5.3.2 命题、定理、证明(2)
- 格式:ppt
- 大小:349.50 KB
- 文档页数:4
5.3.2 命题、定理、证明一、教学目标1.了解“证明”的必要性和推理过程中要步步有据.2.了解综合法证明的格式和步骤.3.通过一些简单命题的证明,初步训练学生的逻辑推理能力.4.通过证明步骤中由命题画出图形,写出已知、求证的过程,继续训练学生由几何语句正确画出几何图形的能力.5.通过举例判定一个命题是假命题,使学生学会反面思考问题的方法.二、学法引导1.教师教法:尝试指导,引导发现与讨论相结合.2.学生学法:在教师的指导下,积极思维,主动发现.三、重点·难点及解决办法(-)重点证明的步骤和格式是本节重点.(二)难点理解命题,分清其题设和结论,正确对照命题画出图形,写出已知、求证.(三)解决办法通过学生分组讨论,教师归纳得出证明的步骤和格式,再以练习加以巩固,解决重点、难点及疑点.四、课时安排l课时五、教具学具准备投影仪、三角板、自制胶片.六、师生互动活动设计1.通过引例创设情境,点题,引入新课.2.通过情境教学,学生分组讨论,归纳总结及练习巩固等手段完成新授.3.通过提问的形式完成小结.七、教学步骤(-)明确目标使学生严密推理过程,掌握推理格式,提高推理能力。
(二)整体感知以情境设计,引出课题,引导讨论,例题示范讲解新知,以练习巩固新知.(三)教学过程创设情境,引出课题师:上节课我们学习了定理与证明,了解了这两个概念.并以证明“两直线平行,内错角相等”来说明什么是证明.我们再看这一命题的证明(投影出示).例1 已知:如图1,,是截线,求证:.证明:∵(已知),∴(两直线平行,同位角相等).∵(对项角相等),∴(等量代换).这节课我们分析这一命题的证明过程,学习命题证明的步骤和格式.[板书]2.9 定理与证明探究新知1.命题证明步骤学生活动:由学生分组讨论以上命题的证明过程,按自己的理解说出证明一个命题都需要哪几步.【教法说明】根据上一节“两直线平行,内错角相等”这一命题的证明过程让学生讨论、分析、归纳命题证明的一般步骤,一是可以加深对命题证明的理解,二是培养学生归纳总结能力。
5。
3。
2 命题、定理、证明【知识与技能】1。
知道什么叫做命题,什么叫真命题,什么叫做假命题,什么叫定理。
2。
理解命题由题设和结论两部分组成,能将命题写成“如果……那么……"的形式或“若……则……”的形式。
【过程与方法】通过对若干个命题的分析,了解什么叫命题以及命题的组成,知道什么叫做真命题,什么做假命题,什么叫做定理。
【情感态度】通过本节的学习使同学们明白命题在数学上的重要作用,不仅如此,命题在其它许多学科都有重要作用.【教学重点】命题的定义,命题的组成.【教学难点】命题的判断,真假命题的判断,命题的题设和结论的区分.一、情境导入,初步认识问题1 分析下列判断事情的语句,指出它们的题设和结论.(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行.(2)两条平行线被第三条直线所截,同旁内角互补。
(3)对顶角相等。
(4)等式两边加同一个数,结果仍是等式。
问题2 判断下列语句,是不是命题,如果是命题,是真命题,还是假命题.(1)画线段AB=5cm.(2)两条直线相交,有几个交点?(3)如果直线a∥b,b∥c,那么a∥c.(4)直角都相等。
(5)相等的角是对顶角。
【教学说明】全班同学合作交流,即先分组完成上面的两个问题,然后交流成果,最后得出正确的答案。
二、思考探究,获取新知思考 1.真命题与定理有什么样的关系。
2.对题设和结论不明显的命题,怎样找出它们的题设和结论.【归纳结论】1.命题:判断一件事情的语句,叫做命题.2。
命题由题设和结论两部分组成3.真命题与假命题:正确的命题叫真命题,错误的命题叫假命题。
4。
定理是经过推理证实的真命题,是在今后推理中经常作为依据的一种真命题。
但不是所有经过推理证实的真命题都把它当作定理。
