2019-2020年初中数学竞赛专题培训第十八讲 归纳与发现
- 格式:doc
- 大小:227.83 KB
- 文档页数:7
数学竞赛知识点总结归纳数学竞赛是广泛开展的一种竞赛性学科竞赛活动,在全国范围内得到了广泛的推广和支持。
数学竞赛知识点涉及范围广泛,内容丰富,包括数论、代数、几何、概率统计等多个方面的知识。
本文将对数学竞赛的一些重要知识点进行总结和归纳,以帮助竞赛选手更好地掌握相关知识,提高竞赛表现。
一、数论1.1 整数的性质整数的性质是数论中的基本知识。
其中包括奇数、偶数、素数、合数等概念。
奇数是指不能被2整除的数,偶数是指可以被2整除的数,素数是指除了1和本身外没有其他因数的数,合数是指除了1和本身外还有其他因数的数。
1.2 除法算法除法算法包括整除算法和余数算法。
整除算法是指对两个整数进行除法运算,结果是一个整数,没有余数。
余数算法是指对两个整数进行除法运算,结果是一个整数和一个余数。
1.3 最大公约数和最小公倍数最大公约数是指两个或多个整数中最大的公约数,最小公倍数是指两个或多个整数中最小的公倍数。
最大公约数和最小公倍数是数论中基本的概念,应用广泛。
1.4 质因数分解任何一个正整数必能由几个素数相乘而得。
这几个素数叫做这个正整数的质因数,并且这几个质因数只有一种顺序。
数学中叫做质因数分解定理。
1.5 同余定理同余定理是数论中的重要定理。
同余定理是指对于任意整数a、b、m,如果a与b对模m同余,那么a与b相减之后得到的差也对模m同余。
1.6 途中数途中数指一个数只有1和它本身两个因素,这个数称为素数。
途中数包括2、3、5、7、11、13等,它们被称为素数。
二、代数2.1 一元二次方程一元二次方程是代数中的重要概念。
一般形式为ax^2+bx+c=0,求解一元二次方程的方法有配方法、因式分解、求和差、公式法等多种。
2.2 因式分解因式分解是指将多项式分解成比较简单的乘积的过程。
因式分解是代数中常见的求解方法。
2.3 多项式的运算多项式包括加法、减法、乘法、除法等运算。
多项式的运算是代数中的基本知识,是解决多项式问题的重要方法。
初中数学竞赛知识点归纳一、数的整除(一)如果整数A除以整数B(B≠0)所得的商A/B是整数,那么叫做A被B整除. 0能被所有非零的整数整除.①抹去个位数②减去原个位数的2倍③其差能被7整除。
如1001100-2=98(能被7整除)又如7007700-14=686,68-12=56(能被7整除)能被11整除的数的特征:①抹去个位数②减去原个位数③其差能被11整除如1001100-1=99(能11整除)又如102851028-5=1023102-3=99(能11整除)二、倍数.约数1 两个整数A和B(B≠0),如果B能整除A(记作B|A),那么A叫做B的倍数,B叫做A的约数。
例如3|15,15是3的倍数,3是15的约数。
2 因为0除以非0的任何数都得0,所以0被非0整数整除。
0是任何非0整数的倍数,非0整数都是0的约数。
如0是7的倍数,7是0的约数。
3 整数A(A≠0)的倍数有无数多个,并且以互为相反数成对出现,0,±A,±2A,……都是A的倍数,例如5的倍数有±5,±10,……。
4 整数A(A≠0)的约数是有限个的,并且也是以互为相反数成对出现的,其中必包括±1和±A。
例如6的约数是±1,±2,±3,±6。
5 通常我们在正整数集合里研究公倍数和公约数,几正整数有最小的公倍数和最犬的公约数。
6 公约数只有1的两个正整数叫做互质数(例如15与28互质)。
7 在有余数的除法中,被除数=除数×商数+余数若用字母表示可记作:A=BQ+R,当A,B,Q,R都是整数且B≠0时,A-R能被B整除例如23=3×7+2则23-2能被3整除。
三、质数.合数1正整数的一种分类:质数的定义:如果一个大于1的正整数,只能被1和它本身整除,那么这个正整数叫做质数(质数也称素数)。
合数的定义:一个正整数除了能被1和本身整除外,还能被其他的正整数整除,这样的正整数叫做合数。
初中数学竞赛专题培训(18):归纳与发现初中数学竞赛专题培训(18):归纳与发现导语:归纳与发现是数学思维中非常重要的一环。
通过整理、总结已有的信息,从中寻找规律,进而发现新的知识和思路。
这种思维方式在数学竞赛中尤为重要,能够帮助学生快速解题,提高解题的准确性。
本文将详细介绍归纳与发现的基本原理、方法和应用。
一、基本原理:归纳与发现是基于已知信息推导出未知规律的一种思维方式。
在数学竞赛中,正确的归纳与发现能够提供高效的解题思路,帮助学生准确地解答复杂问题。
基本原理包括以下几点:1. 归纳:通过总结已有的信息,寻找共同的特点和规律。
2. 反向思维:从一个目标出发,逆向推导出已知条件,发现新的规律。
3. 定义方法:通过定义各种概念和符号,清晰地表达出问题中的关键信息。
二、基本方法:归纳与发现的方法多种多样,最常见的方法包括但不限于以下几种:1. 列数表:将已知信息列成表格的形式,观察不同数值之间的规律。
2. 找规律:观察题目中给出的数列、图形或公式,从中找出各种规律,并进行总结归纳。
3. 推广:通过观察已知规律,将其推广到更一般的情况。
4. 反证法:从与目标相反的假设入手,通过推论完成证明,进一步揭示问题的本质。
5. 螺旋法:通过逐步细化问题,反复迭代,从不同的角度去观察和解决问题。
三、案例分析:下面通过实例来介绍归纳与发现的应用。
【案例1】:数列问题问题:已知数列4, 9, 14, 19, 24, ...。
通过观察和归纳,找出数列的通项公式。
解法:首先,我们可以通过计算每两个数之间的差值来观察数列的规律:9 - 4 = 5, 14 - 9 = 5, 19 - 14 = 5, ... 可以发现,数列中的两个数之间的差值都是5。
因此,可以推测数列的通项公式为5n,其中n为数列的项数。
【案例2】:图形问题问题:下图是由等边三角形组成的图形,如果给定图形的边数n,那么由多少个小三角形组成?解法:通过观察,我们可以发现当n=1时,由1个小三角形组成;当n=2时,由4个小三角形组成;当n=3时,由7个小三角形组成;当n=4时,由10个小三角形组成。
初中数学竞赛知识点归纳数学竞赛是通过解决数学问题来提高学生的数学思维能力和解决实际问题的能力。
为此,初中数学竞赛中常出现一些定理和相关的知识点,掌握这些定理和知识点对于竞赛题目的解答起着至关重要的作用。
接下来,我将对初中数学竞赛中常出现的一些定理和知识点进行归纳总结。
一、方程和函数1.一元一次方程的性质和解法:整数的正负、绝对值、乘法分配律等。
2.一元二次方程的基本概念和解法:判别式、解的个数和求解方法。
3.二元一次方程组及其解法:代入法、消元法等。
4.实际问题的数学建模和解法:将实际问题转化为方程或方程组,并求解。
二、几何1.线段、角和相交线的性质:端点、中点、角、垂直、平行等性质。
2.平面图形的性质:正方形、长方形、菱形、平行四边形、圆等的性质和计算。
3.三角形的性质和面积计算:三条边的关系、重心、垂心、外心、内切圆、外接圆等。
4.相似三角形的性质和计算:比例关系、角度对应相等等性质。
5.圆的性质和计算:圆周率、弦长、弧长、面积等的计算。
三、函数1.一次函数和二次函数的性质和图像:函数的定义域、值域、递增递减性、奇偶性等。
2.函数的复合运算和反函数:函数的复合、反函数的定义与性质。
3.二次函数的最值和二次函数方程的求解:二次函数的最值、二次函数方程的图像与解的关系。
四、概率与统计1.概率的基本概念和计算:事件、样本空间、可能性等的计算。
2.排列和组合的计算:阶乘、排列、组合的计算和应用。
3.统计图表的分析与应用:条形图、折线图、饼图的分析和应用。
4.基本统计量的计算:平均数、中位数、众数、方差等的计算。
五、数列与通项公式1.等差数列和等比数列的基本概念和计算:前n项和、通项公式等的计算。
2.斐波那契数列和变形问题:斐波那契数列的计算和变形问题的解决方法。
六、函数方程1.定义域和值域:给定函数的定义域和值域的计算。
2.函数关系式的推导:已知函数关系式,推导出其他函数关系式。
3.函数方程的解法:给出函数方程,求解函数的表达式。
的方法是事物内在系和律性的一种重要思虑方法,也是数学中命与解思路的一种重要手段.里的指的是常用的,也就是在求解数学,第一从的特别状况的察下手,获得一些局部的果,而后以些作基,剖析归纳些的共同特点,进而解的一般门路或新的命的思虑方法.下边几个例,以一般.例 1 如 2-99 ,有一个六形点,它的中心是一个点,算作第一;第二每有两个点 ( 相两公用一个点) ;第三每有三个点,⋯个六形点共有n ,第n有多少个点?个点共有多少个点?剖析与解我来察点中各点数的律,而后出点共有的点数.2019-2020 年初中数学培第十八与所以,个点的第n 有点 (n-1) × 6 个. n 共有点数例 2 在平面上有同一点 P,而且半径相等的 n 个,此中任何两个都有两个交点,任何三个除P 点外无其余公共点,那么:(1)n 个把平面区分红多少个平面地区?(2)n 个共有多少个交点?剖析与解 (1)在2-100中,以P 点公共点的有1, 2, 3, 4, 5 个 ( 取 n 个特定的 ) ,察平面被它所切割成的平面地区有多少个?此,我列出表18. 1.由表 18. 1 易知S2-S 1=2,S3-S 2= 3,S4-S 3= 4,S5-S 4= 5,⋯⋯由此,不推S n-S n-1= n.把上边 (n-1) 个等式左、右两分相加,就获得S n-S 1= 2+3+ 4+⋯+ n,因 S1=2,所以下边 S n -S n-1 =n,即 S n=S n-1+ n 的正确性略作明.因 S n-1n-1 个把平面区分的地区数,当再加上一个,即当n 个定点P ,个加上去的必与前n-1 个订交,所以个就被前n-1 个分红n 部分,加在 S n-1上,所以有 S n=S n-1+ n.(2) 与(1) 一,同用察、、的方法来解决.此,可列出表18. 2.由表 18. 2 简单a1= 1,a2-a 1= 1,a3-a 2= 2,a4-a 3= 3,a5-a 4= 4,⋯⋯a n-1 -a n-2=n-2 ,a n-a n-1= n-1 .n个式子相加注意者明a n=a n-1+ (n-1) 的正确性.例 3a, b,c 表示三角形三的,它都是自然数,此中a≤ b≤ c,假如 b=n(n 是自然数 ) ,的三角形有多少个?剖析与解我先来研究一些特别状况:(1)b=n=1, b=1,因 a≤ b≤ c,所以 a=1,c 可取 1, 2,3,⋯.若 c=1,得到一个三都 1 的等三角形;若c≥ 2,因为 a+ b=2,那么 a+ b 不大于第三c,不行能由a, b, c 组成三角形,可,当b=n=1 ,足条件的三角形只有一个.(2)b=n=2,似地能够列各样状况如表18. 3.足条件的三角形数:1+2=3.(3)b=n=3,似地可得表 18. 4.足条件的三角形数:1+ 2+ 3=6.通上边些特例不,当b=n ,足条件的三角形数:个猜想是正确的.因当 b=n , a 可取 n 个 (1 , 2,3,⋯, n) ,于 a 的每个,不如 a=k(1 ≤k≤n) .