区间(即闭和有界)。
而这个值域是由函数在定义域的取值所组成,所以 f(x) 的最大值和最小值一定存在。
第二个重要的定理是间断点处极值的存在定理。
这个定理主要是针对分段函数而言的。
如果分段函数存在一个间断点x=a,且左右极限均存在,那么如果左极限大于右极限,那么 x=a 就是分段函数的局部最大值,反之则为局部最小值。
这个定理的证明也比较简单,它基于左右极限的定义和比较原理。
当左极限大于右极限时,如果我们取的小的ε使得x介于a左边的区间内,那么在这个区间中 f(x) 一定小于等于 f(a-),因此 x=a 就是 f(x) 的局部最大值。
【知识要点】分段函数问题是高中数学中常见的题型之一,也是高考经常考查的问题.主要考查分段函数的解析式、求值、解不等式、奇偶性、值域(最值)、单调性和零点等问题.1、 求分段函数的解析式,一般一段一段地求,最后综合.即先分后总.注意分段函数的书写格式为:1122()()()()n n n f x x D f x x D f x x D f x x D ∈⎧⎪∈⎪=⎨∈⎪⎪∈⎩,不要写成1122()()()()n n ny f x x D y f x x D f x x D y f x x D =∈⎧⎪=∈⎪=⎨∈⎪⎪=∈⎩.注意分段函数的每一段的自变量的取值范围的交集为空集,并集为函数的定义域D .一般左边的区域写在上面,右边的区域写在下面.2、分段函数求值,先要看自变量在哪一段,再代入那一段的解析式计算.如果不能确定在哪一段,就要分类讨论.注意小分类要求交,大综合要求并.3、分段函数解不等式和分段函数求值的方法类似,注意小分类要求交,大综合要求并.4、分段函数的奇偶性的判断,方法一:定义法.方法二:数形结合.5、分段函数的值域(最值),方法一:先求每一段的最大(小)值,再把每一段的最大(小)值比较,即得到函数的最大(小)值. 方法二:数形结合.6、分段函数的单调性的判断,方法一:数形结合,方法二:先求每一段的单调性,再写出整个函数的单调性.7、分段函数的零点问题,方法一:解方程,方法二:图像法,方法三:方程+图像法. 和一般函数的零点问题的处理方法是一样的.虽然分段函数是一种特殊的函数,在处理这些问题时,方法其实和一般的函数大体是一致的. 【方法讲评】题型一 分段函数的解析式问题解题方法 一般一段一段地求,最后综合.即先分后总.【例1】已知函数)(x f 对实数R x ∈满足)1()1(,0)()(+=-=-+x f x f x f x f ,若当[)1,0∈x 时,21)23(),1,0()(-=≠>+=f a a b a x f x .(1)求[]1,1-∈x 时,)(x f 的解析式;(2)求方程0log )(4=-x x f 的实数解的个数.(2) )()2()1()1(,0)()(x f x f x f x f x f x f =+∴+=-=-+ )(x f ∴是奇函数,且以2为周期.方程0log )(4=-x x f 的实数解的个数也就是函数x y x f y 4log )(==和的交点的个数.在同一直角坐标系中作出这俩个函数的图像,由图像得交点个数为2,所以方程0log )(4=-x x f 的实数解的个数为2.【点评】(1)本题的第一问,根据题意要把[1,1]-分成三个部分,即(1,0),1,(0,1)x x x ∈-=±∈,再一段一段地求. 在求函数的解析式时,要充分利用函数的奇偶性、对称性等. (2)本题第2问解的个数,一般利用数形结合解答.【检测1】已知定义在R 上的函数()()22f x x =-.(Ⅰ)若不等式()()223f x t f x +-<+对一切[]0,2x ∈恒成立,求实数t 的取值范围; (Ⅱ)设()()g x x f x =,求函数()g x 在[]0,(0)m m >上的最大值()m ϕ的表达式.题型二 分段函数的求值解题方法先要看自变量在哪一段,再代入那一段的解析式计算.如果不能确定在哪一段,就要分类讨论.注意小分类要求交,大综合要求并. 学.科.