对于题设和结论不明显的命题,应先将它改写成“如果……那么……”的形式或“若……则……”的形式.一般来说,如果前面的部分是题设,那么后面的部分是结论.将这种命题改写成“如果……那么……”的形式时,那么后面的部分一定要简单明了。
人教版七年下册第五章5.3.2《命题,定理,证明》精选综合题高频考点(含答案)-1学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列命题中,真命题是( )A .相等的角是对顶角B .两条直线被第三条直线所截,同位角相等C .在同一平面内,垂直于同一条直线的两条直线平行D .同旁内角互补2.下列命题中,是假命题的是( )A .过直线外一点,有且只有一条直线与已知直线平行;B .一个三角形中至少有两个锐角;C .两直线平行,同位角相等;D .相等的角是对顶角3.下列命题是真命题的是( )A .π是单项式B .三角形的一个外角大于任何一个内角C .两点之间,直线最短D .同位角相等 4.下列命题中,真命题的是( )A .同旁内角互补;B .平行于同一条直线的两条直线平行;C .三角形的一个外角等于它的两个内角之和;D .若函数()231m y m x -=+是正比例函数,且图象在第二、四象限,则2m =. 5.下列选项中,可以用来证明命题“若a 2>b 2,则a >b “是假命题的反例是( ) A .a =﹣2,b =1 B .a =3,b =﹣2 C .a =0,b =1 D .a =2,b =1 6.对假命题“任何一个角的补角都不小于这个角”举反例,正确的反例是( ) A .∠α=60°,∠α的补角∠β=120°,∠β>∠αB .∠α=90°,∠α的补角∠β=90°,∠β=∠αC .∠α=100°,∠α的补角∠β=80°,∠β<∠αD .两个角互为邻补角7.命题:①一个三角形中至少有两个锐角;②垂直于同一条直线的两条直线垂直;③如果两个有理数的积小于0,那么这两个数的和也小于0.其中为真命题的有( )A .0个B .1个C .2个D .3个8.反证法证明命题:“在△ABC 中,若∠B ≠∠C ,则AB ≠AC ”应先假设A .AB=ACB .∠B =∠C C .AB >ACD .AB <AC 9.下列命题是真命题的是( )A .两直线被第三条直线所截,同位角相等B .有一个角是60°的三角形是等边三角形C .三个角分别相等的两个三角形全等D .到角两边距离相等的点在角平分线上 10.用反证法证明“在一个三角形中,至少有一个内角小于或等于60°”时应假设( ) A .三角形中有一个内角小于或等于60° B .三角形中有两个内角小于或等于60° C .三角形中有三个内角小于或等于60° D .三角形中没有一个内角小于或等于60° 11.判断命题“如果n <1,那么n 2﹣1<0”是假命题,只需举出一个反例.反例中的n 可以为( )A .﹣2B .﹣12C .0D .1212.下列选项中,可以用来证明命题“若2a 4>,则a 2>”是假命题的反例是( ) A .a 3=- B .a 2=- C .a 2= D .a 3=13.下列语句不是命题的是( )A .连结ABB .对顶角相等C .相等的角是对顶角D .同角的余角相等 14.下列命题正确的是( )A .菱形的对角线相等B .矩形的对角线互相垂直C .平行四边形的对角线相等且互相平分D .正方形的对角线相等且互相垂直平分 15.下列说法中,正确的是( )A .所有的命题都有逆命题B .所有的定理都有逆定理C .真命题的逆命题一定是真命题D .假命题的逆命题一定是假命题 16.用反证法证明:“直角三角形至少有一个锐角不小于45°”时,应先假设( ) A .直角三角形的每个锐角都小于45°B .直角三角形有一个锐角大于45°C .直角三角形的每个锐角都大于45°D .直角三角形有一个锐角小于45°17.17.下列判断正确的个数是( )①锐角的补角一定是钝角;②一个角的补角一定大于这个角;③锐角和钝角互补; ④如果两个角是同一个角的补角,那么它们相等.A .1个B .2个C .3个D .4个18.