因为 b≤ c< a+ b,即 n≤ c< n+ k,所以 c 可能取的恰巧有 k 个(n , n+ 1, n+ 2,⋯, n+k-1) .所以,当 b=n ,足条件的三角形数:例 4 1× 2×3×⋯× n 写 n!( 称作 n 的乘 ) ,化: 1!× 1+ 2!× 2+3!× 3+⋯+ n!× n.剖析与解先察特别状况:(1)当 n=1 ,原式 =1=(1 + 1) ! -1 ;(2)当 n=2 ,原式 =5=(2 + 1) ! -1 ;(3)当 n=3 ,原式 =23=(3 + 1) !-1 ;(4)当 n=4 ,原式 =119=(4 + 1) ! -1 .由此做出一般猜想:原式 =(n+1) ! -1.下边我明个猜想的正确性.1+原式 =1+(1 !× 1+ 2!× 2+ 3!× 3+⋯ +n!× n)=1!× 2+ 2!× 2+ 3!× 3+⋯ +n!× n=2! +2!× 2+3!× 3+⋯ +n!× n=2!× 3+3!× 3+⋯+ n!× n=3! +3!× 3+⋯ +n!× n=⋯=n! +n!× n=(n + 1) !,所以原式=(n+1)! -1.例5x> 0,比代数式x3和x2+x+2 的的大小.剖析与解本直接察,不好做出猜想,所以可中做比,或能启我解思路.此,x 等于某些特别,代入两式x=0,然有x3<x2+x+2.①x=10,有32x =1000,x +x+ 2=112,所以x3>x2+x+2.②x=100,有x3> x2+x+2.察、比①,②两式的条件和,能够:当x 小,x3< x2+x+2;当x 大,x3>x2+x+2.那么自然会想到:当x=?,x3=x2+x+2 呢?假如个方程得解,它很可能就是本得解的“ 界点”.此,x3=x 2+ x+ 2,x3-x 2 -x-2 = 0,(x 3-x 2-2x) + (x-2)=0 ,(x-2)(x2+x+1)=0.因 x> 0,所以 x2+x+1>0,所以 x-2=0 ,所以 x=2.(1)当 x=2 , x3=x2+x+2 ;(2)当 0< x< 2 ,因x-2 < 0, x2+x+2> 0,所以 (x-2)(x2+ x+2) < 0,即 x3-(x 2+ x+2) <0,所以 x 3< x2+ x+ 2.(3) 当 x> 2 ,因 x-2 > 0, x2+x+2> 0,所以 (x-2)(x2+x+2) > 0,即 x3-(x 2+ x+ 2) >0,所以 x 3> x2+ x+ 2.合 (1) ,(2) , (3) ,就获得本的解答.剖析先由特例下手,注意到例 7 已知 E, F, G, H 各点分在四形 ABCD的 AB, BC, CD, DA上 ( 如 2—101) .(2)当上述条件中比 3,4,⋯, n (n 自然数 ) ,那 S 么 S 四边形EFGH与 S 四边形ABCD之比是多少?G引 GM∥ AC交 DA于 M点.由平行截割定理易知(2)设当 k=3, 4 时,用近似于 (1) 的推理方法将所得结论与(1) 的结论列成表18. 5.察看表 18. 5 中 p, q 的值与对应k 值的变化关系,不难发现:当k=n( 自然数 ) 时有以上推断是完整正确的,证明留给读者.。
第一讲:因式分解(一) (1)第二讲:因式分解(二) (4)第三讲实数的若干性质和应用 (7)第四讲分式的化简与求值 (10)第五讲恒等式的证明 (13)第六讲代数式的求值 (16)第七讲根式及其运算 (18)第八讲非负数 (22)第九讲一元二次方程 (26)第十讲三角形的全等及其应用 (29)第十一讲勾股定理与应用 (33)第十二讲平行四边形 (36)第十三讲梯形 (39)第十四讲中位线及其应用 (42)第十五讲相似三角形(一) (45)第十六讲相似三角形(二) .............................................. 48 第十七讲* 集合与简易逻辑. (51)第十八讲归纳与发现 (56)第十九讲特殊化与一般化 (59)第二十讲类比与联想 (63)第二十一讲分类与讨论 (67)第二十二讲面积问题与面积方法 (70)第二十三讲几何不等式 (73)第二十四讲* 整数的整除性 (77)第二十五讲* 同余式 (80)第二十六讲含参数的一元二次方程的整数根问题 (83)第二十七讲列方程解应用问题中的量 (86)第二十八讲怎样把实际问题化成数学问题 (90)第二十九讲生活中的数学(三) ——镜子中的世界 (94)第三十讲生活中的数学(四)──买鱼的学问 (99)第一讲:因式分解(一)多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.1.运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a2-b2=(a+b)(a-b);(2)a2±2ab+b2=(a±b)2;(3)a3+b3=(a+b)(a2-ab+b2);(4)a3-b3=(a-b)(a2+ab+b2).下面再补充几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n 为正整数;(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n 为偶数;(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n 为奇数.运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例1 分解因式:(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;(2)x3-8y3-z3-6xyz;(3)a2+b2+c2-2bc+2ca-2ab;(4)a7-a5b2+a2b5-b7.解 (1)原式=-2x n-1y n(x4n-2x2ny2+y4)=-2x n-1y n[(x2n)2-2x2ny2+(y2)2]=-2x n-1y n(x2n-y2)2=-2x n-1y n(x n-y)2(x n+y)2.(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).(3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2=(a-b)2+2c(a-b)+c2=(a-b+c)2.本小题可以稍加变形,直接使用公式(5),解法如下:原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b)=(a-b+c)2(4)原式=(a7-a5b2)+(a2b5-b7)=a5(a2-b2)+b5(a2-b2)=(a2-b2)(a5+b5)=(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4)=(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4)例2 分解因式:a3+b3+c3-3abc.本题实际上就是用因式分解的方法证明前面给出的公式(6).分析我们已经知道公式(a+b)3=a3+3a2b+3ab2+b3的正确性,现将此公式变形为a3+b3=(a+b)3-3ab(a+b).这个式也是一个常用的公式,本题就借助于它来推导.解原式=(a+b)3-3ab(a+b)+c3-3abc=[(a+b)3+c3]-3ab(a+b+c)=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)=(a+b+c)(a2+b2+c2-ab-bc-ca).说明公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为a3+b3+c3-3abc显然,当a+b+c=0时,则a3+b3+c3=3abc;当a+b+c >0时,则a3+b3+c3-3abc≥0,即a3+b3+c3≥3abc,而且,当且仅当a=b=c时,等号成立.如果令x=a3≥0,y=b3≥0,z=c3≥0,则有等号成立的充要条件是x=y=z.这也是一个常用的结论.例3 分解因式:x15+x14+x13+…+x2+x+1.分析这个多项式的特点是:有16项,从最高次项x15开始,x的次数顺次递减至0,由此想到应用公式a n-b n来分解.解因为x16-1=(x-1)(x15+x14+x13+…x2+x+1),所以说明在本题的分解过程中,用到先乘以(x-1),再除以(x-1)的技巧,这一技巧在等式变形中很常用.2.拆项、添项法因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.例4 分解因式:x3-9x+8.分析本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧.解法1 将常数项8拆成-1+9.原式=x3-9x-1+9=(x3-1)-9x+9=(x-1)(x2+x+1)-9(x-1)=(x-1)(x2+x-8).解法2 将一次项-9x拆成-x-8x.原式=x3-x-8x+8=(x3-x)+(-8x+8)=x(x+1)(x-1)-8(x-1)=(x-1)(x2+x-8).解法3 将三次项x3拆成9x3-8x3.原式=9x3-8x3-9x+8=(9x3-9x)+(-8x3+8)=9x(x+1)(x-1)-8(x-1)(x2+x+1)=(x-1)(x2+x-8).解法4 添加两项-x2+x2.原式=x3-9x+8=x3-x2+x2-9x+8=x2(x-1)+(x-8)(x-1)=(x-1)(x2+x-8).说明由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.例5 分解因式:(1)x9+x6+x3-3;(2)(m2-1)(n2-1)+4mn;(3)(x+1)4+(x2-1)2+(x-1)4;(4)a3b-ab3+a2+b2+1.解 (1)将-3拆成-1-1-1.原式=x9+x6+x3-1-1-1=(x9-1)+(x6-1)+(x3-1)=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)=(x3-1)(x6+2x3+3)=(x-1)(x2+x+1)(x6+2x3+3).(2)将4mn拆成2mn+2mn.原式=(m2-1)(n2-1)+2mn+2mn=m2n2-m2-n2+1+2mn+2mn=(m2n2+2mn+1)-(m2-2mn+n2)=(mn+1)2-(m-n)2=(mn+m-n+1)(mn-m+n+1).(3)将(x2-1)2拆成2(x2-1)2-(x2-1)2.原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4=[(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2=[(x+1)2+(x-1)2]2-(x2-1)2=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).