网【例2】已知函数()()22log 3,2{21,2x x x f x x ---<=-≥ ,若()21f a -= ,则()f a = ( )A. 2-B. 0C. 2D. 9【解析】当22a -< 即0a >时, ()()211log 3211,22a a a ---=⇒+==- (舍); 当22a -≥ 即0a ≤时, ()2222111log 42a a f a ---=⇒=-⇒=-=- ,故选A.【点评】(1)要计算(2)f a -的值,就要看自变量2a -在分段函数的哪一段,但是由于无法确定,所以要就2222a a -<-≥和分类讨论. (2)分类讨论时,注意数学逻辑,小分类要求交,大综合要求并.当0a >时 ,解得12a =-,要舍去.【例3】【2017山东,文9】设()(),0121,1x x f x x x ⎧<<⎪=⎨-≥⎪⎩,若()()1f a f a =+,则1f a ⎛⎫= ⎪⎝⎭( ) A. 2 B. 4 C. 6 D. 8【点评】(1)要化简()()1f a f a =+,必须要讨论a 的范围,要分1a ≥和01a <<讨论.当1a ≥时,可以解方程2(1)2(11)a a -=+-,得方程没有解.也可以直接由2(1)y x =-单调性得到()()1f a f a ≠+.【检测2】已知函数210()0xx f x xx -⎧-≤⎪=>,若0[()]1f f x =,则0x = .题型三 分段函数解不等式解题方法先要看自变量在哪一段,再代入那一段的解析式计算.如果不能确定在哪一段,就要分类讨论.注意小分类要求交,大综合要求并.【例3】已知函数则的解集为( )A.B.C.D.【点评】(1)本题中()f x 的自变量x 不确定它在函数的哪一段,所以要分类讨论. (2)当20x -<<时,计算()f x -要注意确定x -的范围,02x <-<,所以求()f x -要代入第一段的解析式.数学思维一定要注意逻辑和严谨. (3)分类讨论时,一定要注意数学逻辑,小分类要求交,大综合要求并.【检测3】已知函数()()()22log 2,02,{2,20,x x f x f x x --+≤<=---<<则()2f x ≤的解集为__________.【检测4】【2017课标3,理15】设函数10()20x x x f x x +≤⎧=⎨>⎩,,,,则满足1()()12f x f x +->的x 的取值范围是_________.【例4】判断函数⎩⎨⎧>+-<+=)0()0()(22x x x x x x x f 的奇偶性 【解析】由题得函数的定义域关于原点对称.设0,x <2()f x x x =+,则0x ->,222()()()()f x x x x x x x f x -=---=--=-+=- 设0,x >2()f x x x =-+则0x -<,222()()()()f x x x x x x x f x -=--=-=--+=- 所以函数()f x 是奇函数.【点评】(1)对于分段函数奇偶性的判断,也是要先看函数的定义域,再考虑定义,由于它是分段函数,所以要分类讨论. (2)注意,当0x <时,求()f x -要代入下面的解析式,因为0x ->,不是还代入上面一段的解析式.【检测5】已知函数()f x 是定义在R 上的奇函数,且当0x ≥时22)(+=x xx f . (1)求()f x 的解析式;(2)判断()f x 的单调性(不必证明);(3) 若对任意的t R ∈,不等式0)2()3(22≤++-t t f t k f 恒成立,求k 的取值范围.【例5】若函数62()3log 2a x x f x x x -+≤⎧=⎨+>⎩(01)a a >≠且的值域是[4,)+∞,则实数a 的取值范围是 .【点评】(1)分段函数求最值(值域),方法一:先求每一段的最大(小)值,再把每一段的最大(小)值比较,即得到函数的最大(小)值. 方法二:数形结合.(2)本题既可以用方法一,也可以利用数形结合分析解答. (3)对于对数函数log a y x =,如果没有说明a 与1的大小关系,一般要分类讨论.