下列命题是真命题的是( )A .如果|a |=|b |,那么a =bB .平行四边形对角线相等C .两直线平行,同旁内角互补D .如果a >b ,那么a 2>b 219.下列命题中,正确的是( )A .三角形的一个外角大于任何一个内角B .两边和其中一边的对角分别相等的两个三角形全等C .三角形的一条中线将三角形分成两个面积相等的三角形D .三角形的三条高都在三角形内部20.下列命题中,是假命题的是:( )A .对顶角相等B .同位角相等C .两点确定一条直线D .角平分线上的点到这个角的两边的距离相等二、填空题21.相等的角是直角的逆命题是______.22.命题:“如果a b =,那么a b =”的逆命题为______,逆命题是______(填“真”或“假”)命题.23.电脑系统中有个“扫雷”游戏,要求游戏者标出所有的雷,游戏规则:一个广场下面最多埋一个雷,如果无雷,掀开方块下面就标有数字,提醒游戏者此数字周围的广场(最多八个)中雷的个数(实际游戏中,0通常省略不标,为方便大家识别与印刷,我把图乙中的0都标出来了,以示与未掀开者的区别),如图甲中的“3”表示它的周围八个广块中仅有3个埋有雷.图乙是张三玩游戏中的局部,图中有4个方块已确定是雷(方块上标有旗子),则图乙第一行从左数起的七个方块中(方块上标有字母),能够确定一定不是雷的有________,一定是雷的有________.(请填入方块上的字母)24.把命题“三个内角都相等的三角形是等边三角形”改写成“如果…,那么…”的形式为_____________________________________________________.25.命题“若(1)0x x -=,则0x =”是_____命题(填“真”、假),证明时可举出的反例是______________.26.命题“如果ab =0,那么a =0”是______命题(填“真”或“假”)27.命题“等角的余角相等”的逆命题是:___________.28.用反证法证明“内错角相等,两直线平行”时,首先要假设_____.29.通过观察、猜测得到的结论一定正确吗?______.要判断一件事情或一个结论正确与否,必须进行有根有据地______.30.将命题“等边对等角”改写成“如果......那么......”的形式___________31.用反证法证明“三角形的三个内角中至少有一个角不小于60度”,第一步应假设_____________________.32.下列语句:①今天上午第几节课是数学课?②取线段AB 的中点.③如果a b >,那么33a b >.④这两条直线平行吗?⑤凡是直角都相等.其中______是命题.(填序号)33.(1)命题“如果一个数的绝对值等于它本身,那么这个数是非负数”的条件是______,结论是______;(2)命题“在同一平面内,如果a b ⊥r r,a c ⊥,b 、c 不重合,那么b c ∥”,这个命题的条件是______,结论是______,这个命题是______命题;(3)命题“同角的补角相等”是______命题,这个命题可以改写为:如果______,那么______.34.如图,已知∠1和∠2互为补角,∠A=∠D .求证:AB ∥CD .证明:∵∠1与∠CGD 是对顶角,∴∠1=∠CGD (______).又∠1和∠2互为补角(已知),∴∠CGD 和∠2互为补角,∴AE ∥FD (_________),∴∠A=∠BFD (_______).∵∠A=∠D(已知),∴∠BFD=∠D (_______),AB ∥CD (______).35.用反证法证明“若2a <,则24a <”时,应假设_____.36.命题“全等三角形的对应边都相等”的逆命题是___命题.(填“真”或“假”)37.对顶角相等,这个命题的题设是:___________________;结论是:________________. 38.“邻补角的角的平分线互相垂直”的逆命题是:_____,它是_____命题.39.命题“如果a≠b ,则a ,b 的绝对值一定不相等”是_____命题.