(4)添加两项+ab-ab.原式=a3b-ab3+a2+b2+1+ab-ab=(a3b-ab3)+(a2-ab)+(ab+b2+1)=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)=a(a-b)[b(a+b)+1]+(ab+b2+1)=[a(a-b)+1](ab+b2+1)=(a2-ab+1)(b2+ab+1).说明 (4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验.3.换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例6 分解因式:(x2+x+1)(x2+x+2)-12.分析将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y的二次三项式的因式分解问题了.解设x2+x=y,则原式=(y+1)(y+2)-12=y2+3y-10=(y-2)(y+5)=(x2+x-2)(x2+x+5)=(x-1)(x+2)(x2+x+5).说明本题也可将x2+x+1看作一个整体,比如今x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.例7 分解因式:(x2+3x+2)(4x2+8x+3)-90.分析先将两个括号内的多项式分解因式,然后再重新组合.解原式=(x+1)(x+2)(2x+1)(2x+3)-90=[(x+1)(2x+3)][(x+2)(2x+1)]-90=(2x2+5x+3)(2x2+5x+2)-90.令y=2x2+5x+2,则原式=y(y+1)-90=y2+y-90=(y+10)(y-9)=(2x2+5x+12)(2x2+5x-7)=(2x2+5x+12)(2x+7)(x-1).说明对多项式适当的恒等变形是我们找到新元(y)的基础.例8 分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2.解设x2+4x+8=y,则原式=y2+3xy+2x2=(y+2x)(y+x)=(x2+6x+8)(x2+5x+8)=(x+2)(x+4)(x2+5x+8).说明由本题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式.例9分解因式:6x4+7x3-36x2-7x+6.解法1 原式=6(x4+1)+7x(x2-1)-36x2=6[(x4-2x2+1)+2x2]+7x(x2-1)-36x2=6[(x2-1)2+2x2]+7x(x2-1)-36x2=6(x2-1)2+7x(x2-1)-24x2=[2(x2-1)-3x][3(x2-1)+8x]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).说明本解法实际上是将x2-1看作一个整体,但并没有设立新元来代替它,即熟练使用换元法后,并非每题都要设置新元来代替整体.解法2原式=x2[6(t2+2)+7t-36]=x2(6t2+7t-24)=x2(2t-3)(3t+8)=x2[2(x-1/x)-3][3(x-1/x)+8]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).例10 分解因式:(x2+xy+y2)-4xy(x2+y2).分析本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式.解原式=[(x+y)2-xy]2-4xy[(x+y)2-2xy].令x+y=u,xy=v,则原式=(u2-v)2-4v(u2-2v)=u4-6u2v+9v2=(u2-3v)2=(x2+2xy+y2-3xy)2=(x2-xy+y2)2.第二讲:因式分解(二)1.双十字相乘法分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式.例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为2x2-(5+7y)x-(22y2-35y+3),可以看作是关于x的二次三项式.对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为即:-22y2+35y-3=(2y-3)(-11y+1).再利用十字相乘法对关于x的二次三项式分解所以,原式=[x+(2y-3)][2x+(-11y+1)] =(x+2y-3)(2x-11y+1).上述因式分解的过程,实施了两次十字相乘法.如果把这两个步骤中的十字相乘图合并在一起,可得到下图:它表示的是下面三个关系式:(x+2y)(2x-11y)=2x2-7xy-22y2;(x-3)(2x+1)=2x2-5x-3;(2y-3)(-11y+1)=-22y2+35y-3.这就是所谓的双十字相乘法.用双十字相乘法对多项式ax2+bxy+cy2+dx+ey+f进行因式分解的步骤是:(1)用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列);(2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx.例1 分解因式:(1)x2-3xy-10y2+x+9y-2;(2)x2-y2+5x+3y+4;(3)xy+y2+x-y-2;(4)6x2-7xy-3y2-xz+7yz-2z2.解(1)原式=(x-5y+2)(x+2y-1).(2)原式=(x+y+1)(x-y+4).(3)原式中缺x2项,可把这一项的系数看成0来分解.原式=(y+1)(x+y-2).(4)原式=(2x-3y+z)(3x+y-2z).说明 (4)中有三个字母,解法仍与前面的类似.2.求根法我们把形如a n x n+a n-1x n-1+…+a1x+a0(n为非负整数)的代数式称为关于x的一元多项式,并用f(x),g(x),…等记号表示,如f(x)=x2-3x+2,g(x)=x5+x2+6,…,当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x)f(1)=12-3×1+2=0;f(-2)=(-2)2-3×(-2)+2=12.若f(a)=0,则称a为多项式f(x)的一个根.定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a.根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x),要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根.定理2的根,则必有p是a0的约数,q是a n的约数.特别地,当a0=1时,整系数多项式f(x)的整数根均为a n 的约数.我们根据上述定理,用求多项式的根来确定多项式的一次因式,从而对多项式进行因式分解.例2 分解因式:x3-4x2+6x-4.分析这是一个整系数一元多项式,原式若有整数根,必是-4的约数,逐个检验-4的约数:±1,±2,±4,只有f(2)=23-4×22+6×2-4=0,即x=2是原式的一个根,所以根据定理1,原式必有因式x-2.解法1 用分组分解法,使每组都有因式(x-2). 原式=(x 3-2x 2)-(2x 2-4x)+(2x-4) =x 2(x-2)-2x(x-2)+2(x-2) =(x-2)(x 2-2x+2).解法2 用多项式除法,将原式除以(x-2),所以原式=(x-2)(x 2-2x+2).说明 在上述解法中,特别要注意的是多项式的有理根一定是-4的约数,反之不成立,即-4的约数不一定是多项式的根.因此,必须对-4的约数逐个代入多项式进行验证.例3 分解因式:9x 4-3x 3+7x 2-3x-2.分析 因为9的约数有±1,±3,±9;-2的约数有±1,±为:所以,原式有因式9x 2-3x-2. 解 9x 4-3x 3+7x 2-3x-2 =9x 4-3x 3-2x 2+9x 2-3x-2 =x 2(9x 3-3x-2)+9x 2-3x-2 =(9x 2-3x-2)(x 2+1) =(3x+1)(3x-2)(x 2+1)说明 若整系数多项式有分数根,可将所得出的含有分数的因式化为整系数因式,如上题中的因式可以化为9x 2-3x-2,这样可以简化分解过程. 总之,对一元高次多项式f(x),如果能找到一个一次因式(x-a),那么f(x)就可以分解为(x-a)g(x),而g(x)是比f(x)低一次的一元多项式,这样,我们就可以继续对g(x)进行分解了. 3.待定系数法待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解中的应用. 在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法. 例4 分解因式:x 2+3xy+2y 2+4x+5y+3. 分析 由于(x 2+3xy+2y 2)=(x+2y)(x+y),若原式可以分解因式,那么它的两个一次项一定是x+2y+m 和x +y +n 的形式,应用待定系数法即可求出m 和n ,使问题得到解决. 解 设x 2+3xy+2y 2+4x+5y+3 =(x+2y+m)(x+y+n)=x 2+3xy+2y 2+(m+n)x+(m+2n)y+mn , 比较两边对应项的系数,则有解之得m=3,n=1.所以原式=(x+2y+3)(x+y+1).说明 本题也可用双十字相乘法,请同学们自己解一下.例5 分解因式:x 4-2x 3-27x 2-44x+7.分析本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则只可能是±1,±7(7的约数),经检验,它们都不是原式的根,所以,在有理数集内,原式没有一次因式.如果原式能分解,只能分解为(x2+ax+b)(x2+cx+d)的形式.解设原式=(x2+ax+b)(x2+cx+d)=x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd,所以有由bd=7,先考虑b=1,d=7有所以原式=(x2-7x+1)(x2+5x+7).说明由于因式分解的唯一性,所以对b=-1,d=-7等可以不加以考虑.本题如果b=1,d=7代入方程组后,无法确定a,c的值,就必须将bd=7的其他解代入方程组,直到求出待定系数为止.本题没有一次因式,因而无法运用求根法分解因式.但利用待定系数法,使我们找到了二次因式.由此可见,待定系数法在因式分解中也有用武之地.第三讲实数的若干性质和应用实数是高等数学特别是微积分的重要基础.在初中代数中没有系统地介绍实数理论,是因为它涉及到极限的概念.这一概念对中学生而言,有一定难度.但是,如果中学数学里没有实数的概念及其简单的运算知识,中学数学也将无法继续学习下去了.