中冷器参数
- 格式:doc
- 大小:80.50 KB
- 文档页数:4
某柴油机车型CAC中冷器的理论设计作者:苏宁宁苏国勇乔书珂来源:《科技视界》2016年第23期【摘要】进气增压冷却是提高柴油机功率、降低柴油机热负荷的重要方法,为了满足柴油内燃机向高速、大功率发展,中冷器进行了相应的蜕变,本文介绍了中冷器芯体的设计与整车的布置的校核,选择最优的芯体,达到减重及降低单车成本的目的。
【关键词】柴油机;中冷器;芯体现柴油车上普遍采用涡轮增压器,空气经过增压器后,压力增加,温度升高,不同的增压比,增压后的出气温度一般可达100-200℃之间,中冷器可降低增压后的空气温度,提高充气效率,达到降低排放的目的。
中冷器分为水冷式和风冷式,下文主要介绍风冷式CAC中冷器,以环境空气为介质来冷却增压发动机进气的热交换器。
1 专业术语中冷器主要有芯体、气室组成。
芯子由散热带、冷却管、主板、侧板等组成,芯体是设计中冷器的关键,芯体设计会用到以下参数:1.1 冷侧中冷器与冷却空气接触面。
1.2 热侧中冷器与增压空气接触面。
1.3 冷侧迎风面积At垂直与冷却空气流动的芯体的正面积,芯体正表面芯高H与芯宽W的乘积。
1.4 散热面积Ac是散热管与散热带的暴露在空气中的外表面积之和。
1.5 热侧空气放热量Qh中冷器在稳定工作状态时,热侧空气所放出的热量,单位为Kw。
Gh:增压空气质量流量,单位Kg/hCph:增压空气热比容,单位KJ/Kg.℃,一般取1.009 KJ/Kg.℃thi:中冷器热侧进气温度,单位℃tho:中冷器热侧出气温度,单位℃1.6 冷侧空气吸热量Qc中冷器在稳定状况下所吸收的热量,单位为Kw。
Gc:冷侧进气质量流量,单位Kg/hCpc:冷侧空气热比容,单位KJ/Kg.℃,一般取1.005 KJ/Kg.℃tci:冷侧空气经过中冷器前进气温度,单位℃tco:冷侧空气经过中冷器后进气温度,单位℃1.7 设计散热量QD在规定条件下将增压空气冷却到规定温度时,热侧空气的放热量,是发动机对中冷器的热侧放热量QD要求的最低限值。
离心空压机中间冷却器概述薛斌(沈阳鼓风机厂部,沈阳110021)摘要介绍了如何按离心空压机的参数来选择合适的中间冷却器的结构形式。
关键词离心空压机中间冷却器光管翅片管l 前言目前离心空压机被广泛应用在空分、冶金、化肥、化工、制药、动力站等领域。
离心压缩机要实’现等温压缩,效率优化,保证出口压力和温度指标,各段间要配置中间冷却器。
由于压缩机对各段间允许的压力损失和进口温度的严格要求,决定了中间冷却器设计选型的特殊性。
中间冷却器几乎涵盖了所有管壳式换热器的结构形式,这正体现了它集各种形式换热器优点于一身的设计理念。
同时也是应对多种机型,大跨度工况范围的必然选择。
中间冷却器有压缩机之肺的形象比喻,它的冷却效果和可靠性直接影响压缩机的气动性能和整机效率。
随着为离心空压机配套的中间冷却器的增多,一个适应各种工况和不同机型的冷却器系列也自然形成,在此做一简单概述。
2 中间冷却器的适用范围和设计参数确定为了更深入的理解中间冷却器的多样性和复杂性,了解其适用范围、特征和重要参数的取值依据是非常必要的。
下面是据此归纳的特性表。
表1 中间冷却器技术特性从表1中可以着出:温度范围、允许压力损失、污垢系数三项指标数值挛饯披小,而空气的流量范围、压力范围、相对湿度三项指标变化范围较大。
热负荷(换热量>的大小是决定换热器面积的主要因素,而上述三项指标的大范围工况跨度决定了热负荷(换热量)的差异很大,在中间冷却器几何外形上的反映尤为直观,表2可见一般。
表2中间冷却器特征温度变化范围和允许压力损失范围从数值上看波动范围小,但这两项指标恰恰是中冷器必须严格遵循指标,是保证压缩机在性能曲线上运行的前提。
在国外的中冷器技术协议中,经常见到诸如:出口温度升高一度,压力损失超过一毫巴,扣除货款x%的附加条款,可见这两项指标对整个机组的重要程度。
相对湿度是当时当地大气的相对湿度,随着季节和天气的变化而变化,进入压缩机经过一段压缩和冷却后,饱和分压达到100%,过饱和部分冷凝析出。