(填“真”或“假”) 40.根据下图和命题“等腰三角形底边上的中线是顶角的角平分线”写出:已知:_______________________________求证:_______________ .三、解答题41.当1n =、2、3、4时,()()222121n n +--的值有什么特征?当n 是任意整数时,这个结论成立吗?用一句话概括这个结论.42.甲、乙、丙三名同学中有一名做了一件好事,李老师问他们:“谁做了好事?”他们调皮地说了下面的几句话:甲说:“我没有做这件事,乙也没有做这件事.”乙说:“我没有做这件事,丙也没有做这件事.”丙说:“我没有做这件事,也不知谁做的这件事.”当李老师追问时,他们承认上面每人讲的话中都有一句真话,一句假话.根据这些条件,你能分析出到底是谁做了好事吗?43.如图所示,通过画图可知:三角形三条边的垂直平分线的交点都在三角形的内部,于是可得出结论:任何一个三角形三条边的垂直平分线的交点都在三角形的内部,这个结论正确吗?44.把下列命题改写成“如果……那么……”的形式,并指出命题的条件是什么?结论是什么?(1)对角线互相垂直平分且相等的四边形是正方形;(2)对顶角相等.45.下列命题的条件是什么?结论是什么?并指出真假.(1)两条直线相交,只有一个交点;(2)相等的角是对顶角;(3)直角三角形的两个锐角互余.46.把下列命题改写成“如果…那么…”的形式:(1)同旁内角互补,两直线平行;(2)末位数字是0的数,一定能被5整除;(3)直角都相等;(4)同角的余角相等.47.指出下列命题中的条件和结论:(l )任意两个奇数之和是偶数;(2)互余的两个角不一定相等;(3)如果a b >,那么0ab >;(4)如果一条直线和两条平行线中的一条垂直,那么这条直线也和另一条直线垂直. 48.如图,在△ABC 中,∠B ≠∠C .求证:AB ≠AC .49.把下列命题改写成“如果……那么……”的形式,并判断其真假.(1)60°角的余角是30°;(2)等边三角形是轴对称图形;(3)点(1,2)在函数1y x =-的图象上;(4)垂线段最短.50.命题:角平分线上的点到角两边的距离相等,是真命题,还是假命题?如果是真命题,请证明;如果是假命题,请举一反例.参考答案1.C2.D3.A4.B5.A6.C7.B8.A9.D10.D11.A12.A13.A14.D15.A16.A17.B18.C19.C20.B21.直角都相等22.如果a b =,那么a b = 真23.A 、C 、E B 、D 、F 、G.24.如果一个三角形的三个角都相等,那么这个三角形是等边三角形.25.假 x=126.假27.如果两个角的余角相等,那么这两个角相等.28.“内错角相等,两直线不平行”29.不一定 推理证明30.如果一个三角形中有两条边相等,那么这两条边所对的角也相等.31.三角形的三个内角都小于60°32.③⑤33.一个数的绝对值等于它本身 这个数是非负数 在同一平面内,a b ⊥r r,a c ⊥,b 、c 不重合 b c ∥ 真 真 两个角是同一个角的补角 这两个角相等 34.对顶角相等; 同旁内角互补,两直线平行; 两直线平行,同位角相等; 等量代换; 内错角相等,两直线平行.35.24a …36.真37.两个角是对顶角 这两个角相等38.如果两个角的角平分线互相垂直,那么这两个角是邻补角. 假39.假40.已知:△ABC 中,AB=AC ,AD 是BC 边上的中线 求证:AD 平分∠BAC. 41.是8的倍数,当n 是任意整数时这个结论成立,概括为两个连续奇数的平方差是8的倍数.42.乙43.不正确44.(1)详见解析;(2)详见解析45.(1)详见解析;(2)详见解析;(3)详见解析.46.(1)如果两条直线被第三条直线所截得的同旁内角互补,那么这两条直线平行. (2)如果一个数的末位数字为0,那么这个数一定能被5整除.(3)如果一些角是直角,那么这些角都相等.(4)如果两个角是同一个角的余角,那么这两个角相等.47.(1)条件:任意两个奇数相加,结论:和是偶数.(2)条件:任意两个角互余,结论:这两个角不一定相等.(3)条件:a b >,结论:0ab >.(4)条件:一条直线和两条平行线中的一条垂直,结论:这条直线也和另一条直线垂直. 48.见解析49.(1)如果一个角是60°角的余角,那么这个角是30°,是真命题;(2)如果一个图形是本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