例如,即使是一元二次方程,只有有理数的知识也是远远不够用的.因此,适当学习一些有关实数的基础知识,以及运用这些知识解决有关问题的基本方法,不仅是为高等数学的学习打基础,而且也是初等数学学习所不可缺少的.本讲主要介绍实数的一些基本知识及其应用.用于解决许多问题,例如,不难证明:任何两个有理数的和、差、积、商还是有理数,或者说,有理数对加、减、乘、除(零不能做除数)是封闭的.性质1 任何一个有理数都能写成有限小数(整数可以看作小数点后面为零的小数)或循环小数的形式,反之亦然.例1分析要说明一个数是有理数,其关键要看它能否写成两个整数比的形式.证设两边同乘以100得②-①得99x=261.54-2.61=258.93,无限不循环小数称为无理数.有理数对四则运算是封闭的,而无理是说,无理数对四则运算是不封闭的,但它有如下性质.性质2 设a为有理数,b为无理数,则(1)a+b,a-b是无理数;有理数和无理数统称为实数,即在实数集内,没有最小的实数,也没有最大的实数.任意两个实数,可以比较大小.全体实数和数轴上的所有点是一一对应的.在实数集内进行加、减、乘、除(除数不为零)运算,其结果仍是实数(即实数对四则运算的封闭性).任一实数都可以开奇次方,其结果仍是实数;只有当被开方数为非负数时,才能开偶次方,其结果仍是实数.例2分析证所以分析要证明一个实数为无限不循环小数是一件极难办到的事.由于有理数与无理数共同组成了实数集,且二者是矛盾的两个对立面,所以,判定一个实数是无理数时,常常采用反证法.证用反证法.所以p一定是偶数.设p=2m(m是自然数),代入①得4m2=2q2,q2=2m2,例4 若a1+b1a=a2+b2a(其中a1,a2,b1,b2为有理数,a为无理数),则a1=a2,b1=b2,反之,亦成立.分析设法将等式变形,利用有理数不能等于无理数来证明.证将原式变形为(b1-b2)a=a2-a1.若b1≠b2,则反之,显然成立.说明本例的结论是一个常用的重要运算性质.是无理数,并说明理由.整理得:由例4知a=Ab,1=A,说明本例并未给出确定结论,需要解题者自己发现正确的结有理数作为立足点,以其作为推理的基础.例6 已知a,b是两个任意有理数,且a<b,求证:a与b之间存在着无穷多个有理数(即有理数集具有稠密性).分析只要构造出符合条件的有理数,题目即可被证明.证因为a<b,所以2a<a+b<2b,所以说明构造具有某种性质的一个数,或一个式子,以达到解题和证明的目的,是经常运用的一种数学建模的思想方法.例7 已知a,b是两个任意有理数,且a<b,问是否存在无理数α,使得a<α<b成立?即由①,②有存在无理数α,使得a<α<b成立.b4+12b3+37b2+6b-20的值.分析因为无理数是无限不循环小数,所以不可能把一个无理数的小数部分一位一位确定下来,这样涉及无理数小数部分的计算题,往往是先估计它的整数部分(这是容易确定的),然后再寻求其小数部分的表示方法.14=9+6b+b2,所以b2+6b=5.b4+12b3+37b2+6b-20=(b4+2·6b3+36b2)+(b2+6b)-20=(b2+6b)2+(b2+6b)-20=52+5-20=10.例9 求满足条件的自然数a,x,y.解将原式两边平方得由①式变形为两边平方得例10 设a n是12+22+32+…+n2的个位数字,n=1,2,3,…,求证:0.a1a2a3…a n…是有理数.分析有理数的另一个定义是循环小数,即凡有理数都是循环小数,反之循环小数必为有理数.所以,要证0.a1a2a3…a n…是有理数,只要证它为循环小数.因此本题我们从寻找它的循环节入手.证计算a n的前若干个值,寻找规律:1,5,4,0,5,1,0,4,5,5,6,0,9,5,0,6,5,9,0,0,1,5,4,0,5,1,0,4,…发现:a20=0,a21=a1,a22=a2,a23=a3,…,于是猜想:a k+20=a k,若此式成立,说明0.a1a2…a n…是由20个数字组成循环节的循环小数,即下面证明a k+20=a k.令f(n)=12+22+…+n2,当f(n+20)-f(n)是10的倍数时,表明f(n+20)与f(n)有相同的个位数,而f(n+20)-f(n)=(n+1)2+(n+2)2+…+(n+20)2=10(2n2+42·n)+(12+22+…+202).由前面计算的若干值可知:12+22+…+202是10的倍数,故a k+20=a k成立,所以0.a1a2…a n…是一个有理数.第四讲分式的化简与求值分式的有关概念和性质与分数相类似,例如,分式的分母的值不能是零,即分式只有在分母不等于零时才有意义;也像分数一样,分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变,这一性质是分式运算中通分和约分的理论根据.在分式运算中,主要是通过约分和通分来化简分式,从而对分式进行求值.除此之外,还要根据分式的具体特征灵活变形,以使问题得到迅速准确的解答.本讲主要介绍分式的化简与求值.例1 化简分式:分析直接通分计算较繁,先把每个假分式化成整式与真分式之和的形式,再化简将简便得多.=[(2a+1)-(a-3)-(3a+2)+(2a-2)]说明本题的关键是正确地将假分式写成整式与真分式之和的形式.例2 求分式当a=2时的值.分析与解先化简再求值.直接通分较复杂,注意到平方差公式:a2-b2=(a+b)(a-b),可将分式分步通分,每一步只通分左边两项.例3 若abc=1,求分析本题可将分式通分后,再进行化简求值,但较复杂.下面介绍几种简单的解法.解法1 因为abc=1,所以a,b,c都不为零.解法2 因为abc=1,所以a≠0,b≠0,c≠0.例4 化简分式:分析与解三个分式一齐通分运算量大,可先将每个分式的分母分解因式,然后再化简.说明互消掉的一对相反数,这种化简的方法叫“拆项相消”法,它是分式化简中常用的技巧.例5 化简计算(式中a,b,c两两不相等):似的,对于这个分式,显然分母可以分解因式为(a-b)(a-c),而分子又恰好凑成(a-b)+(a-c),因此有下面的解法.解说明本例也是采取“拆项相消”法,所不同的是利用例6 已知:x+y+z=3a(a≠0,且x,y,z不全相等),求分析本题字母多,分式复杂.若把条件写成(x-a)+(y-a)+(z-a)=0,那么题目只与x-a,y-a,z-a 有关,为简化计算,可用换元法求解.解令x-a=u,y-a=v,z-a=w,则分式变为u2+v2+w2+2(uv+vw+wu)=0.由于x,y,z不全相等,所以u,v,w不全为零,所以u2+v2+w2≠0,从而有说明从本例中可以看出,换元法可以减少字母个数,使运算过程简化.例7 化简分式:适当变形,化简分式后再计算求值.(x-4)2=3,即x2-8x+13=0.原式分子=(x4-8x3+13x2)+(2x3-16x2+26x)+(x2-8x+13)+10=x2(x2-8x+13)+2x(x2-8x+13)+(x2-8x+13)+10=10,原式分母=(x2-8x+13)+2=2,说明本例的解法采用的是整体代入的方法,这是代入消元法的一种特殊类型,应用得当会使问题的求解过程大大简化.解法1 利用比例的性质解决分式问题.(1)若a+b+c≠0,由等比定理有所以a+b-c=c,a-b+c=b,-a+b+c=a,于是有(2)若a+b+c=0,则a+b=-c,b+c=-a,c+a=-b,于是有说明比例有一系列重要的性质,在解决分式问题时,灵活巧妙地使用,便于问题的求解.解法2 设参数法.令则a+b=(k+1)c,①a+c=(k+1)b,②b+c=(k+1)a.③①+②+③有2(a+b+c)=(k+1)(a+b+c),所以 (a+b+c)(k-1)=0,故有k=1或 a+b+c=0.当k=1时,当a+b+c=0时,说明引进一个参数k表示以连比形式出现的已知条件,可使已知条件便于使用.第五讲恒等式的证明代数式的恒等变形是初中代数的重要内容,它涉及的基础知识较多,主要有整式、分式与根式的基本概念及运算法则,因式分解的知识与技能技巧等等,因此代数式的恒等变形是学好初中代数必备的基本功之一.本讲主要介绍恒等式的证明.首先复习一下基本知识,然后进行例题分析.两个代数式,如果对于字母在允许范围内的一切取值,它们的值都相等,则称这两个代数式恒等.把一个代数式变换成另一个与它恒等的代数式叫作代数式的恒等变形.恒等式的证明,就是通过恒等变形证明等号两边的代数式相等.证明恒等式,没有统一的方法,需要根据具体问题,采用不同的变形技巧,使证明过程尽量简捷.一般可以把恒等式的证明分为两类:一类是无附加条件的恒等式证明;另一类是有附加条件的恒等式的证明.对于后者,同学们要善于利用附加条件,使证明简化.下面结合例题介绍恒等式证明中的一些常用方法与技巧.1.由繁到简和相向趋进恒等式证明最基本的思路是“由繁到简”(即由等式较繁的一边向另一边推导)和“相向趋进”(即将等式两边同时转化为同一形式).例1 已知x+y+z=xyz,证明:x(1-y2)(1-z2)+y(1-x2)(1-z2)+z(1-x2)(1-y2)=4xyz.分析将左边展开,利用条件x+y+z=xyz,将等式左边化简成右边.证因为x+y+z=xyz,所以左边=x(1-z2-y2-y2z2)+y(1-z2-x2+x2z2)+(1-y2-x2+x2y2) =(x+y+z)-xz2-xy2+xy2z2-yz2+yx2+yx2z2-zy2-zx2+zx2y2=xyz-xy(y+x)-xz(x+z)-yz(y+z)+xyz(xy+yz+zx)=xyz-xy(xyz-z)-xz(xyz-y)-yz(xyz-x)+xyz(xy+yz+zx) =xyz+xyz+xyz+xyz=4xyz=右边.说明本例的证明思路就是“由繁到简”.例2 已知1989x2=1991y2=1993z2,x>0,y>0,z>0,且证令1989x2=1991y2=1993z2=k(k>0),则又因为所以所以说明本例的证明思路是“相向趋进”,在证明方法上,通过设参数k,使左右两边同时变形为同一形式,从而使等式成立.2.比较法a=b(比商法).这也是证明恒等式的重要思路之一.例3 求证:分析用比差法证明左-右=0.本例中,这个式子具有如下特征:如果取出它的第一项,把其中的字母轮换,即以b代a,c代b,a代c,则可得出第二项;若对第二项的字母实行上述轮换,则可得出第三项;对第三项的字母实行上述轮换,可得出第一项.具有这种特性的式子叫作轮换式.利用这种特性,可使轮换式的运算简化.证因为所以所以说明本例若采用通分化简的方法将很繁.像这种把一个分式分解成几个部分分式和的形式,是分式恒等变形中的常用技巧.全不为零.证明:(1+p)(1+q)(1+r)=(1-p)(1-q)(1-r).同理所以所以(1+p)(1+q)(1+r)=(1-p)(1-q)(1-r).说明本例采用的是比商法.3.分析法与综合法根据推理过程的方向不同,恒等式的证明方法又可分为分析法与综合法.分析法是从要求证的结论出发,寻求在什么情况下结论是正确的,这样一步一步逆向推导,寻求结论成立的条件,一旦条件成立就可断言结论正确,即所谓“执果索因”.而综合法正好相反,它是“由因导果”,即从已知条件出发顺向推理,得到所求结论.