进气系设计规范根据发动机对进气量的需求计算空滤器的流量允许范围,并选择合适的空滤器增压机计算公式:Qe= n (转) × V 排 × 130%×60/1000/2(m3/h)CY4102BZLQ:Qe= n (转) × V 排 × 130%×60/1000/2=2800*3.856*1.3*0.006/2=421m3/h(1109010Z11QZ-caS进气流量为600m3/h)非增压机计算公式:Qe= n (转) × V 排 × 80%×60/1000/2(m3/h)JM495:Qe= n (转) × V 排 × 80%×60/1000/2=4800*2.693*0.8*0.006/2=310m3/h (1109010Z412进气流量为430m3/h)(考虑到管路中,进气阻力产生的压力降,故选择空滤器时,将空滤器流量设为发动机进气需求量的1.3倍左右)2、中冷器的选择:根据发动机对进气量的需求计算出中冷器所需的降温能力(或所需面积),根据其降温能力(或所需面积)选择适当的中冷器 。
(附1109020N3QZ-uh0的选择、计算过程)3、空滤器位置的确定及出气口方向的选择:根据总布置要求选择空滤器的位置,并决定是否加用支架,然后根据空滤器与发动机的相对位置选择适当的出气口方向。
4、管路设计要求:根据空滤器与增压器之间的相对位置以及增压器与中冷器、中冷器出气管与发动机进气管的相对位置设计管路,同时,必须考虑到气流的顺畅性及其他分组是否会与进气管路干涉。
管路设计时,一般选择“软管--钢管--软管”的设计方案,尽量选用软管过弯,必要时可用钢管过弯,但钢管不得多于一处弯角。
钢管与软管之间采用过盈配合,钢管的外径应该大于软管的内径1~2mm,以避免软管脱落;同样,在变径处,尽量选择软管,因为采用钢管变径,必须拼焊,这样会降低钢管的强度以及钢管的外观。
冷库设计案例一、冷库耗冷量的计算(一)各间的建筑面积由设计说明书可知:1、预冷间的建筑面积:180+96=276㎡2、冷藏间的建筑面积:192㎡3、冻结间两间的建筑面积:2×48=96㎡4、贮冰间的建筑面积:192㎡(二)室内外计算参数1、窒内计算温度冻结间:-23℃冷藏间:-18℃预冷间:-4℃贮冰间:-4℃2、窒外计算温度取夏季空气调节平均温度,查表有湛江夏季空气调节日平均温度为30℃(三)库房耗冷量的计算1.计算各房间围护结构传热耗冷量Q1围护结构传热系数K的确定:屋顶:屋盖(上→下)(1)40厚预制混凝土板(2)180厚空气间层(3)二毡三油(4)冷底子油一道(5)20厚水泥沙浆抹面(6)30厚钢筋混凝土屋盖(7)1500厚空气间层(8)聚氯乙烯农用薄膜(9)250厚聚氯苯乙烯泡沫塑料(10)二毡三油(11)冷底子油一道(12)20厚水泥沙浆抹面(13)80厚预制钢筋混凝土板K1= = ≈2.1大卡/米2·时·℃K2= = ≈2.5大卡/米2·时·℃K3= = ≈0.14大卡/米2·时·℃屋顶总传热系数为:K= = ≈0.125大卡/米2·时·℃外墙:(1)20厚水泥沙浆抹面(2)240厚砖墙(3)20厚水泥沙浆抹面(4)冷底子油一道(5)隔汽层冻结间:二毡三油预冷间:一毡二油储冰间:一毡二油冷藏间:一毡二油(6)隔热层冻结间:250厚聚苯乙烯泡沫塑料预冷间:100厚聚苯乙烯泡沫塑料储冰间:150厚聚苯乙烯泡沫塑料冷藏间:200厚聚苯乙烯泡沫塑料(7)防潮层冻结间:二毡三油预冷间:一毡二油储冰间:一毡二油冷藏间:一毡二油(8)240厚预制混凝土砖墙(9)20厚水泥沙浆抹面冻结间:K= ≈0.127大卡/米2·时·℃预冷间:K= ≈0.264大卡/米2·时·℃贮冰间:K= ≈0.195大卡/米2·时·℃冷藏间:K= ≈0.154大卡/米2·时·℃内墙:(1)20厚水泥沙浆抹面(2)240厚预制混凝土砖墙(3)20厚水泥沙浆抹面(4)冷底子油一道(5)一毡二油(6)隔热层冻结间:250厚聚苯乙烯泡沫塑料贮冰间:150厚聚苯乙烯泡沫塑料冷藏间:200厚聚苯乙烯泡沫塑料(7)一毡二油(8)240厚预制混凝土砖墙(9)20厚水泥沙浆抹面冻结间:K= ≈0.128大卡/米2·时·℃贮冰间:K= ≈0.196大卡