人教版七年级数学下册5.3.2《命题、定理、证明》说课稿一. 教材分析《人教版七年级数学下册5.3.2<命题、定理、证明>》这一节主要让学生了解命题、定理和证明的概念。
通过学习,学生能理解命题的含义,区分定理和证明,并学会运用证明的方法来解决数学问题。
教材通过丰富的实例和具有启发性的问题,引导学生主动探索、发现和证明数学结论,培养学生的逻辑思维能力和数学素养。
二. 学情分析学生在学习这一节内容时,已经有了一定的数学基础,例如了解四则运算、几何图形的性质等。
但部分学生可能对抽象的逻辑推理和证明过程感到困难,对定理和证明的概念理解不深。
因此,在教学过程中,要关注学生的个体差异,引导他们通过观察、思考、讨论和动手操作等方式,逐步理解和掌握知识。
三. 说教学目标1.知识与技能:使学生了解命题、定理和证明的概念,学会运用证明的方法来解决数学问题。
2.过程与方法:通过观察、思考、讨论和动手操作等方式,培养学生的逻辑思维能力和数学素养。
3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于探索、坚持真理的精神。
四. 说教学重难点1.重点:命题、定理和证明的概念,证明的方法。
2.难点:对命题、定理和证明的理解,证明方法的运用。
五. 说教学方法与手段1.采用问题驱动的教学方法,引导学生主动探索、发现和证明数学结论。
2.运用多媒体课件、实物模型等教学手段,辅助学生直观地理解概念和证明过程。
3.小组讨论,让学生在合作交流中提高逻辑思维能力。
4.注重实践操作,让学生动手动脑,增强对知识的理解和运用能力。
六. 说教学过程1.导入:通过一个有趣的数学故事,引发学生对命题、定理和证明的好奇心,激发他们的学习兴趣。
2.新课导入:介绍命题、定理和证明的概念,引导学生理解它们之间的关系。
3.实例讲解:分析具体的数学问题,讲解证明的方法,让学生学会如何运用证明来解决实际问题。
4.小组讨论:学生进行小组讨论,让他们分享自己的理解和方法,互相学习和借鉴。
5.3.2 命题、定理、证明(第2课时) 教学目标一、基本目标【知识与技能】1.理解命题的概念,能区分命题的题设和结论,并把命题写成“如果……那么……”的形式.2.了解真命题和假命题的概念,能判断一个命题的真假性,并会对假命题举反例.【过程与方法】通过证明步骤中由命题画出图形,写出已知、求证的过程,继续训练学生由几何语言正确画出几何图形的能力.【情感态度与价值观】初步培养学生用几何语言叙述的能力.二、重难点目标【教学重点】命题的概念和区分命题的题设与结论.【教学难点】区分命题的题设和结论.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P20~P22的内容,完成下面练习.【3 min反馈】(一)命题1.判断一件事情的语句叫做命题.命题由题设和结论两部分组成.2.如果题设成立,那么结论一定成立,这样的命题叫做真命题.题设成立,不能保证结论一定成立,这样的命题叫做假命题.(二)定理与证明3.经过推理证实的真命题叫做定理.在很多情况下,一个命题的正确性需要经过推理才能作出判断,这个推理过程叫做证明.判断一个命题是假命题,只要举出一个反例,它符合命题的题设,但不满足结论就可以了.4.证明命题的步骤:(1)画出命题的图形.先根据命题的题设即已知条件,画出图形,再把命题的结论即求证的内容在图上标出.还要根据证明的需要,在图上标出必要的字母或符号,以便于叙述或推理过程的表达.(2)结合图形写出已知、求证.把命题的题设化为几何符号的语言写在已知中,命题的结论转化为几何符号的语言写在求证中.(3)经过分析,找出由已知推得求证的途径,写出推理的过程.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】把下列命题写成“如果……那么……”的形式.(1)内错角相等,两直线平行;(2)等角的余角相等.【互动探索】(引发学生思考)这两个命题的题设和结论分别是什么?改写时,应注意什么问题。