证要证 a2+b2+c2=(a+b-c)2,只要证a2+b2+c2=a2+b2+c2+2ab-2ac-2bc,只要证 ab=ac+bc,只要证 c(a+b)=ab,只要证这最后的等式正好是题设,而以上推理每一步都可逆,故所求证的等式成立.说明本题采用的方法是典型的分析法.例6 已知a4+b4+c4+d4=4abcd,且a,b,c,d都是正数,求证:a=b=c=d.证由已知可得a4+b4+c4+d4-4abcd=0,(a2-b2)2+(c2-d2)2+2a2b2+2c2d2-4abcd=0,所以(a2-b2)2+(c2-d2)2+2(ab-cd)2=0.因为(a2-b2)2≥0,(c2-d2)2≥0,(ab-cd)2≥0,所以a2-b2=c2-d2=ab-cd=0,所以 (a+b)(a-b)=(c+d)(c-d)=0.又因为a,b,c,d都为正数,所以a+b≠0,c+d≠0,所以a=b,c=d.所以ab-cd=a2-c2=(a+c)(a-c)=0,所以a=c.故a=b=c=d成立.说明本题采用的方法是综合法.4.其他证明方法与技巧求证:8a+9b+5c=0.a+b=k(a-b),b+c=2k(b-c),(c+a)=3k(c-a).所以6(a+b)=6k(a-b),3(b+c)=6k(b-c),2(c+a)=6k(c-a).以上三式相加,得6(a+b)+3(b+c)+2(c+a)=6k(a-b+b-c+c-a),即 8a+9b+5c=0.说明本题证明中用到了“遇连比设为k”的设参数法,前面的例2用的也是类似方法.这种设参数法也是恒等式证明中的常用技巧.例8 已知a+b+c=0,求证2(a4+b4+c4)=(a2+b2+c2)2.分析与证明用比差法,注意利用a+b+c=0的条件.左-右=2(a4+b4+c4)-(a2+b2+c2)2=a4+b4+c4-2a2b2-2b2c2-2c2a2=(a2-b2-c2)2-4b2c2=(a2-b2-c2+2bc)(a2-b2-c2-2bc)=[a2-(b-c)2][a2-(b+c)2]=(a-b+c)(a+b-c)(a-b-c)(a+b+c)=0.所以等式成立.说明本题证明过程中主要是进行因式分解.分析本题的两个已知条件中,包含字母a,x,y 和z,而在求证的结论中,却只包含a,x和z,因此可以从消去y着手,得到如下证法.证由已知说明本题利用的是“消元”法,它是证明条件等式的常用方法.例10 证明:(y+z-2x)3+(z+x-2y)3+(x+y-2z)3=3(y+z-2x)(z+x-2y)(x+y-2z).分析与证明此题看起来很复杂,但仔细观察,可以使用换元法.令y+z-2x=a,①z+x-2y=b,②x+y-2z=c,③则要证的等式变为a3+b3+c3=3abc.联想到乘法公式:a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca),所以将①,②,③相加有a+b+c=y+z-2x+z+x-2y+x+y-2z=0,所以 a3+b3+c3-3abc=0,所以(y+z-2x)3+(z+x-2y)3+(x+y-2z)3=3(y+z-2x)(z+x-2y)(x+y-2z).说明由本例可以看出,换元法也可以在恒等式证明中发挥效力.例11 设x,y,z为互不相等的非零实数,且求证:x 2y 2z 2=1.分析 本题x ,y ,z 具有轮换对称的特点,我们不妨先看二元的所以x 2y 2=1.三元与二元的结构类似. 证 由已知有①×②×③得x 2y 2z 2=1.说明 这种欲进先退的解题策略经常用于探索解决问题的思路中.总之,从上面的例题中可以看出,恒等式证明的关键是代数式的变形技能.同学们要在明确变形目的的基础上,深刻体会例题中的常用变形技能与方法,这对以后的数学学习非常重要.第六讲 代数式的求值代数式的求值与代数式的恒等变形关系十分密切.许多代数式是先化简再求值,特别是有附加条件的代数式求值问题,往往需要利用乘法公式、绝对值与算术根的性质、分式的基本性质、通分、约分、根式的性质等等,经过恒等变形,把代数式中隐含的条件显现出来,化简,进而求值.因此,求值中的方法技巧主要是代数式恒等变形的技能、技巧和方法.下面结合例题逐一介绍.1.利用因式分解方法求值因式分解是重要的一种代数恒等变形,在代数式化简求值中,经常被采用.分析 x 的值是通过一个一元二次方程给出的,若解出x 后,再求值,将会很麻烦.我们可以先将所求的代数式变形,看一看能否利用已知条件. 解 已知条件可变形为3x 2+3x -1=0,所以 6x 4+15x 3+10x 2=(6x 4+6x 3-2x 2)+(9x 3+9x 2-3x)+(3x 2+3x -1)+1 =(3x 2+3x -1)(2z 2+3x+1)+1 =0+1=1.说明 在求代数式的值时,若已知的是一个或几个代数式的值,这时要尽可能避免解方程(或方程组),而要将所要求值的代数式适当变形,再将已知的代数式的值整体代入,会使问题得到简捷的解答. 例2 已知a ,b ,c 为实数,且满足下式: a 2+b 2+c 2=1,①求a+b+c 的值.解 将②式因式分解变形如下即所以a+b+c=0或bc+ac+ab=0. 若bc+ac+ab=0,则(a+b+c)2=a 2+b 2+c 2+2(bc+ac+ab)=a 2+b 2+c 2=1,所以 a+b+c=±1.所以a+b+c 的值为0,1,-1. 说明 本题也可以用如下方法对②式变形:。
第一讲跨越——从算术到代数“加里宁曾经说过: 数学是锻炼思维的体操, 体操能使你身体健康, 动作灵敏;数学能使你的思想对的灵敏, 有了对的的思想, 你们才有也许爬上科学的大山. ” _______华罗庚。
华罗庚, 我国现代有世界声誉的数学家, 初中毕业后, 靠自学成才, 在数论、矩阵几何等许多领域中做出过卓越奉献.纵观历史, 数学的发展发明了数学符号, 新的数学符号的使用又反过来促进了数学的发展. 历史是这样一步一步走过来的, 并将这样一步一步地继续走下去, 数学的每一个进步都必须随着着新的数学符号的产生. 在文明和科学的发展过程中, 人类发明用符号代替语言、文字的方法, 这是由于符号比语言、文字更简练、更直观、更具一般性.“算术”可以理解为“计算的方法”, 而“代数”可以理解为“以符号替代数字”, 即“数学符号化”. 著名数学教育家玻利亚曾说: “代数是一种不用词句而只用符号所构成的语言. ”用字母表达数是数学发展史上的一件大事, 是由算术跨越到代数的桥梁, 是人类发展史上的一个奔腾, 也是代数与算术的最显著的区别.字母表达数使得数学具有简洁的语言, 能更普遍地说明数量关系, 在列代数式、求代数式的值、形成公式等方面有广泛的应用.例题讲解【例1】观测下列等式9—l=8, 16—4=12, 25—9=16, 36—16=20, ……这些等式反映出自然数间的某种规律, 设表达自然数, 用关于的等式表达出来:. (河南省中考题)思绪点拨在观测给定的等式基础上, 寻找数字特点, 等式的共同特性, 发现一般规律.链接:从个别事物中发现一般性规律. 这种研究问题的方法叫“归纳法”, 是由特殊到一般的思维过程, 是发明发明的基础.【例2】某商品2023年比2023年涨价5%, 2023年又比2023年涨价10%, 2023年比2023年降价12%, 则2023年比2023年( ).A. 涨价3%B. 涨价1. 64% C 涨价1. 2% D. 降价1. 2%思绪点拨 设此商品2023年的价格为 元, 把相应年份的价格用 的代数式表达, 由计算作出判断. 【例3】 计算)200113121)(20021211()2001131211)(200213121(++++++-+++++++ 思绪点拨 直接计算复杂而繁难, 注意括号内数式的联系, 引入字母, 将复杂的数值计算转化为简朴的式的计算.【例4】 有—张纸, 第1次把它分割成4片, 第2次把其中的1片分割成4片, 以后每一次都把前面所得的其中一片分割成4片, 如此进行下去, 试问: (1)经5次分割后, 共得到多少张纸片? (2)经 次分割后, 共得到多少张纸片?(3)能否经若干次分割后共得到2023张纸片?为什么? (江苏省竞赛题)【例5】在右图中有9个方格, 规定每个方格填入不同的的数列、每条对角线上三个数之和都相等, 问: 思绪点拨 虽然规定的只是右上角的数, 关, 因此, 需恰本地引进不同的字母表达数, 【例6】如图, 在图1中, 互补重叠的三角形共有4个, 在图的三角形共有7个, 在图3中, 互不重叠的三角形共有10个个图形中, 互不重叠的三角形共有______个(用含 达). (重庆市中考题)思绪点拨 从三角形个数规律或图形生成特点入手. 【例7】(1)计算:)200413121(+++⨯ ; (广西竞赛题)(2)设 = , 求 的整数部分. (2023年北京市竞赛题)思绪点拨 对于(1), 直接计算复杂而繁难, 字母, 将复杂的数值计算转化为简朴的式的计算;对于(2) 项 的特性入手.【例8】有这样的两位数, 个完全平方数. 例如, 29就是这样的两位数, 由于 , 位数.(1) 思绪点拨 设原数为 , 则新数为 , 发现 (2) 【例9】现有 根长度相同的火柴棒, 按如图1图2图1方形, 按如图2摆放时可摆成 个正方形.(3) 用含n 的代数式表达m ;当这 根火柴棒还能摆成如图3所示的形状时, 求 的最小值.思绪点拨 设图3中有3 个正方形(为什么这样设? ), 无论如何摆放, 火柴棒的总数相同, 这样可以建立含 、 、 的等式.链接:① 用字母表达数, 有助于运用代数式揭示问题中的数量关系, 便于找到数量的相依关系或相等不等关系, 具有设元意识, 会用代数式表达, 是由算术习惯向代数过渡的重要环节, 是突破算术方法的定势的关键.② 本例的3个小题, 反映了我们结识事物、探究问题的基本过程.第(1)小题是研究具体对象, 第(2)小题是归纳出一般规律, 第(3)小题是再运用这些规律去分析、研究、解决问题.有些问题涉及的量比较多, 关系复杂, 我们就需要引入不同的字母, 便于把数量关系表达出来, 在解题中我们不需(或不能)求出所有字母的值, 只需求出关键的字母的值, 这种方法我们称之为“设而不求”.基础训练1. 给出下列算式: , , , ……观测上面一列算式, 你能发现什么规律, 用代数式子表达这个规图3图2图1⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅律:.(福州市中考题) 2. 已知: , , , ……, 若( 为正整数), 则= .(2023年武汉市中考题)3.若人完毕一项工程需要天, 则个人完毕这项工程需要天.(假定每个人的工作效率相同) (江苏省竞赛题) 4. 某同学上学时步行, 回家时坐车, 路上一共要用90分钟, 若往返都坐车. 所有行程只需30分钟, 假如往返都步行, 那么需要的时间是. (河南省竞赛题) 5. 一项工程, 甲建筑队单独承包需要天完毕, 乙建筑队单独承包需要天完毕, 现两队联合承包, 完毕这项工程需要( )天.. A. ...B. ...C. ...D.6.