/米2·时·℃冷藏间:K= ≈0.155大卡/米2·时·℃地坪:地坪(上→下)(1)80厚钢筋混凝土面层(2)15厚水泥沙浆抹面(3)一毡二油(4)隔热层冻结间:250厚软木预冷间:150厚软木贮冰间:200厚软木冷藏间:200厚软木(5)二毡三油(6)冷底子油一道(7)15厚水泥沙浆抹面(8)100厚预制钢筋混凝土板(9)架空层(10)60厚100号混凝土垫层(11)素土夯实冻结间:K= ≈0.214大卡/米2·时·℃预冷间:K= ≈0.319大卡/米2·时·℃贮冰间:K= ≈0.253大卡/米2·时·℃冷藏间:K= ≈0.253大卡/米2·时·℃围护结构传热面积的确定1.预冷间的传热面积F北=36 ×4.2=151.2㎡F 西=5×4.2=21㎡F西=F东F地=276㎡F顶=F地2.冻结间的传热面积F北=12×4.2=50.4㎡F北=F南F 西=8×4.2=33.6㎡F西=F东F地=96㎡F顶=F地3.冷藏间的传热面积F北=12×4.2=50.4㎡F北=F南F东=16×4.2=67.2㎡F西=8×4.2=33.6㎡F地=192㎡F顶=F地4.贮冰间的传热面积F南=12×4.2=50.4㎡F 西=16×4.2=67.2㎡F地=192㎡F顶=F地维护结构耗冷量Q1的计算:室外计算温度tw=30℃,冻结间的库房温度tn= -23℃,冷藏间的库房温度tn= -18℃贮冰间的库房温度tn= -4℃,预冷间的库房温度tn= -4℃理鱼间的温度tn= 0℃温差修正系数:库房与房外大气之间取n=1.0,库房与川堂之间取n=0.7库房与库房之间取n=0.7表有太阳辐射影响的昼夜平均当量温度td有:td北=2.4℃,td南=3.1℃,td东=5.0℃,td西=5.0℃各个房间的耗冷量有:冻结间:北:Q1=n·K·F·(tZP-tn)=0.127*50.4*[-4-(-23)]*0.7=85大卡/小时南:Q1=n·K·F·(tZP-tn)=0.127*50.4*[(30+3.1)-(-23)]*1.0= 359大卡/小时西:Q1=n·K·F·(tZP-tn)=0.127*33.6*[-4-(-23)]*0.7=57大卡/小时东:Q1=n·K·F·(tZP-tn)=0.127*33.6*[-18-(-23)]*0.7=15大卡/小时地坪:Q1=n·K·F·(tZP-tn)=0.214*96*[30-(-23)]*1.0=1089大卡/小时顶:Q1=n·K·F·(tZP-tn)=0.125*96*[30-(-23)]*1.0=636大卡/小时总Q1=85+359+57+15+1089+636=2241大卡/小时预冷间:北:Q1=n·K·F·(tZP-tn)=0.264*151.2*[0-(-23)]*0.7=643大卡/小时西:Q1=n·K·F·(tZP-tn)=0.264×21×[(30+5)-(-4)] ×1.0=216大卡/小时东:Q1=n·K·F·(tZP-tn)=0.264×21×[(30+5)-(-4)] ×1.0=216大卡/小时地坪:Q1=n·K·F·(tZP-tn)=0.319×276×[30-(-4)] ×1.0=2993大卡/小时屋顶:Q1=n·K·F·(tZP-tn)=0.125×276×[30-(-4)] ×1.0=1173大卡/小时总Q1=643+216+216+2993+1173=5241大卡/小时冷藏间:北:Q1=n·K·F·(tZP-tn)=0.154×50.4×[(-4)-(-18)] ×0.7=76大卡/小时南:Q1=n·K·F·(tZP-tn)=0.154×50.4×[(30+3.1)-(-18)] ×1.0=397大卡/小时西:Q1=n·K·F·(tZP-tn)=0.154×33.6×[(-4)-(-18)] ×0.7=51大卡/小时东:Q1=n·K·F·(tZP-tn)=0.154×67.2×[(30+5)-(-18)] ×1.0=548大卡/小时地坪:Q1=n·K·F·(tZP-tn)=0.253×192×[30-(-18)] ×1.0=2332大卡/小时屋顶:Q1=n·K·F·(tZP-tn)=