【检测6】设()()2,014,0x a x f x x a x x ⎧-≤⎪=⎨+++⎪⎩,>若()0f 是()f x 的最小值,则a 的取值范围为( ) A. []2,3- B. []2,0- C. []1,3 D. []0,3【检测7】已知函数()()222log 23,1{1,1x ax a x f x x x -+≥=-<的值域为R ,则常数a 的取值范围是( )A. ][()1123-,,B. ][()12-∞+∞,,C. ()[)1123-,,D. (,0]-∞{}[)123,题型六 分段函数单调性解题方法 方法一:数形结合,方法二:先求每一段的单调性,再写出整个函数的单调性.【例6】若()()3,1{log ,1a a x a x f x x x --<=> 是(),-∞+∞上的增函数,那么a 的取值范围是( ).A. ()1,+∞B. 3,32⎡⎫⎪⎢⎣⎭C. (),3-∞D. ()1,3【点评】(1)函数是一个分段函数是增函数必须满足两个条件,条件一:分段函数的每一段必须是增函数;条件二:左边一段的最大值必须小于等于右边一段的最小值. 函数是一个分段函数是减函数必须满足两个条件,条件一:分段函数的每一段必须是减函数;条件二:左边一段的最小值必须大于等于右边一段的最大值. (3)一个分段函数是增函数,不能理解为只需每一段是增函数. 这是一个必要不充分条件.【检测8】已知函数()[)()232,0,32,,0x x f x x a a x ⎧∈+∞⎪=⎨+-+∈-∞⎪⎩在区间(),-∞+∞上是增函数,则常数a 的取值范围是 ( )A .()1,2B .(][),12,-∞+∞C .[]1,2D .()(),12,-∞+∞题型七 分段函数零点问题解题方法方法一:解方程,方法二:图像法,方法三:方程+图像法. 和一般函数的零点问题的处理方法是一样的.【例7】已知函数()21,0,{log ,0,x x f x x x +≤=>则函数()()1y ff x =+的所有零点构成的集合为__________.【点评】(1)分段函数的零点问题,一般有三种方法,方法一:解方程,方法二:图像法,方法三:方程+图像法. 和一般函数的零点问题的处理方法是一样的. (2)本题由于函数()()1y f f x =+的图像不方便作出,所以选择解方程的方法解答. (3)在函数()()1y f f x =+中,由于没有确定x 的取值范围,所以要分类讨论.【例8】已知函数()()22,191,1x x f x x x x ⎧>⎪=⎨⎪-≤⎩,若函数()()g x f x k =-仅有一个零点,则k 的取值范围是________.【解析】函数()()22,1{91,1x xf x x x x >=-≤ ,若函数()()g x f x k =- 仅有一个零点,即()f x k = ,只有一个解,在平面直角坐标系中画出, ()y f x =的图象,结合函数图象可知,方程只有一个解时,()4,0,23k ⎛⎫∈-∞ ⎪⎝⎭ ,故答案为()4,0,23⎛⎫-∞ ⎪⎝⎭.【点评】(1)直接画()()g x f x k =-的图像比较困难,所以可以利用方程+图像的方法. 分离参数得到()f x k =,再画图数形结合分析. 学.科.网【例9】已知函数关于的方程,有不同的实数解,则的取值范围是( )A. B.C. D.【解析】【点评】本题考查了类二次方程实数根的相关问题,以及数形结合思想方法的体现,这种嵌入式的方程形式也是高考考查的热点,这种嵌入式的方程首先从二次方程的实数根入手,一般因式分解后都能求实根,得到和,然后再根据导数判断函数的单调性和极值等性质,画出函数的图象,若直线和函数的交点个数得到参数的取值范围.【检测9】已知函数()()1114{(1)x x f x lnx x +≤=>,则方程()f x ax =恰有两个不同的实根时,实数a 的取值范围是( )(注: e 为自然对数的底数)A. 10,e ⎛⎫ ⎪⎝⎭B. 10,4⎛⎫ ⎪⎝⎭C. 11,4e ⎡⎫⎪⎢⎣⎭D. 1,e 4⎡⎫⎪⎢⎣⎭高中数学常见题型解法归纳及反馈检测第15讲:分段函数中常见题型解法参考答案【反馈检测1答案】(Ⅰ)11t -<<(Ⅱ)()222,011,1122,12m m m m m m m m ϕ⎧-+<≤⎪⎪=<≤+⎨⎪->+⎪⎩方法二:不等式恒成立等价于恒成立 .即等价于对一切恒成立,即恒成立,得恒成立, 当时,,,因此,实数t 的取值范围是11t -<<.【反馈检测2答案】或1【反馈检测2详细解析】当时,,则,即 ;当时,,则,即。