某专卖店在记录2023年第一季度的销售额时发现, 二月份比一月份增长10%, 三月份比二月份减少10%, 那么三月份比一月份( ).A. 增长10%B. 减少10%C. 不增不减D. 减少1%(河南省中考题)7. 如图, 在长方形中, 横向阴影部分是长方形, 另一阴影部分是平行四边形, 依照图中标注的数据, 计算图中空白部分的面积, 其面积是( ).A. B.C. D. (河北省中考题)8.为了绿化环境、美化城市, 在某居民社区铺设了正方形和圆形两块草坪, 假如两块草坪的周长相同, 那么它们的面积S1.S2的大小关系是( ).A. S1>S2B. S1< S2C. S1=S2D. 无法比较9.从开始, 连续的奇数相加, 和的情况如下:21=;121=+;=2432=+1=+;935324167531==+++; 252597531==++++;(1)请你推测出, 从1开始, 个连续的奇数相加, 它们的和 的公式是什么? (2)计算:①191715131197531+++++++++; ② .(3)已知 , 求整数 的值.10.从小明的家到学校, 是一段长度为 的上坡路接着一段长度为 的下坡路(两段路的长度不等但坡度相同).已知小明骑自行车走上坡路时的速度比走平路时的速度慢20%, 走下坡路时的速度比走平路时的速度快20%, 又知小明上学途中花10分钟, 放学途中花12分钟. (1)判断a 与b 的大小;(2)求 与 的的比值. (江苏省竞赛题)11.观测下列各正方形图案, 每条边上有 ( )个圆点, 每个图案中圆点的总数是S .按此规律推断出S 与n 的关系式是 . (2023年广西中考题) 12.如图, 将面积为 的小正方形与面积为 的大正方形放在一起( > >0), 用 表达 的面积为 . (天津市竞赛题)13. 已知17个连续整数的和是306, 那么, 紧接在这17个数后面的那17个整数的和为 .14. 用黑白两种颜色的正六边形地面砖按如下所示的规律. 拼成若干个图案:(1)第4个图案中有白色地面砖块;(2)第个图案中有白色地面砖块. (2023年南昌市中考题)15. 下列四个数中可以写成100个连续自然数之和的是( ).A. B. C. D.(江苏省竞赛题) 16. 给出两列数: l, 3, 5, 7, 9, …, 2023和1, 6, 1l, 16, 21, …, 2023, 同时出现在两列数中的数的个数为( ).A. 199B. 200C. 201D. 202 (重庆市竞赛题) 17.—种商品每件进价为元, 按进价增长25%定出售价, 后因库存积压降价, 按售价的九折出售, 每件还能赚钱( ).A. 0.125B. 0.15C. 0.25D. 1.25 (山东泰安市中考题) 18.假如用名同学在小时内搬运块砖, 那么名同学以同样的速度搬运块砖所需的小时数是( ).A. B. C. D.19. 已知 ( =l, 2, 3, …2023).求当时, 的值.20. 在一次数学竞赛中, 组委会决定用NS公司的赞助款购买一批奖品, 若以1台NS计算器和3本《数学竞赛讲座》书为一份奖品. 则可买100份奖品;若以1台NS计算器和5本《数学竞赛讲座》书为一份奖品. 则可买80份奖品. 问这笔钱所有用来购买计算器或《数学竞赛讲座》书, 可各买多少? (湖北省黄冈市竞赛题)根据上述材料, 解答下列问题: 某校初三学生对我市一个乡的农民家庭进行抽样调查. 从1997年至2023年间, 该乡每户家庭消费支出总额每年平均增长500元, 其中食品消费支出总额每年平均增长200元, 1997年该乡农民家庭平均刚达成温饱水平, 已知该年每户家庭消费支出总额平均为8000元.求: (1)1997年该乡平均每户家庭食品消费支出总额为多少元?(2)设从1997年起m年后该乡平均每户的恩格尔系数为(为正整数). 请用的代数式表达该乡平均每户当年的恩格尔系数, 并运用这个公式计算2023年该乡平均每户的恩格尔系数(百分号前保存整数).(3)按这样的发展, 该乡将于哪年开始进入小康家庭生活?该乡农民能否实现十六大提出的2023年我国全面进入小康社会的目的? (桂林市中考题)答案:1.n2+n=n(n+1.2.10.3..4.150分.5..6..7..8.B9.(1)S=n 2 (2)①100 ②132-52=144 (3)n=15 10.(1)a<b,(2)把骑车走平路时的速度作为“1”,则 ,得0.8a +1.2b =56(1.2a +0.8b ),得a b =38. 11.S=4n-4 12.12b 213.595 14.(1)18;(2)4n+2 15.A 设自然数从a+1开始,这100个连续自然数的和为(a+1)+(a+2)+•…+(a+100)=100a+5050.16.C 第一列数可表达为2m+1,第二列数可表达为5n+1,由2m+1=5n+1,得n=25m,m=0,5,10…1000 17.A18.D 提醒:每一名同学每小时所搬砖头为cab块,c 名同学按此速度每小时搬砖头2c ab 块.19.提醒:a 1=1,a 2=12,a 3=13……,a n =1n ,原式=20022003. 20.设每台计算器x 元,每本《数学竞赛讲座》书y 元,则100(x+3y)=80(x+5y),解得x=5y,故可购买计算器100(3)10085x y y x y +⨯==160(台),书100(3)1008x y yy y+⨯==800(本).21.提醒:设所填表中每行、每列、每条对角线四数之和为S, 则 4S=1+2+3+…16=16172⨯,得S=34. 再设左上角所擦的数为x,则左下角擦的数为14-x,右下角擦掉的数为15+x,其余各格中擦掉的数都可以表达为x 的代数式,•再将主对角线上的数相加应得34,•即30+4x=34,解得x=1.于是可以依次算出被擦掉的各数,恢复后如图所示.22.(1)8000×60%=4800元.(2)n m =48002008000500m m ++,即n m =482805mm++当m=2023-1997=6时.n 6=48268056+⨯+⨯≈0.55=55%.(3)取n=0.5,即482805m m ++=12,解得m=16, 即1997+16=2023<2023年,所以,2023•年该村进入小康生活,并能实现十六大提出的目的.提高训练1. 用同样大小的黑棋子按如图所示的方式摆图形, 按照这样的规律摆下去, 则第 个图形需棋子_________枚(用含 的代数式表达). (2023年海南省中考题)2. 如图, 一块拼图卡片的长度为 , 两块相同的拼图卡片拼接在一起的长度为 , 则 块相同的拼图卡片拼接在一起的长度为______ (用含 的代数式表达).(2023年长春市中考题)3. 假如 是一个三位数, 现在把1放在它的右边得到一个四位数, 这个四位数是( ).A. B. C. D. (重庆市竞赛题)4.图中的三角形是有规律地从里到外逐层排列的.设 为第 层( 为正整数)三角形的个数, 则下列关系式中对的的是( ).A. B. C. D. (吉林省中考题)5.某商场经销一批电视机, 进价为每台 元, 原零售价比进价高 , 后根据市场变化, 把零售价调整为原零售价的 , 调整后的零售价为每台( )元.A. B. 图3图2图1●●●●●●●●●●●●●●●●●●●●●n 1块C. D. (2023年广东省竞赛题)6.已知 是整数, 现有两个代数式: (1) , (2) .其中, 能表达“任意奇数”的( ).A. 只有(1)B. 只有(2)C. 有(1)和(2)D. 一个也没有7. 有一张纸, 第1次把它分割成4片, 第2次把其中的1片分割成4片, 以后每一次都把前面所得的其中一片分割成4片, 如此进行下去, 试问:(1)经五次分割后, 共得到多少张纸片?(2)经 次分割后, 共得到多少张纸片?(3)能否经若干次分割后共得到2023张纸片? ? (第17届江苏省竞赛题)8.如图, 用同样规格的黑白两种正方形瓷砖铺设正方形地面, 观测图形并猜想填空:当黑色瓷砖为20块时, 白色瓷砖为______块;当白色瓷砖为 ( 为正整数)块时, 黑色瓷砖为______块. (宜昌市中考题)9. 在图甲中取阴影等边三角形各边的中点, 连成一个等边三角形, 将其挖去, 得到图乙;对图乙中的每个阴影等边三角形仿照先前的做法, 得到图丙, 如此继续. 假如图甲的等边三角形面积为1, 则第 个图形中所有阴影三角形面积的和为______.(第18届江苏省竞赛题)10. 已知 , ( =1, 2, 3, …), 则 =______. (重庆市竞赛题)11.老师报出一个5位数, 同学们将它的顺序倒排后得到的5位数减去原数, 学生甲、乙、丙、丁的结果分别是 34567, 34056, 23456, 34956.老师鉴定4个结果中只有一个对的, 答对的是( ).A. 甲B. 乙C. 丙D. 丁 (第16届“五羊杯”竞赛题)12.如图, 正方形和的边长分别为, , 那么△的面积的值().A. 只与的大小有关B. 只与的大小有关C. 与, 的大小都有关D.与, 的大小都无关(第19届江苏省竞赛题)13. 有四个互不相同的正整数, 从中任取两个数组成一组, 并在同一组中用较大的数减去较小的数, 再将各组所得的差相加, 其和恰好等于18. 若这四个数的乘积是23100, 求这四个数. (天津市竞赛题)。
初一18课知识点归纳总结初一阶段是学生们接触新的学科和知识的阶段,因此对于初一的知识点归纳总结显得极为重要。
本文将对初一18课的知识点进行整理和总结,以帮助初一学生理清思路,复习巩固知识。
1. 数学课知识点初一的数学课程主要包括初中数学基础知识的学习和扩展。
其中包括但不限于以下知识点:(1) 分数与小数的转换:掌握分数和小数之间的转换,能够互相转化并进行简便运算。
(2) 百分数与分数、小数的相互转换:理解百分数、分数和小数的关系,能够进行相互转化和运算。
(3) 数列与函数:了解等差数列和等比数列的概念与性质,能够进行简单的数列运算和函数图像的绘制。
(4) 图形的认识:熟悉常见的几何图形,包括三角形、四边形、圆等,了解它们的性质及计算方法。
(5) 代数式与方程式:学习代数式的化简、展开与因式分解,掌握一元一次方程和一次不等式的解法。
2. 物理课知识点初一的物理课程主要着重于培养学生观察、实验和动手能力。
以下是初一物理的部分知识点:(1) 物体的运动:了解物体的运动状态和基本运动形式,如匀速直线运动、变速运动等。
(2) 力与压强:掌握力的概念和性质,了解压强的定义和计算方法。
(3) 热与温度:理解热与温度的区别,掌握温度计的使用和温度的转换计算。
(4) 电路与电流:学习简单电路的组成和基本元件的使用,掌握电流的概念和计算方法。
(5) 光与影:了解光的传播规律、反射和折射现象,掌握镜子和透镜的特性和使用。
3. 化学课知识点初一的化学课程主要侧重于培养学生观察和实验能力,以下是初一化学的部分知识点:(1) 物质的分类:学习物质的分类和性质,如元素、化合物和混合物等。
(2) 常见物质的性质:了解酸、碱、盐等常见物质的性质和常见实验操作。