0.125×192×[30-(-18)] ×1.0=1152大卡/小时总Q1=76+397+51+548+2332+1152=4556大卡/小时贮冰间:南:Q1=n·K·F·(tZP-tn)=0.195×50.4×[(30+3.1)-(-4)] ×1.0=365大卡/小时西:Q1=n·K·F·(tZP-tn)=0.195×67.2×[(30+5)-(-4)] ×1.0=511大卡/小时屋顶:Q1=n·K·F·(tZP-tn)=0.125×192×[30-(-4)] ×1.0=816大卡/小时地坪:Q1=n·K·F·(tZP-tn)=0.253×192×[30-(-4)] ×1.0=1652大卡/小时总Q1=365+511+816+1652=3344大卡/小时食品冷加工或储存时的耗冷量Q2的计算食品冷加工或储存时的耗冷量Q2的计算公式为:Q2=Q2a+Q2b+Q2c+Q2d(一)食品在冷冻加工时的耗冷量:预冷间:Q2= + = =128大卡/小时冻结间:Q2= + = =180.8大卡/小时其中G——食品每日加工量(吨/24小时)h1,h2——加工前后的焓值τ——加工时间B——食品包装系数Cb——包装材料的比热容(二)食品在储存时的耗冷量冷藏间Q2= + = + =1356大卡/小时Q2总=128+180.8+1356=1664大卡/小时冰库贮冰耗冷量Q2由任务书有30×6500=195000大卡/吨·小时库房通风换气的耗冷量Q3的计算冷库的耗冷量Q3=Q3a+Q3=+30nirn(Hm-Hn)= +30×3×1.42×(77.875-6.573)=25171大卡/小时Hw——室外空气焓值Hn——室内空气焓值n——换气次数Vr——冷藏间净容积ni——操作人员数rn=空气重度电机运行耗冷量Q4的计算1.库房照明耗冷量Q4aQ4a=qa·F=4×(276+192+96+192)=3024大卡/小时其中qa为照明引起的耗冷量,取4大卡/米2·小时F为库房的面积2.电动机运行的耗冷量Q4bQ4b=860·N·η=860·6.6·0.75=4257大卡/小时其中η取0.75,N为电动机的功率,设计用3台,合计功率为6.6千瓦3.库门开启的耗冷量Q4c冻结间:Q4c=qm·Z·Ni=973·2·0.7=1311.8大卡/小时其中qm为库门每开启一小时的耗冷量,数值可以查表得出Ni为条件系数,取0.7Z为库房使用系数,取2冷藏间:Q4c=qm·Z·Ni=815·2·0.9=1467大卡/小时其中qm为库门每开启一小时的耗冷量,数值可以查表得出Ni为条件系数,取0.9Z为库房使用系数,取2预冷间:Q4c=qm·Z·Ni=514·2·0.7=719.6大卡/小时其中qm为库门每开启一小时的耗冷量,数值可以查表得出Ni为条件系数,取0.7Z为库房使用系数,取2贮冰间:Q4c=qm·Z·Ni=598·1·0.5=299大卡/小时其中qm为库门每开启一小时的耗冷量,数值可以查表得出Ni为条件系数,取0.5Z为库房使用系数,取1综合以上计算有Q4c总=1311.8+1467+719.6+299=3797.4大卡/小时4.库房操作工人的耗冷量Q4d冻结间(2个):Q4d=n·qr·2=3·355·2=2130大卡/小时其中n为操作人员数,qr为每个操作工人单位时间产生的热量,数值可以查表得出冷藏间:Q4d=n·qr=12·318=3816大卡/小时其中n为操作人员数,qr为每个操作工人单位时间产生的热量,数值可以查表得出预冷间(2个):Q4d=n·qr·2=3*240*2=1440大卡/小时其中n为操作人员数,qr为每个操作工人单位时间产生的热量,数值可以查表得出综合以上计算有Q4d总=2130+3816+1440=7386大卡/小时计算电机运行耗冷量Q4总=Q4a+Q4b+Q4c+Q4d=3024+4257+3797.4+7386=18384.4大卡/小时由以上的计算结果得出制冷压缩机的负荷QjQj=(n1ΣQ1+ n2ΣQ2+ n3ΣQ3+ n4ΣQ4)·R=[(2241+5241+4556+3344) ·1+(1575+195000) ·1+25171·1+(2024+4257+3797.4+7386) ·1] ·1.12=254592大卡/小时=300千瓦其中n1为维护结构传热量的季节修正系数,取1n2为食品热量的机械负荷折减系数,取1n3为同期换气次数,取1n4为冷间内电动机同期运转系数,取1二、制冷压缩机和设备的选型计算(一)压缩机的选型计算选用一台单级压缩机4A V12.5,两台双级的压缩机S8-12.5,三台都是大连冷冻机厂出品。
