发动机中冷器旁通方式
- 格式:docx
- 大小:3.25 KB
- 文档页数:2
大众1.4TSI拆解之冷却/增压篇“1.4TSI+7速DSG”,一汽-大众这套被形容为“黄金”的动力总成,在国内车市一度掀起了消费者对小排量增压发动机和双离合变速器的热潮,众多厂商也纷纷效仿一汽-大众推出了自己的增压动力和双离合变速器。
但作为这项技术在国内引领者的一汽-大众,似乎只是一直在被追赶,却从未被超越。
近日,我们来到了一汽-大众长春的发动机制造厂,对一汽-大众的“黄金动力”——1.4TSI发动机进行了彻底的拆解和研究。
我们将按照拆解顺序,根据这台发动机的特点和大量网友们对它的疑问,分三篇为大家带来全面详尽且深入浅出的解读。
下面,我们就先一起来看看这台“传说中”的小排量增压发动机,围绕着字母“T(涡轮增压)”究竟都有何过人之处吧。
●进气冷却系统拆解我们本次拆解的这台1.4TSI是一台刚刚从一汽-大众的生产线上下线的全新发动机,在对这台发动机进行上台架等固定工序后,我们的拆解也正式开始。
首先将进行拆解的部分是这台发动机的独立循环冷却系统。
刚刚走下生产线的EA111系列1.4TSI发动机冷却系统示意图,彩色为独立的进气和涡轮循环冷却系统,灰色为发动机内的循环冷却系统(蓝色为低温冷却液,红色为高温冷却液)这款1.4TSI发动机一大特色就是采用了两套独立的冷却系统:一套主要用于发动机自身冷却的发动机冷却系统,这套系统中的水泵通过皮带和曲轴相连接,直接靠发动机动力实现冷却液的循环,也可称为主循环;另一套冷却系统主要用于涡轮增压器和增压空气的冷却,是通过电动冷却液循环泵驱动冷却液实现的独立循环系统,也可称为副循环。
副循环中冷却液循环泵位置示意图1.4TSI发动机上的双循环冷却系统也是大众首次采用的发动机冷却方式。
其中独立的冷却液循环泵主要用于给增压系统冷却,包括两个循环通道:一个经过涡轮增压器,为涡轮系统冷却;另一个流经进气歧管内的气液热交换器(冷却器),为增压空气进行冷却。
两套独立冷却系统实现了缸盖和缸体温度的不同,在不同工况下可以根据需要分别对不同的部分进行冷却。
大众1.4TSI发动机新技术解析1.增压系统该款发动机的废气涡轮增压系统的机械结构与大众集团常规的增压系统没有根本的变化,但其冷却方式却有了很大的创新:采用了水冷式的中冷器。
此外单独设计了一个小型水箱安装在进气歧管内用来冷却增压后的空气,以适当降低进气温度,增加充气效率。
由这一大一小两个水箱及一个安装在发动机前部的电动冷却液循环泵构成了全新的增压冷却系统,它与用于发动机本体的冷却系统共用防冻液,但又通过单向阀相互隔开,互不影响,详细结构如图1、图2、图3所示。
增压系统的机械结构中,其叶轮和涡轮的直径分别达到了37mm和41mm,相应速度更快,旁通阀直径达到了26mm,1250r/min的时候就可以达到最大扭矩的80%,最大有效增压压力可达到 1.8bar(1bar=105Pa),增压控制元件可以单独更换。
增压系统的控制方面有4个重要的传感器:增压压力传感器G31和进气温度传感器G299整合为一体;增压压力传感器G71和进气温度传感器G42整合为一体,如图4所示。
增压压力传感器G31和进气温度传感器G299的作用是检测并控制增压压力,保护发动机,当温度超差时降低增压压力;增压压力传感器G71和进气温度传感器G42的作用是监控进气量,监测最终进气温度。
2个进气温度传感器的共同的重要作用就是控制冷却液循环泵,当2个温度传感器的温差小于8℃的时候,冷却液循环泵被激活。
当二者温差小于2℃的时候,OBD报警灯会点亮;而当二者同时失效的时候,会用默认值替代,此时增压压力和动力性都会下降。