(3) 化学公式和化学方程式:学习化学元素的符号和化合物的化学式,理解化学反应和化学方程式的表示方法。
(4) 空气和水的重要性:认识空气和水对生命的重要性,了解相关的实验和观察方法。
2019-2020 学年八年级数学竞赛讲座第十八讲由中点想到什么人教新课标版线段的中点是几何图形中一个特其他点,它关系着三角形中线、直角三角形斜边中线、中心对称图形、三角形中位线、梯形中位线等丰富的知识,合适地利用中点,办理中点是解与中点相关问题的要点,由中点想到什么?常有的联想路径是:1.中线倍长;2.作直角三角形斜边中线;3.构造中位线;4.构造中心对称全等三角形等.熟悉以下基本图形,基本结论:例题求解【例 1】如图,在△MD的长为.ABC中,∠ B=2∠ C, AD⊥BC于D, M为BC的中点,AB=10cm,则( “希望杯”邀请赛试题)思路点拨取 AB 中点 N,为直角三角形斜边中线定理、三角形中位线定理的运用创立条件.注证明线段倍分关系是几何问题中一种常有题型,利用中点是一个有效路子,基本方法有:(1)利用直角三角斜边中线定理;(2)运用中位线定理;(3) 倍长 ( 或折半 ) 法.【例 2】如图,在四边形ABCD中,一组对边AB=CD,另一组对边BC的中点 M、 N,连结 MN.则 AB与 MN的关系是 ( )A . AB=MNB . AB>MN C. AB<MN D .上述三种情况均可能出现AD≠ BC,分别取AD、(2001年河北省初中数学创新与知识应用竞赛试题)思路点拨中点 M、 N不能够直接运用,需增设中点,常有的方法是作对角线的中点.【例 3】如图,在△ ABC中, AB=AC,延长 AB到 D,使 BD= AB,E 为 AB中点,连结 CE、CD,求证: CD=2EC.( 浙江省宁波市中考题)思路点拨联想到与中位线相关的丰富知识,将线段倍分关系的证明转变成线段相等关系的证明,解题的要点是合适添辅助线.【例 4】已知:如图l,BD、CE分别是△ ABC的外角均分线,过点A作AF⊥ BD,AG⊥1F、G,连结 FG,延长 AF、 AG,与直线 BC订交,易证 FG=(AB+BC+AC). 2若 (1)BD 、 CF分别是△ ABC的内角均分线( 如图 2) ;(2)BD 为△ ABC的内角均分线, CE为△ ABC的外角均分线 ( 如图 3) ,则在图 2、图 3 两种情况下,线段FG与△ABC三边又有怎样的数量关系?请写出你的猜想,并对其中的一种情况恩赐证明.(2003 年黑龙江省中考题)思路点拨图 1 中 FG与△ ABC三边的数量关系的求法( 要点是作辅助线) ,对追求后两个图形中线段FG 与△ ABC三边的数量关系起重视要作用,而由均分线、垂线发现中点,这是解题的基础.注三角形与梯形的中位线.在地址上涉及到平行,在数量上是上下底和的一半,它起着传达角的地址关系和线段长度的功能,在证明线段倍分关系、两直线地址关系、线段长度的计算等方面有着广泛的应用.【例 5】如图,任意五边形ABCDE, M、 N、 P、 Q 分别为 AB、 CD、 BC、 DE的中点, K、 L1分别为 MN、 PQ的中点,求证:K L∥ AE且 KL=AE.(2001 年天津赛区试题)思路点拨经过连线,将多边形切割成三角形、四边形,为多其中点的利用创立条件,这是解本例的打破口.注需要什么,构造什么,构造基本图形、构造线段的和差 ( 倍分 ) 关系、构造角的关系等,这是作辅助线的有效思虑方法之一.学历训练1. BD、 CE是△ ABC的中线, G、 H 分别是 BE、 CD的中点, BC=8,则 GH=.(2003 年广西中考题)2.如 , △ ABC 中、 BC =a ,若 D 1、 E 1;分 是 AB 、 AC 的中点, D 1 E 1a;若 D 2、E 2 分2是 D B 、 E C 的中点,1 a3、 E 分 是 D B 、 E C 的中点 .1133222 2 4D 3E 31 ( 3a a)7a ⋯⋯若 Dn 、 En 分 是 D n-1 B 、E n-1 C 的中点, DnEn=(n ≥ 12 48且 n 整数 ). (200l 年山 省 南市中考 )3.如 ,△ ABC 分 AD=14, BC=l6, AC=26, P ∠ A 的均分AD 上一点,且 BP ⊥AD , M BC 的中点, PM 的 是.4.如 ,梯形ABCD 中, AD ∥BC , 角 AC ⊥ BD , AC=5cm ,BD=12cm , 梯形的中位 的等于cm.(2002 年天津市中考 )5.如 ,在梯形 ABCD 中, AD ∥EF ∥ GH ∥BC , AE=EG=GB=AD=18,BC=32, EF+GH=( )A . 40B . 48C 50 D. 566.如 ,在梯形 ㎝, EF 的A . 8cm DABCD 中, AD ∥BC , E 、 F 分 是 角( ). 7cm C . 6cmD . 5cmBD 、 AC 的中点,若AD=6cm ,BC=187.如 ,矩形 片的 6, 梯形ABCD 沿 DF 折叠后,点 ABCD 的中位 ( )C 落在AB 上的E 点, DE 、 DF 三均分∠ADC , ABA .不能够确定B .23C .3D .3 +1(2001 年浙江省宁波市中考)8.已知四 形 ABCD 和 角AC 、BD , 次 各 中点得四 形MNPQ , 出以下6 个命:①若所得四 形 MNPQ 矩形, 原四 形 ABCD 菱形;②若所得四 形 MNPQ 菱形, 原四 形 ABCD 矩形;③若所得四 形 MNPQ 矩形, AC ⊥BD ;④若所得四 形 MNPQ 菱形, AC=BD ;⑤若所得四 形 MNPQ 矩形, ∠ BAD=90°;⑥若所得四 形 MNPQ 菱形, AB=AD .以上命 中,正确的选项是 ( ) A .①②B .③④C .③④⑤⑥D .①②③④(2001年江 省 州市中考)9.如 ,已知△ ABC 中, AD 是高, CE 是中 , DC=BE , DG ⊥CE , G 垂足.求 :(1)G 是CE的中点; (2) ∠ B=2∠ BCE.(2003年上海市中考题)10.如图,已知在正方形 ABCD中,E 为 DC上一点,连结 BE,作 CF⊥ BE 于 P,交 AD于 F 点,若恰好使得 AP=AB,求证: E 是 DC的中点.11.如图,在梯形ABCD中, AB∥ CD,以 AC、AD为边作平行四边形 ACED,DC的延长线交BE 于 F.(1)求证:EF= FB;(2)S△BCE可否为S 梯形ABCD的 1 ?若不能够,说明原由;若能,求出AB与CD的关系.312.如图,已知 AG⊥ BD,AF⊥ CE,BD、CF分别是∠GC=4,则△ ABC的周长为.ABC和∠ ACB的角均分线,若BF=2,ED=3,(2002年四川省竞赛题)13.四边形 ADCD的对角线AC、BD订交于点F,M、 N分别为 AB、CD中点, MN分别交 BD、 AC 于 P、 Q,且∠ FPQ=∠ FQP,若 BD=10,则 AC=.( 重庆市竞赛题 )14.四边形 ABCD中, AD>BC,C、 F 分别是 AB、 CD的中点, AD、 BC的延长线分别与EF的延长线交于 H、 G,则∠ AHE∠ BGE(填“ >”或“ =”或“ <”号 )15.如图,在△ ABC中, DC=4, BC边上的中线 AD=2, AB+AC=3+7,则 S等于 ()△ABCA. 15 B .55C . 2 3 D.3 72216.如图,正方形 ABCD中, AB=8, Q是 CD的中点,设∠ DAQ=α,在 CD上取一点 P,使∠BAP= 2α,则 CP的长是 ()A. 1 D.2C.3D.317.如图,已知 A 为 DE的中点,设△ DBC、△ ABC、△ EBC的面积分别为 S1, S2,S3,则 S1、S 、S 之间的关系式是 ( )23A . S23( S1S3 ) B . S21(S3 S1 ) C . S21(S1 S3 ) D . S23( S3 S1 ) 222218.如图,已知在△ ABC中, D为 AB 的中点,分别延长CA、 CB到 E、F,使 DE=DF,过 E、F分别作 CA、 CB的垂线,订交于点P.求证:∠ PAE=∠ PBF.(2003 年全国初中数学联赛试题)19.如图,梯形ABCD中, AD∥ BC, AC⊥ BD于 O,试判断AB+CD与 AD+BC的大小,并证明你的结论.( 山东省竞赛题)20.已知:△ ABD和△ ACE都是直角三角形,且∠ABD=∠ ACE=90°.如图甲,连结 DE,设 M为D 正的中点.(1)求证: MB=MC;(2)设∠ BAD=∠ CAE,固定△ ABD,让 Rt△ ACE绕极点 A 在平面内旋转到图乙的地址,试问: MB; MC可否还能够成立 ?并证明其结论.( 江苏省竞赛题)21.如图甲,平行四边形 ABCD外有一条直线 MN,过 A、 B、 C、 D4 个极点分别作 MN的垂线AA1、BB1、 CC l、 DD l,垂足分别为 A l、 B1、 C l、 D1.(1)求证 AA1+ CC l = BB 1 +DD l;(2)如图乙,直线 MN向上搬动,使点 A 与点 B、C、 D 位于直线 MN两侧,这时过 A、B、 C、D向直线 MN引垂线,垂足分别为A l、B1、C l、D1,那么 AA1、BB1、CC l、DD l之间存在什么关系?(3) 如图丙,若是将MN再向上搬动,使其两侧各有 2 个极点,这时过A、B、 C、 D 向直线MN引垂线,垂足分别为A l、 B1、C l、 D1,那么 AA1、 BB1、 CC l、DD1之间又存在什么关系?。