【解答】(1)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.(2)如果两个角是相等的角,那么它们的余角相等.【互动总结】(学生总结,老师点评)把命题写成“如果……那么……”的形式时,应添加适当的词语,使语句通顺.【例2】证明命题“三角形的三内角和为180°”是真命题.【互动探索】(引发学生思考)证明命题是真命题的步骤是什么?【解答】已知:∠A、∠B、∠ACB为△ABC的三个内角.求证:∠A+∠B+∠ACB=180°.证明:作射线BD,过点C作CE∥BA,如图.∵CE∥BA,∴∠1=∠A,∠2=∠B.∵∠ACB+∠1+∠2=180°,∴∠A+∠B+∠ACB=180°.∴命题“三角形的三内角和为180°”是真命题.【互动总结】(学生总结,老师点评)添加辅助线,将三角形的内角和进行转化是证明的关键.活动2巩固练习(学生独学)1.下列语句中,不是命题的是(D)A.两点之间线段最短B.对顶角相等C.不是对顶角不相等D.过直线AB外一点P作直线AB的垂线2.下列命题中,是真命题的是(D)A.若a·b>0,则a>0,b>0B.若a·b<0,则a<0,b<0C.若a·b=0,则a=0且b=0D.若a·b=0,则a=0或b=03.举反例说明下列命题是假命题.(1)若两个角不是对顶角,则这两个角不相等;(2)若ab=0,则a+b=0.解:(1)两条平行直线被第三条直线所截形成的内错角,这两个角不是对顶角,但是它们相等.(2)当a=5,b=0时,ab=0,但a+b≠0.4.命题“若n是自然数,则代数式(3n+1)(3n+2)的值是3的倍数”.(1)写出命题的题设和结论;(2)是真命题还是假命题?并说明理由.解:(1)命题的题设是n是自然数,结论是代数式(3n+1)(3n+2)的值是3的倍数.(2)是假命题.理由:∵(3n+1)(3n+2)=9n2+6n+3n+2=9n2+9n+3-1=3(3n2+3n+1)-1,又n为自然数,∴3(3n2+3n+1)-1不为3的倍数.∴是假命题.活动3拓展延伸(学生对学)【例3】求证:两条直线平行,一组内错角的平分线互相平行.【互动探索】按证明与图形有关的命题的一般步骤进行.要证明两条直线平行,可根据平行线的判定方法来证明.【解答】已知:如图,已知AB ∥CD ,直线AB 、CD 被直线MN 所截,交点分别为P 、Q ,PG 平分∠BPQ ,QH 平分∠CQP .求证:PG ∥HQ.证明:∵AB ∥CD ,∴∠BPQ =∠CQP (两直线平行,内错角相等).∵PG 平分∠BPQ ,QH 平分∠CQP ,∴∠GPQ =12∠BPQ ,∠HQP =12∠CQP , ∴∠GPQ =∠HQP ,∴PG ∥HQ (内错角相等,两直线平行).【互动总结】(学生总结,老师点评)证明与图形有关的命题时,正确分清命题的题设和结论是证明的关键.应先结合题意画出图形,再根据图形写出已知与求证,然后进行证明.环节3 课堂小结,当堂达标(学生总结,老师点评)命题⎩⎪⎨⎪⎧ 概念结构真、假命题证明与举反例练习设计请完成本课时对应练习!。