冷却液循环泵安装位置如图5所示,它的运行条件比较复杂,除上述以外,还会在如下情况下运行:启动发动机后的短时间内;发动机停止工作后0~480s(依据具体情况而不同);输出扭矩持续在100N.m以上时;发动机每工作120s,冷却液循环泵工作10s;进气温度传感器G42持续超过50℃。
这里还要注意,在更换防冻液时,要使用专用工具VAS6096抽真空加注或使用专用诊断仪VAS5052A的引导功能驱动冷却液循环泵运转,以便为冷却系统排气,避免产生气阻。
汽车中冷器工作原理
汽车中冷器是一种用于调节车内温度的设备,它的工作原理基于热泵效应。
下面将详细介绍汽车中冷器的工作原理。
汽车中冷器主要由压缩机、冷凝器、膨胀阀和蒸发器四个主要部分组成。
首先,压缩机是汽车中冷器的核心部件。
它通过电动机驱动,将低温低压的制冷剂气体吸入,并通过压缩使其温度和压力升高,从而变为高温高压的制冷剂气体。
接下来,高温高压的制冷剂气体进入冷凝器。
在冷凝器中,制冷剂气体与冷却风或循环水接触,散发出大量的热量。
这样,制冷剂气体温度和压力就会降低,逐渐转化为高压液体。
然后,高压液体制冷剂通过膨胀阀进入蒸发器。
在蒸发器中,高压液体制冷剂迅速减压,形成低温低压的制冷剂液体和蒸发气体。
制冷剂液体吸收车内空气中的热量,逐渐蒸发转化为蒸发气体,从而使车内温度下降。
最后,蒸发器中的制冷剂蒸汽被压缩机再次吸入,循环往复,从而实现整个制冷循环。
总结来说,汽车中冷器的工作原理是通过压缩机将制冷剂气体压缩成高温高压气体,将其通过冷凝器散发热量,转变为高压液体,然后经过膨胀阀降压成低温低压液体,进入蒸发器,吸
收车内热量并转化为蒸发气体。
最后制冷剂蒸汽再被压缩机吸入,循环反复,实现车内温度的调节。
冷却系统系统设计指南1、概述:汽车发动机大多为内燃机,内燃机将燃料的化学能通过燃烧转化为机械能来驱动汽车行驶,工作时会产生大量热量,为确保发动机在一个合适的温度下有效的工作,需要对发动机本身,尤其是发动机缸体进行及时的冷却。
冷却系统中的散热器就承担着给发动机进行散热的任务。
对于大多数柴油机而言,都采用了增压器以改善发动机的燃烧和功率。
从增压器出来的空气温度是比较高的,不利于发动机的工作。
为此需要对进入发动机前的空气进行冷却。
冷却系统中的中冷器就起到了这样一个作用。
冷却系统设计的好坏直接影响发动机的性能和可靠性,从而影响整车的性能和可靠性。
2、冷却系统的作用冷却系统的功能是保证发动机保持在合适的温度环境中工作,提高发动机的性能和寿命。
3、冷却系统的组成冷却系统主要部件为散热器、中冷器、膨胀水箱和连接管路等,其设计质量直接影响着发动机的性能和可靠性。
4、冷却系统设计一、设计准则1、发动机冷却系统各部件匹配合理,以保证冷却系统的良好散热性能。
2、冷却系统安装方便、可靠。
二、冷却系统各种参数的确定1. 散热器和风扇之间距离的选择根据各车型的布置经验和发动机厂推荐的安装规范,风扇前端与散热器芯子距离选50~100mm较为合适,在这个范围之内尽量取大一些。
2.散热器的计算(1)首先要知道发动机的一些性能参数,如:额定功率Ne(kW)、额定功率时转速n(r/min)、最大扭矩Me(N.m)、最大扭矩时转速n1(r/min)等等。
(2)设计工况点的选择冷却系的设计要以额定功率点为设计点,以最大扭矩点作校核。
(3)发动机水套散热量Qw因无发动机水套散热量Qw的试验数据,现按经验公式计算QwQw=(0.5~0.7)×Ne(kW)(4)散热器的最大散热能力Qmax由于散热器使用一段时间后,散热能力一般下降10%左右;另外压力盖的泄漏以及气流分布不均等原因,也会造成散热器性能的下降,因此散热器的最大散热能力Qmax要比设计工况的水套散热量要高,最大散热量系数定为K,一般K 取1.15。
发动机中冷器工作原理
发动机中冷器是一种用于降低发动机进气温度的设备,其工作原理是通过利用空气冷却的特性来将高温的进气冷却到较低的温度,以增加发动机的效率和性能。
工作原理如下:
