-爆破片
五、压力容器的安全附件
安全阀
-按整体结构和加载结构形式:重锤杠杆 式、弹簧式和控制式
-按阀瓣式开启高度与阀流通直径之比: 微启式、全启式
-按气体排放的方式:全封闭式、半封 闭式和敞开式
五、压力容器的安全附件
压缩气体容器安全泄放量WS :
WS=2.83×10-3ρ·υ· d2 安全阀排气量:
压力容器常见的介质腐蚀:
液氨对碳钢及低合金钢容器的应力腐蚀 硫化氢对钢制压力容器的腐蚀 热碱对钢制压力容器的腐蚀 高温高压氢气对钢压力容器的腐蚀 氯离子引起的不锈钢容器应力腐蚀 一氧化碳对钢瓶的腐蚀
四、压力容器的破坏形式和原因分析
蠕变破裂 在高温工作的压力容器,操作温度超过一定极 限,材料在应力的作用下发生缓慢的塑性变形, 这种塑性经过长期的累积后,最终导致材料破裂
-强化阶段(C-D) 抗拉强度极限σb
-缩颈阶段(D-E)
σ
C
σs σe σp
BB1 2
O
D E
σb
ε
四、压力容器的破坏形式和原因分析
破(断)裂
-韧(延)性破裂 -脆性破裂 -疲劳破裂 -腐蚀破裂 -蠕变破裂
四、压力容器的破坏形式和原因分析
韧性破裂
容器在压力作用下,器壁上产生的应力达 到材料的强度极限而发生断裂的破坏形式
特征:
-显著的形状改变和较大的塑性变形 -一般不会产生碎片 -断口不平齐,无金属光泽
四、压力容器的破坏形式和原因分析
破裂原因
液化气体介质充装过量 超温超压运行 选材不当或安装不符合安全要求 维护不当(壁厚减薄)
四、压力容器的破坏形式和原因分析
事故案例
某小化肥厂一加压变换冷却塔,Di=1000mm, t= 8mm, PW=0.8MPa。材料16Mn:σS=345MPa. 因增加3米高一塔节未采取防腐蚀措施,以致介质 将器壁腐蚀,三年后爆裂。经检查最大剩余厚度为 3 mm,最小仅为1 mm。 [断口分析] 韧性破裂 [理论计算] σ=PDi/2t= 0.8(1000+1)/2=400 MPa