初中数学竞赛专题培训第十八讲归纳与发现归纳的方法是认识事物内在联系和规律性的一种重要思考方法,也是数学中发现命题与发现解题思路的一种重要手段.这里的归纳指的是常用的经验归纳,也就是在求解数学问题时,首先从简单的特殊情况的观察入手,取得一些局部的经验结果,然后以这些经验作基础,分析概括这些经验的共同特征,从而发现解题的一般途径或新的命题的思考方法.下面举几个例题,以见一般.例1如图2-99,有一个六边形点阵,它的中心是一个点,算作第一层;第二层每边有两个点(相邻两边公用一个点);第三层每边有三个点,…这个六边形点阵共有n层,试问第n层有多少个点?这个点阵共有多少个点?分析与解我们来观察点阵中各层点数的规律,然后归纳出点阵共有的点数.第一层有点数:1;第二层有点数:1×6;第三层有点数:2×6;第四层有点数:3×6;……第n层有点数:(n-1)×6.因此,这个点阵的第n层有点(n-1)×6个.n层共有点数为例2在平面上有过同一点P,并且半径相等的n个圆,其中任何两个圆都有两个交点,任何三个圆除P点外无其他公共点,那么试问:(1)这n个圆把平面划分成多少个平面区域?(2)这n个圆共有多少个交点?分析与解 (1)在图2-100中,设以P点为公共点的圆有1,2,3,4,5个(取这n个特定的圆),观察平面被它们所分割成的平面区域有多少个?为此,我们列出表18.1.由表18.1易知S2-S1=2,S3-S2=3,S4-S3=4,S5-S4=5,……由此,不难推测S n-S n-1=n.把上面(n-1)个等式左、右两边分别相加,就得到S n-S1=2+3+4+…+n,因为S1=2,所以下面对S n-S n-1=n,即S n=S n-1+n的正确性略作说明.因为S n-1为n-1个圆把平面划分的区域数,当再加上一个圆,即当n个圆过定点P时,这个加上去的圆必与前n-1个圆相交,所以这个圆就被前n-1个圆分成n部分,加在S n-1上,所以有S n=S n-1+n.(2)与(1)一样,同样用观察、归纳、发现的方法来解决.为此,可列出表18.2.由表18.2容易发现a1=1,a2-a1=1,a3-a2=2,a4-a3=3,a5-a4=4,……a n-1-a n-2=n-2,a n-a n-1=n-1.n个式子相加注意请读者说明a n=a n-1+(n-1)的正确性.例3 设a,b,c表示三角形三边的长,它们都是自然数,其中a≤b≤c,如果 b=n(n是自然数),试问这样的三角形有多少个?分析与解我们先来研究一些特殊情况:(1)设b=n=1,这时b=1,因为a≤b≤c,所以a=1,c可取1,2,3,….若c=1,则得到一个三边都为1的等边三角形;若c≥2,由于a+b=2,那么a+b不大于第三边c,这时不可能由a,b,c构成三角形,可见,当b=n=1时,满足条件的三角形只有一个.(2)设b=n=2,类似地可以列举各种情况如表18.3.这时满足条件的三角形总数为:1+2=3.(3)设b=n=3,类似地可得表18.4.这时满足条件的三角形总数为:1+2+3=6.通过上面这些特例不难发现,当b=n时,满足条件的三角形总数为:这个猜想是正确的.因为当b=n时,a可取n个值(1,2,3,…,n),对应于a的每个值,不妨设a=k(1≤k≤n).由于b≤c<a+b,即n≤c<n+k,所以c可能取的值恰好有k个(n,n+1,n+2,…,n+k-1).所以,当b=n时,满足条件的三角形总数为:例4设1×2×3×…×n缩写为n!(称作n的阶乘),试化简:1!×1+2!×2+3!×3+…+n!×n.分析与解先观察特殊情况:(1)当n=1时,原式=1=(1+1)!-1;(2)当n=2时,原式=5=(2+1)!-1;(3)当n=3时,原式=23=(3+1)!-1;(4)当n=4时,原式=119=(4+1)!-1.由此做出一般归纳猜想:原式=(n+1)!-1.下面我们证明这个猜想的正确性.1+原式=1+(1!×1+2!×2+3!×3+…+n!×n)=1!×2+2!×2+3!×3+…+n!×n=2!+2!×2+3!×3+…+n!×n=2!×3+3!×3+…+n!×n=3!+3!×3+…+n!×n=…=n!+n!×n=(n+1)!,所以原式=(n+1)!-1.例5设x>0,试比较代数式x3和x2+x+2的值的大小.分析与解本题直接观察,不好做出归纳猜想,因此可设x 等于某些特殊值,代入两式中做试验比较,或许能启发我们发现解题思路.为此,设x=0,显然有x3<x2+x+2.①设x=10,则有x3=1000,x2+x+2=112,所以x3>x2+x+2.②设x=100,则有x3>x2+x+2.观察、比较①,②两式的条件和结论,可以发现:当x值较小时,x3<x2+x+2;当x值较大时,x3>x2+x+2.那么自然会想到:当x=?时,x3=x2+x+2呢?如果这个方程得解,则它很可能就是本题得解的“临界点”.为此,设x3=x2+x +2,则x3-x2-x-2=0,(x3-x2-2x)+(x-2)=0,(x-2)(x2+x+1)=0.因为x>0,所以x2+x+1>0,所以x-2=0,所以x=2.这样(1)当x=2时,x3=x2+x+2;(2)当0<x<2时,因为x-2<0,x2+x+2>0,所以 (x-2)(x2+x+2)<0,即x3-(x2+x+2)<0,所以 x3<x2+x+2.(3)当x>2时,因为x-2>0,x2+x+2>0,所以 (x-2)(x2+x+2)>0,即x3-(x2+x+2)>0,所以 x3>x2+x+2.综合归纳(1),(2),(3),就得到本题的解答.分析先由特例入手,注意到例7已知E,F,G,H各点分别在四边形ABCD的AB,BC,CD,DA边上(如图2—101).(2)当上述条件中比值为3,4,…,n时(n为自然数),那S 么S四边形EFGH与S四边形ABCD之比是多少?G 引GM∥AC交DA于M点.由平行截割定理易知(2)设当k=3,4时,用类似于(1)的推理方法将所得结论与(1)的结论列成表18.5.观察表18.5中p,q的值与对应k值的变化关系,不难发现:当k=n(自然数)时有以上推测是完全正确的,证明留给读者.练习十八1.试证明例7中:2.平面上有n条直线,其中没有两条直线互相平行(即每两条直线都相交),也没有三条或三条以上的直线通过同一点.试求:(1)这n条直线共有多少个交点?(2)这n条直线把平面分割为多少块区域?然后做出证明.)4.求适合x5=656356768的整数x.(提示:显然x不易直接求出,但可注意其取值范围:505<656356768<605,所以502<x<602.=。
归纳的方法是认识事物内在联系和规律性的一种重要思考方法,也是数学中发现命题与发现解题思路的一种重要手段.这里的归纳指的是常用的经验归纳,也就是在求解数学问题时,首先从简单的特殊情况的观察入手,取得一些局部的经验结果,然后以这些经验作基础,分析概括这些经验的共同特征,从而发现解题的一般途径或新的命题的思考方法.下面举几个例题,以见一般.例1如图2-99,有一个六边形点阵,它的中心是一个点,算作第一层;第二层每边有两个点(相邻两边公用一个点);第三层每边有三个点,…这个六边形点阵共有n层,试问第n层有多少个点?这个点阵共有多少个点?
分析与解我们来观察点阵中各层点数的规律,然后归纳出点阵共有的点数.
2019-2020年初中数学竞赛专题培训第十八讲归纳与发现因此,这个点阵的第n层有点(n-1)×6个.n层共有点数为
例2在平面上有过同一点P,并且半径相等的n个圆,其中任何两个圆都有两个交点,任何三个圆除P点外无其他公共点,那么试问:
(1)这n个圆把平面划分成多少个平面区域?
(2)这n个圆共有多少个交点?
分析与解 (1)在图2-100中,设以P点为公共点的圆有1,2,3,4,5个(取这n个特定的圆),观察平面被它们所分割成的平面区域有多少个?为此,我们列出表18.1.
由表18.1易知
S2-S1=2,
S3-S2=3,
S4-S3=4,
S5-S4=5,
……
由此,不难推测
S n-S n-1=n.
把上面(n-1)个等式左、右两边分别相加,就得到
S n-S1=2+3+4+…+n,
因为S1=2,所以
下面对S n-S n-1=n,即S n=S n-1+n的正确性略作说明.
因为S n-1为n-1个圆把平面划分的区域数,当再加上一个圆,即当n个圆过定点P时,这个加上去的圆必与前n-1个圆相交,所以这个圆就被前n-1个圆分成n部分,加在S n-1上,所以有S n=S n-1+n.
(2)与(1)一样,同样用观察、归纳、发现的方法来解决.为此,可列出表18.2.
由表18.2容易发现
a1=1,
a2-a1=1,
a3-a2=2,
a4-a3=3,
a5-a4=4,
……
a n-1-a n-2=n-2,
a n-a n-1=n-1.
n个式子相加
注意请读者说明a n=a n-1+(n-1)的正确性.
例3 设a,b,c表示三角形三边的长,它们都是自然数,其中a≤b≤c,如果 b=n(n 是自然数),试问这样的三角形有多少个?
分析与解我们先来研究一些特殊情况:
(1)设b=n=1,这时b=1,因为a≤b≤c,所以a=1,c可取1,2,3,….若c=1,则得到一个三边都为1的等边三角形;若c≥2,由于a+b=2,那么a+b不大于第三边c,这时不可能由a,b,c构成三角形,可见,当b=n=1时,满足条件的三角形只有一个.
(2)设b=n=2,类似地可以列举各种情况如表18.3.
这时满足条件的三角形总数为:1+2=3.
(3)设b=n=3,类似地可得表18.4.
这时满足条件的三角形总数为:1+2+3=6.
通过上面这些特例不难发现,当b=n时,满足条件的三角形总数为:
这个猜想是正确的.因为当b=n时,a可取n个值(1,2,3,…,n),对应于a的每个值,不妨设a=k(1≤k≤n).由于b≤c<a+b,即n≤c<n+k,所以c可能取的值恰好有k 个(n,n+1,n+2,…,n+k-1).所以,当b=n时,满足条件的三角形总数为:
例4设1×2×3×…×n缩写为n!(称作n的阶乘),试化简:1!×1+2!×2+3!×3+…+n!×n.
分析与解先观察特殊情况:
(1)当n=1时,原式=1=(1+1)!-1;
(2)当n=2时,原式=5=(2+1)!-1;
(3)当n=3时,原式=23=(3+1)!-1;
(4)当n=4时,原式=119=(4+1)!-1.
由此做出一般归纳猜想:原式=(n+1)!-1.
下面我们证明这个猜想的正确性.
1+原式=1+(1!×1+2!×2+3!×3+…+n!×n)
=1!×2+2!×2+3!×3+…+n!×n
=2!+2!×2+3!×3+…+n!×n
=2!×3+3!×3+…+n!×n
=3!+3!×3+…+n!×n=…
=n!+n!×n=(n+1)!,
所以原式=(n+1)!-1.
例5设x>0,试比较代数式x3和x2+x+2的值的大小.
分析与解本题直接观察,不好做出归纳猜想,因此可设x等于某些特殊值,代入两式中做试验比较,或许能启发我们发现解题思路.为此,设x=0,显然有
x3<x2+x+2.①
设x=10,则有x3=1000,x2+x+2=112,所以
x3>x2+x+2.②
设x=100,则有x3>x2+x+2.
观察、比较①,②两式的条件和结论,可以发现:当x值较小时,x3<x2+x+2;当x值较大时,x3>x2+x+2.
那么自然会想到:当x=?时,x3=x2+x+2呢?如果这个方程得解,则它很可能就是本题得解的“临界点”.为此,设x3=x2+x+2,则
x3-x2-x-2=0,
(x3-x2-2x)+(x-2)=0,
(x-2)(x2+x+1)=0.
因为x>0,所以x2+x+1>0,所以x-2=0,所以x=2.这样
(1)当x=2时,x3=x2+x+2;
(2)当0<x<2时,因为
x-2<0,x2+x+2>0,
所以 (x-2)(x2+x+2)<0,
即x3-(x2+x+2)<0,
所以 x3<x2+x+2.
(3)当x>2时,因为x-2>0,x2+x+2>0,
所以 (x-2)(x2+x+2)>0,
即x3-(x2+x+2)>0,
所以 x3>x2+x+2.
综合归纳(1),(2),(3),就得到本题的解答.
分析先由特例入手,注意到
例7已知E,F,G,H各点分别在四边形ABCD的AB,BC,CD,DA边上(如图2—101).
(2)当上述条件中比值为3,4,…,n时(n为自然数),那S么S四边形EFGH与S四边形ABCD之比是多少?
G引GM∥AC交DA于M点.由平行截割定理易知
(2)设
当k=3,4时,用类似于(1)的推理方法将所得结论与(1)的结论列成表18.5.
观察表18.5中p,q的值与对应k值的变化关系,不难发现:当k=n(自然数)时有
以上推测是完全正确的,证明留给读者.。