1. 进气道:发动机进气道中的空气首先经过滤空气进入中冷器。
2. 中冷器:中冷器是由一系列高效的冷却管组成的。
热空气在管道中流动时,与管道壁接触并传热。
冷却管外部的空气在冷却器中流动,与管道内部的热空气进行热交换。
这样,热空气会被冷却,降低其温度。
3. 减压器:中冷器之后,气流会进入减压器。
减压器的作用是减小进气流动的速度和压力,从而提供更大的时间和空间进行冷却。
4. 冷却效果:通过中冷器的作用,进气温度将显著下降。
降低进气温度有助于增加稠化燃油蒸汽,提高燃烧效率,并减少气缸燃烧过程中的热负荷。
同时,冷却后的气体密度增加,使得更多的氧气进入涡轮增压器,进一步提高发动机的输出功率和扭矩。
总体而言,发动机中冷器通过降低进气温度,提高压缩空气的密度,增加氧气含量,从而提高发动机的效率和动力输出。
这
使得发动机在工作过程中能够获得更多的能量,提高燃烧效率,进而提升整体性能。
制冷系统热气旁通的原理及应用1、制冷系统能量调节的方法及作用在制冷系统低负荷时,使用能量调节手段可以有效控制蒸发压力,并能防止:1、系统频繁启停2、压缩机在设计的回气压力以下运行3、蒸发盘管结霜当前,制冷系统主流的能量调节方法有以下5种:1. 多级压缩系统2.多个压缩机的单级系统3.变频压缩机4.压缩机卸载5.热气旁通在本文中,我们详细了解一下“热气旁通”。
2热气旁通作为能量调节一种手段,热气旁通,能够将高压端的高温气态制冷剂,旁通到系统的低压端;从而保证系统始终在一个给定的最小回气压力下运行。
热气旁通的两种方法:1. 直接旁通到回气端2.旁通到蒸发器的入口3热气旁通回气端原理一、直接旁通到回气端:使用电磁阀和热气旁通阀控制二、热气旁通阀的原理:1、热气旁通阀关闭:2、热气旁通阀开启:4旁通到回气端的弊端直接从压缩机的排气管旁通到吸气口,会导致吸气过热度增大,造成压缩机的过热。
压缩机排气温度的要求:1、制冷剂的温度达到150℃以上时会造成密封圈和活塞的磨损2、当温度达到170℃以上时压缩机彻底损坏,这时会产生各种杂质并且磨损也更为严重。
5如何防止压缩机过热可以采用喷液回路来降低压缩机的吸气过热度,从而防止压缩机过热;如下系统图:原理:从冷凝器出来的制冷剂液体,进入喷液电磁阀后经过膨胀阀的节流,温度降低,与热气旁通过来的气态制冷剂混合后,降低了制冷剂的温度;从而降低吸气过热度,防止压缩机过热。
6热气旁通到蒸发器的入口系统原理图如下:优点:1、提供一个额外的负荷2、空调系统中可以除霜3、可以将蒸发器作为直接的混合室4、使用最少的配件5、回油性能极佳(即使在蒸发器低于压缩机的情况下,在系统处于低负载时,旁通到蒸发器入口也能确保有适当的回油。
)下面看几个实际使用时的系统原理图,供参考:1、蒸发器入口的分液头:2、旁通到蒸发器入口:3、带EPR阀:7热气旁通阀的调整热气旁通阀的调整:1)启动系统并使之在正常的负荷下运转。
大众1.4TSI发动机冷却系统拆解文章要点:1.4TSI独立水循环系统可为增压空气进行冷却,可在熄火后继续为涡轮提供冷却1.4TSI的涡轮增压器采用集成式设计,更加可靠;小尺寸叶片启动转速低,延迟小网友疑问解答:1.4TSI无须怠速熄火/涡轮增压器不会产生额外保养费用“1.4TSI+7速DSG”,一汽-大众这套被形容为“黄金”的动力总成,在国内车市一度掀起了消费者对小排量增压发动机和双离合变速器的热潮,众多厂商也纷纷效仿一汽-大众推出了自己的增压动力和双离合变速器。
但作为这项技术在国内引领者的一汽-大众,似乎只是一直在被追赶,却从未被超越。
继不久前拆解了日产世界著名发动机VQ35后,近日车168的编辑来到了一汽-大众长春的发动机制造厂,对一汽-大众的“黄金动力”——1.4TSI发动机进行了彻底的拆解和研究。
我们将按照拆解顺序,根据这台发动机的特点和大量网友们对它的疑问,分三篇为大家带来做详尽且深入浅出的解读。