2019年春人教版数学七年级下册课堂练习班级姓名第五章相交线与平行线5.3.2命题、定理、证明1.下列命题是真命题的是()A.过直线外一点可以画无数条直线与已知直线平行B.如果甲看乙的方向是北偏东60°,那么乙看甲的方向是南偏西30°C.3条直线交于一点,对顶角最多有6对D.与同一条直线相交的两条直线相交2.如图5-3-17,直线a,b被直线c所截,下列说法正确的是()图5-3-17A.当∠1=∠2时,一定有a∥bB.当a∥b时,一定有∠1=∠2C.当a∥b时,一定有∠1+∠2=90°D.当∠1+∠2=180°时,一定有a∥b3.判断下列语句是不是命题,如果是命题,将其改写成“如果……那么……”的形式.(1)连接AB;(2)过直线外一点作已知直线的垂线;(3)对顶角相等;(4)等量可以代换;(5)圆的周长是2πr.4.[2018·徐州期末]填空并完成以下证明:如图5-3-18,∠1=∠ACB,∠2=∠3,FH⊥AB于H,求证:AB⊥AB.图5-3-18证明:∵FH⊥AB(已知),∴∠BHF=________.∵∠1=∠ACB(已知),∴DE∥BC,(___________________)∴∠2=____________.(_____________________________)∵∠2=∠3(已知),∴∠3=__________,(______________)∴AB∥FH(________________)∴∠BDC=∠BHF=______________°,(_____________________________) ∴AB⊥AB.5.[2018·益阳]如图5-3-19,AB∥AB,∠1=∠2.证明:AM∥CN.图5-3-196.如图5-3-20,∠1+∠2=180°,∠A=∠C,DA平分∠BDF.(1)求证:AE∥CF;图5-3-207.[2017春·宁城期末]有一天李明同学用“几何画板”画图,他先画了两条平行线AB,AB,然后在平行线间画了一点E,连接BE,DE后(如图5321①),他用鼠标左键点住点E,拖动后,分别得到如图5321②,③,④等图形,这时他突然一想,∠B,∠D与∠BED之间的度数有没有某种联系呢?接着李明同学通过利用“几何画板”的“度量角度”和“计算”功能,找到了这三个角之间的关系.(1)你能探究出图①到图④各图中的∠B,∠D与∠BED之间的关系吗?(2)请从所得的四个关系中,选一个说明它成立的理由.,①②③④图5-3-21参考答案【分层作业】1.C2.D3. 解:(1)(2)不是命题.(3)是命题;如果两个角是对顶角,那么它们的大小相等.(4)是命题;如果两个量相等,那么这两个量可以互相代换.(5)是命题;如果一个图形是以r为半径的圆,那么它的周长是2πr. 4.90°同位角相等,两直线平行∠BAB两直线平行,内错角相等∠BAB 等量代换同位角相等,两直线平行90 两直线平行,同位角相等5.证明:∵AB∥AB,∴∠EAB=∠AAB.∵∠1=∠2,∴∠EAB-∠1=∠AAB-∠2,即∠EAM=∠ACN,∴AM∥CN.6.(1)证明:∵∠1+∠2=180°,∠2+∠ABB=180°,∴∠ABB=∠1,∴AE∥CF.(2)解:BC平分∠DBE.理由:∵DA平分∠BDF,∴∠FDA=∠ADB.∵AE∥CF,∴∠A=∠FDA,∠FDB=∠EBD.∵∠A=∠C,∴∠FDA=∠C,∴AD∥CB,∴∠ADB=∠CBD,∴∠CBE=∠EBD-∠CBD=∠FDB-∠ADB=∠FDA=∠ADB=∠CBD,即BC平分∠DBE.7.解:(1)①∠B+∠D=∠BED;②∠B+∠D+∠BED=360°;③∠B=∠BED+∠D;④∠B=∠D+∠BED.(2)选择①.理由:如答图1,过E作AB∥AB.∵AB∥AB,∴AB∥AB,∴∠B=∠BAB,∠D=∠DAB,∴∠BED=∠BAB+∠DAB=∠B+∠D.选择②.理由:如答图2,过E作AB∥AB.∵AB∥AB,∴AB∥AB,∴∠B+∠BAB=180°,∠D+∠DAB=180°,∴∠B+∠BED+∠D=180°+180°=360°.选择③.理由:如答图3,延长AB交DE于点F.∵AB∥AB,∴∠D=∠BFE.∵∠ABE是△BAB的外角,∴∠ABE=∠BAB+∠BFE=∠BED+∠D.选择④.理由:如答图4,设AB与BE交于点F.∵AB∥AB,∴∠B=∠CFE,∵∠CFE是△DAB的外角,∴∠CFE=∠D+∠E,即∠B=∠D+∠BED.答图1答图2答图3答图4。