中冷器的选用中冷器的作用中冷器的作用是降低发动机的进气温度。
那么为什么要降低进气温度呢?(1)发动机排出的废气的温度非常高,通过增压器的热传导会提高进气的温度。
而且,空气在被压缩的过程中密度会升高,这必然也会导致空气温度的升高,从而影响发动机的充气效率。
如果想要进一步提高充气效率,就要降低进气温度。
有数据表明,在相同的空燃比条件下,增压空气的温度每下降10℃,发动机功率就能提高3%~5%。
(2)如果未经冷却的增压空气进入燃烧室,除了会影响发动机的充气效率外,还很容易导致发动机燃烧温度过高,造成爆震等故障,而且会增加发动机废气中的NOx的含量,造成空气污染。
为了解决增压后的空气升温造成的不利影响,因此需要加装中冷器来降低进气温度。
中冷器的分类中冷器一般由铝合金材料制成。
按照冷却介质的不同,常见的中冷器可以分为风冷式和水冷式2种。
图1 风冷式中冷器(1)风冷式(图1)利用外界空气对通过中冷器的空气进行冷却。
优点是整个冷却系统的组成部件少,结构比水冷式中冷器相对简单。
缺点是冷却效率比水冷式中冷器低,一般需要较长的连接管路,空气通过阻力较大。
图2 散热芯体风冷式中冷器主要由2部分组成,即散热芯体和两端的气室,散热芯体(图2)主要由流通管和散热片(图3)组成。
图3 流通管和散热片流通管的功能是分割压缩空气并为压缩空气提供1个流通管路,两端与气室相连,因此压缩空气不会出现泄漏的问题。
流通管的形状常见的有长方形、椭圆形以及长锥形3种。
由于流通管的形状不同,中冷器对压缩空气的阻力和冷却效率也不同。
许多中冷器为了提高冷却效率,会在流通管内壁上设置凸起,以增加压缩空气与流通管内壁的接触面积,但是这样会产生较大的气流阻力。
散热片位于上下两层流通管之间,并紧密地与流通管靠在一起,其功能是为流经流通管的压缩空气散热。
当外界较低温度的空气流经散热片时,就能将热量带走,从而达到冷却压缩空气的目的。
多个流通管和散热片组合在一起,并多层重叠,就构成了中冷器的散热芯体。
中冷器设计计算中冷器设计计算书一:中冷器结构参数1.芯子有效尺寸:640×104×64二:中冷器使用工况1.热风进温度:130℃(t1′)2.热风出温度:50℃ (t1″)3.热风流量:0.1Kg/s( G1)4.冷风进温度:25℃(环境温度)(t2′)5.冷风流速:10m/s6.热侧压力:150KPa三:中冷器结构参数计算1.冷侧散热面积(F)的计算冷侧散热面积F=2.87m22.热侧流速的计算(V1)1)质量流量(G1)换算成体积流量(V)ρ=P bm/287.4T bm=(150-6/2+100)×1000/(287.3×(130+50)/2+273)=1.41kg/m3其中:P bm=进气压力-内部压力降/2(进气压力为绝对大气压)T bm:进出气平均温度(出气温度按发动机要求50℃)V= G1 /ρ≈0.071 m3/s2)中冷器热侧通道空气流速计算S3=冷却管的通道面积=单根冷却管内腔的截面积×冷却管根数=2818.32mm23) V1=V/S3=0.071×106/2818.32≈25.07m/s根据我公司同配置中冷器,该流速下中冷器的压力降为 5.4kpa 左右,满足设计要求。
四、设计计算1、设计计算:1)标定工况下,假设130℃的增压空气流经中冷器以后,出气口温度达到50℃。