下面,我们就先一起来看看这台“传说中”的小排量增压发动机,围绕着字母“T(涡轮增压)”究竟都有何过人之处吧。
进气冷却系统拆解刚刚走下生产线的EA111系列1.4TSI发动机我们本次拆解的这台1.4TSI是一台刚刚从一汽-大众的生产线上下线的全新发动机,在对这台发动机进行上台架等固定工序后,我们的拆解也正式开始。
首先将进行拆解的部分是这台发动机的独立循环冷却系统。
冷却系统示意图,彩色为独立的进气和涡轮循环冷却系统,灰色为发动机内的循环冷却系统(蓝色为低温冷却液,红色为高温冷却液)这款1.4TSI发动机一大特色就是采用了两套独立的冷却系统:一套主要用于发动机自身冷却的发动机冷却系统,这套系统中的水泵通过皮带和曲轴相连接,直接靠发动机动力实现冷却液的循环,也可称为主循环;另一套冷却系统主要用于涡轮增压器和增压空气的冷却,是通过电动冷却液循环泵驱动冷却液实现的独立循环系统,也可称为副循环。
副循环中冷却液循环泵位置示意图1.4TSI发动机上的双循环冷却系统也是大众首次采用的发动机冷却方式。
汽车小知识介绍增压发动机中冷器的作用现在很多车的发动机都带着醒目的“T”字,T字证明了它是一款增压发动机。
我们都知道,涡轮增压发动机在发动机原有的基础上增加了涡轮装置,在运转中,涡轮自身运行产生出的过剩能量必须合理传导出去,这就需要一个装置与之“能量中和”,这就是中冷器。
中冷器会增加空气阻力,使增压空气的压力下降,导致增压效果减少,发动机响应变慢,不过这种效应相比起中冷器对发动机提升功率的作用来说,就显得无足轻重了。
空冷还是水冷?要将空气冷却,无非就是两种方法。
一种是通过车辆行驶的时候迎面撞进的冷风进行降温,另一种就是使用水冷。
前者的原理和我们家用的冰箱、空调的散热器是一样的,就是让空气通过一根根管道,增加管道和周围空气的接触面积,然后通过周围的空气将其降温。
放在发动机上方的空气冷却的中冷器。
水冷则是刚好和风冷相反。
就是将一个冷却器放进进气管道里,让增压后的热空气流过。
而冷却器里则有冷却水不断地流动,从而带走增压空气热量。
实线表示空气的流动虚线表示冷却水的流动首先接着之前的话题,当空气经过增压器被压缩后,温度会升高,这是一个基本的物理原理。
增压后的气体温度大概会升高多少呢?这个要视乎增压器的工作情况而定,转速越高,增压压力越大,温度上升就越大,一般而言能够上升40-60度左右,加上空气本来的温度,增压后的气体已经很烫了。
高温气体对发动机的影响主要在两点:一是空气体积大了,相当于发动机吸进的空气又变少了;而第二点更为重要,高温空气对于发动机燃烧特别不利,功率会减少、排放会变坏。
在相同的燃烧条件下,增压空气的温度每上升10℃,发动机功率就会下降大约3%~5%。
这个问题就非常严重了,好不容易增加的功率会被空气温度过高而抵消,为了解决这些问题,我们需要把增压后的空气再度冷却再送进发动机。
而承担这一重任的部件就是中冷器。
中冷器听上去很酷,其实原理和结构跟我们家用冰箱和空调的散热器没什么区别。
副作用:发动机响应速度变慢涡轮迟滞变得严重为什么要中冷器一般来说,中冷器越大,其内部的气流损失越小而且冷却效率也越高,而气流停留在中冷器内部的时间越长,冷却效果就越好。
涡轮增压器的结构、工作原理、常见故障处理方法为了适应发动机“小排量、大功率”的发展趋势,涡轮增压器在汽车上得到了广泛采用。
涡轮增压器对于发动机的直接作用,就是显著提高了发动机的充气效率(超过100%),因此,大大提高了发动机的动力输出。
具体而言,发动机采用涡轮增压器的优点主要体现为:◆可以根据发动机的需要提供增压压力,或减小、不提供增压压力;◆即使在高海拔地区也可以使发动机获得足够的充气效率。
组成如下图所示,涡轮增压器主要由涡轮机和压气机等部分组成。