根据热平衡方程式计算冷风出温度(t2″)G1Cp1(t1′- t1″)= G2Cp2(t2″- t2′)式中G1――热空气流量,Kg/s;G2――冷却介质流量,Kg/s;Cp1――热空气的定压比热,J/ Kg.℃Cp2――冷却介质的定压比热,J/ Kg.℃t1′――中冷器进口(热空气)温度,℃t1″――中冷器出口(冷却后空气)温度,℃t2′――冷却介质进中冷器的温度,℃t2″――冷却介质出中冷器的温度,℃已知:Cp1=1.009×103J/Kg.℃Cp2=1.005×103J/Kg.℃G1=0.1Kg/sG2=0.802Kg/st1′- t1″=130-50=80℃ t2′=25℃可求得t2″=35.2℃其中:G2=(芯子正面积×25℃时空气密度×冷侧空气流速)25℃时空气密度=1.205 kg/m3G2=0.06656×1.205×10=0.802 Kg/s2)整个散热器的平均温压:Δt mΔt max=130-35.2=94.8 Δt min=50-25=25Δt max/Δt min=3.792所以采用对数平均温压Δt m=(Δt max-Δt min)/ln(Δt max/Δt min)=52.37℃3)参照同结构产品,该中冷器的传热系数约为54.4W/m2. ℃4)根据发动机工况整个中冷器所需散热量:Q1=G1×Cp1(130-50) =0.1×1.009×80=8.072Kw5)根据中冷器设计所具备的散热量Q2=K×F×Δt m =52.5×2.87×54.4/1000=8.197Kw6)中冷器冷却效率:热侧实际出气温度根据叠加计算可知,实际出气温度为49.5℃。
内燃机与配件0引言进入新世纪之后,能源危机成为了一个重要的社会问题,各个国家都制定了严格的环保法规,群众的环保意识也得到了进一步的加强。
在工业生产的过程当中,人们除了追求柴油机的动力性能之外,对其环保性能也提出了新的要求。
中冷器的运用可以提高柴油机发动功率,同时也可以降低一氧化碳和氮氧化物的排放。
研究发现,中冷器当中后进气体的温度对于柴油机的性能具有重要的影响,通过增加气体压力的方式可以增加输出功率,而通过对中冷器的合理设计可以有效减少柴油机所排放的污染性气体。
1柴油机中冷器的基本概述1.1中冷器的工作原理在运行的过程当中,中冷器可以使各种流体在不发生相互接触的情况下实现能量和热量之间的传递和转化。
具体来说,空气会先从增压器当中流入,在经过中冷器之后温度和密度得到了降低,这可以使发动机的充气效率得以提升。
作为柴油机运行过程当中必不可少的构件,中冷器内部结构的合理性关系到空气的流动状况和压缩空气的换热情况,而这些因素可以对发动机的运行状态产生直接的影响,进而会对其动力性能以及气体排放情况产生影响。
中冷器的作用包括以下两个方面。
第一,在气体进入到增压器之后,在压强增加的情况下温度也会有所上升,这会对发动机当中的循环进气量造成影响。
而通过中冷器的冷却作用,可以降低气体的温度、提高气体的密度,使发动机气缸内部的气体量增加,从而可以提高发动机的运行效率。
第二,如果没有经过中冷器的冷却,气体在加压之后直接进入到气缸当中,会导致发动机的冲量系数比较低。
与此同时,这些高温、低密度的气体还可能会使发动机气缸当中的燃烧温度提高,严重情况下还可能导致发动机出现爆燃等故障,导致发动机本身的温度过热,降低了热效率。
除此之外,在燃烧温度比较高的情况下,燃烧所生成的气体当中氮氧化物比例增加,这会导致空气污染。
而为了缓解这一问题,就要运用柴油机的中冷器来对空气降温,进而使整个缸内的燃烧温度被控制在合理的范围内。
1.2中冷器的冷却方式1.2.1水冷式水冷式的中冷器所使用的冷却水系统也存在差异,有的是使用柴油机冷却系进行冷却,还有的使用独立的冷却水系统进行冷却。
汽车空-空中冷器技术条件汽车空-空中冷器技术条件1范围本标准规定了空-空中冷器的技术要求、试验方法、检验规则、标志、包装、运输、贮存以及质量保证。
本标准适用于本公司设计开发的汽车所装用的空-空中冷器总成(以下简称“中冷器”)。
2规范性引用文件下列文件中的条款通过本标准的引用而成为本标准的条款。
凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本部分达成协议的各方研究是否可使用这些文件的最新版本。
凡是不注日期的引用文件,其最新版本适用于本标准。