涡轮机的进气口与发动机排气歧管相连,涡轮机的排气口则接在排气管上;压气机的进气口与空气滤清器相连,压气机的排气口则接在进气歧管上。
图1涡轮增压器的基本组成▲从发动机排气歧管排出的是高温高压的废气,具有一定的能量。
在自然吸气发动机中,这部分能量往往随着废气的排放而白白浪费,而涡轮增压器的动力来源恰恰就是这些废气。
涡轮机涡轮与压气机泵轮通过增压器轴刚性连接,这部分称作增压器转子。
增压器转子通过浮动轴承(转子高速旋转时可保证摩擦阻力矩较小)固定在增压器中。
发动机工作时,排出的废气以一定角度高速冲击涡轮,使增压器转子高速旋转,于是,压气机泵轮以同样的高速挤压进气空气。
受压后的空气温度会升高,影响其密度,因此,在压缩空气通向进气歧管的中间通路上增设了一个空气冷却器(简称中冷器)以冷却增压后的空气,最终使更多、密度更大的空气进入气缸,从而实现进气增压的目的。
为了使涡轮增压器能够更好地发挥其效能,除了涡轮机和压气机两个最主要的组成部件外,涡轮增压器上还设置了其他辅助控制元件▼图2涡轮增压器的辅助元件▲如上图所示,在涡轮增压器涡轮机的出口处设有一个废气旁通阀,废气旁通阀由一个真空执行器在真空的作用下通过杠杆机构驱动其开、关及开关的幅度大小,而真空的施加与否、施加大小则由ECM通过控制一个废气旁通控制电磁阀对真空管路实施控制来实现。
在压气机侧面有一旁通管路,连接其进气口与排气口,在这一旁通管路上设有一个进气旁通阀,由ECM通过对进气旁通电磁阀的控制实现对进气旁通阀开、关的间接控制。
中冷器一般只有在安装了涡轮增压的车才能看到。
因为中冷器实际上是涡轮增压的配套件,其作用在于提高发动机的换气效率。
涡轮增压的发动机为何会比普通发动机拥有更大的动力,其中原因之一就是其换气的效率比一般发动机的自然进气更高。
当空气进入涡轮增压后其温度会大副升高,密度也相应变小,而中冷器正是起到冷却空气的作用,高温空气经过中冷器的冷却,再进入发动机中。
如果缺少中冷器而让增压后的高温空气直接进入发动机,则会因空气温度过高导致发动机损坏甚至死火的现象。
对于增压发动机来说,中冷器是增压系统的重要组成部件。
无论是机械增压发动机还是涡轮增压发动机,都需要在增压器与发动机进气歧管之间安装中冷器。
下面以涡轮增压发动机为例,对中冷器进行简要介绍。
中冷器的作用中冷器的作用是降低发动机的进气温度。
那么为什么要降低进气温度呢?(1)发动机排出的废气的温度非常高,通过增压器的热传导会提高进气的温度。
而且,空气在被压缩的过程中密度会升高,这必然也会导致空气温度的升高,从而影响发动机的充气效率。
如果想要进一步提高充气效率,就要降低进气温度。
有数据表明,在相同的空燃比条件下,增压空气的温度每下降10℃,发动机功率就能提高3%~5%。
(2)如果未经冷却的增压空气进入燃烧室,除了会影响发动机的充气效率外,还很容易导致发动机燃烧温度过高,造成爆震等故障,而且会增加发动机废气中的NOx的含量,造成空气污染。
为了解决增压后的空气升温造成的不利影响,因此需要加装中冷器来降低进气温度。
中冷器的分类中冷器一般由铝合金材料制成。
按照冷却介质的不同,常见的中冷器可以分为风冷式和水冷式2种。
中冷器的维护方法空一空冷却的中冷器与水箱散热器装在一起,安装在发动机前方,靠吸风风扇和汽车行驶的通面风进行冷却,中冷器若冷却不良将导致发动机动力不足、油耗增加,因此,应定期对中冷器进行检查与维护,主要内容是:(1)外部清洁(就车清洗法)由于中冷器安装在最前方,中冷器散热片通道常被树叶、油泥(转向油罐内溢出的液压油)等堵塞,使中冷器散热受阻,因此应定期对该处清洗。
中冷器基本知识-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII中冷器基本知识中冷器的安装目的,主要是为降低进气温度,或许读者会问:为何需要降低进气温度?这就得提到涡轮增压的原理。