GB 191—2000包装储运图示标志GB/T 2828.1—2003计数抽样检验程序第1部分:按接收质量限(AQL)检索的逐批检验抽样计划GB/T 3190—1996变形铝及铝合金化学成分GB/T 3194—1998铝及铝合金板、带材的尺寸允许偏差GB/T 3614—1999铝合金箔GB/T XXX及铝合金轧制板材GB/T 4437.1—2000铝及铝合金热挤压管第一部分:无缝园管YS/T 69—1993钎接用铝合金板材Q/XX B102车辆产品零部件追溯性标识规定3技术要求3.1中冷器应按经规定程序批准的图样和技术文件进行制造。
3.2材料要求中冷器所用的相应材料,应分别满足GB 3880、YS/T 69、GB 4437.1、GB 3614、GB 3194、GB 3190的要求。
3.3外观表面质量及尺寸3.3.1铝合金板材的表面质量a)板材表面不允许有裂纹、裂边、腐蚀、穿通气孔、硝盐痕,不允许有扩散斑点;b)板材表面答应有轻微的压划痕等缺陷,但缺陷深度不得跨越板材厚度的答应偏差,并应保证最小厚度。
13.3.2钎接用铝合金板材的表面质量a)板材表面不答应有裂纹、腐蚀、穿通气孔;b)板材表面允许有轻微的压划痕。
3.3.3铝合金管的表面质量a)管材表面应光滑,不允许有裂纹;b)管材表面的缺陷深度不得超过管材内、外径的允许偏差范围,并应保证管材的最小尺寸。
10.16638/ki.1671-7988.2017.10.080某轿车中冷器性能优化分析及解决措施张鹤,钟素娟,何延刚,麻金贺(安徽江淮汽车集团股份有限公司,安徽合肥230601)摘要:在某轿车产品研发过程中,出现了进气温度偏高导致扭矩下降,从而影响整车动力性表现的问题,为了消除这个问题,对中冷器系统进行优化分析并针对中冷器性能对发动机扭矩的影响进行相关的试验验证,通过优化中冷器,最终解决了整车扭矩下降的问题,提高了产品品质和动力性。
关键词:中冷器;聚风罩;CAE;优化设计中图分类号:U462 文献标识码:A 文章编号:1671-7988 (2017)10-234-02An automobile exhaust noise performance optimization analysis and solutionsZhang He, Zhong Sujuan, He Yangang, Ma Jinhe( Anhui Jianghuai Automobile group Co. Ltd., Anhui Hefei 230601 )Abstract: In a course of product research and development of the car, the intake air temperature on the high level due to a high torque decreased ,thus affecting the vehicle power performance problems, in order to eliminate of the intercooler system to optimize the analysis and test for related affects the performance of intercooler of engine torque, by optimizing the intercooler, finally solves the problem of the vehicle torque decreased ,and improve the product quality and performance.Keywords: Intercooler; Air concentrator; CAE; Optimization analysisCLC NO.: U462 Document Code: A Article ID: 1671-7988 (2017)10-234-02前言随着中国经济的飞速发展,汽车保有量迅猛增加,人们对汽车动力性、经济性的要求也日益增高,因此增压车型也是未来发展的趋势,废气涡轮增压的应用最为普遍。