涡轮增压的工作原理,简单说是利用引擎排废气来冲击排气叶片,然后带动另一侧进气叶片,强制压缩空气并送往燃烧室中,由于排废气的温度通常都高达8、9百度,连带使涡轮本体同样处于极高温的状态,如此便会提高流过进气涡轮端空气的温度,加上压缩过的空气同样也会产生热度(因为压缩过的空气分子距离变小,会相互挤压、磨擦产生热能现象),如果这股高温气体未经冷却就进入汽缸中,很容易导致引擎燃烧温度过高,接着就会使汽油预燃发生爆震,让引擎温度更加上升,同时压缩空气的体积也会因热膨胀而大幅降低含氧量,如此一来便会降低增压效益,自然无法产生该有的动力输出。
另外,高温也是引擎的隐形杀手,若不设法降低运转温度,一旦遇到天气较热的环境,或是长时间操驾的情况下,很容易增加引擎故障机率,因此才需加装中冷器来降低进气温度。
知道中冷器的功能后,接着我们来探讨它的构造及散热原理为何。
中冷器主要是由两个部分所组成。
第一部分名称为Tube,其功能在于提供一个通道,容纳压缩空气使之流过,因此Tube必须是密闭空间,如此压缩空气才不至于发生泄漏压力的问题,且Tube的外形还分成四方形、椭圆形与长锥形三种,其差别在于风阻与冷却效率间的取舍。
第二部分名称为Fin,也就是俗称的鳍片,通常位于上下两层Tube间,并紧密的与Tube相粘在一起,其功能在于散热,因为当压缩热空气流经Tube时,会将热量经由Tube的外壁传达到鳍片上,此时若有外界温度较低的空气流经鳍片时,就能顺便将热量带走,达到冷却进气温度的目的。
经由上述两部分不断重叠一起,直到10~20层的结构物,则称为Core,这部分就是所谓的中冷器主体。
另外,为了使来自涡轮的压缩气体在进入Core前,能有缓冲及蓄压的空间,及出Core后能提升空气流速,通常都会在Core两侧,再装上名为Tank的零件,其外型像漏斗状一般,其上还会设置圆形进出口,以方便连接硅胶管,而中冷器就是经由上述四个部分所组成。
发动机中冷器旁通方式
发动机中冷器旁通方式是指在发动机工作时,通过控制冷却系统的流动路径,使冷却液能够绕过冷却器直接进入发动机,以提高发动机的工作效率和性能。
下面将介绍几种常见的发动机中冷器旁通方式。
1. 完全旁通方式:
完全旁通方式是指冷却液在发动机工作时完全绕过冷却器,直接进入发动机内部。
这种方式适用于发动机工作温度较低的情况,可以减少冷却器对冷却液的阻力,提高冷却效果。
但是在高温工况下,完全旁通方式可能会导致发动机过热,影响发动机的寿命和性能。
2. 部分旁通方式:
部分旁通方式是指冷却液在发动机工作时一部分绕过冷却器,一部分经过冷却器进行冷却。
这种方式可以在保证发动机冷却的同时,减少冷却器对冷却液的阻力,提高发动机的工作效率。
部分旁通方式一般通过调节冷却系统中的阀门或控制器来实现,可以根据不同工况下的需要进行调整。
3. 定时旁通方式:
定时旁通方式是指在发动机工作的不同阶段,冷却液通过冷却器和发动机内部的流动路径进行切换。
这种方式可以根据发动机的工作要求,灵活调整冷却系统的流动路径,以达到最佳的冷却效果。
定
时旁通方式一般通过控制系统中的定时器或传感器来实现,可以根据发动机的工作状态和温度进行自动调节。
4. 可调旁通方式:
可调旁通方式是指冷却液的流动路径可以根据需要进行调节和控制。
这种方式可以根据发动机的工作条件和温度变化,自动调整冷却系统的流动路径,以达到最佳的冷却效果。
可调旁通方式一般通过控制系统中的可调阀门或执行器来实现,可以根据发动机的工作状态和要求进行精确控制。
以上是几种常见的发动机中冷器旁通方式,每种方式都有其适用的工况和优缺点。
在实际应用中,需要根据发动机的具体要求和工作条件,选择合适的冷却系统旁通方式,以提高发动机的工作效率和性能。
同时,合理的冷却系统设计和调节也是保证发动机正常运行和延长寿命的重要因素之一。