初中数学竞赛专题:方程组
- 格式:doc
- 大小:1.63 MB
- 文档页数:23
第八章 二次方程与方程组第一节 一元二次方程【赛题精选】§1、一元一次方程的解法主要有:直接开平方法、因式分解法、配方法、公式法。
例1、利用直接开平方法解下列关于x 的方程。
(1)0)1(9)2(22=+--x x (2))0(0)22()(22>=+-+a a x a x(3))21(2142222nx n x n x x ++=++例2、利用因式分解法解下列关于x 的方程。
(1)(5x+2)(x-1)=(2x+11)(x-1) (2)0452=+-x x(3)02_23()12(2=++-+x x (4)0)()(22222=-++-q p pq x q p x(5)x m x m x x m )1()1()1(2222-=--+-例3、用配方法解下列关于x 的方程。
(1))0(02≠=++a c bx ax (2)03)12()1(2=-+-+-m x m x m(3)01333223=-+++x x x§2、根的判别式、根与系数的关系韦达定理:若)0(02≠=++a c bx ax 的两个根为1x 、2x ,那么1x 、2x 与a 、b 、c的关系为:两根之和a b x x -=+21;两根之积ac x x =21。
例4、若首项系数不相等的两个二次方程02)2()1(222=+++--a a x a x a (1)、02)2()1(222=+++--b b b x b (2)(其中a 、b 均为正整数)有一个公共根。
求ab ab b a b a --++的值。
例5、已知方程02=++c bx x 与02=++b cx x 各有两个根1x 、2x 及'1x 、'2x ,且1x 2x >0,'1x '2x >0。
求证:(1)1x <0,2x <0,'1x <0,'2x <0;(2)b-1≤c ≤b+1;(3)求b 、c 所有可能的值。
2013年暑期初一数学竞赛第五讲:二元一次方程组(1)【典型例题】例1、二元一次方程组的解x?3?m2?2ymx?的值是?1、已知是方程的一个解,则?y?5?x?y?2?mm的值为多少?使方程组62、若,则的解的和为?x?2y?m?ax?by??16x?8??c抄错了,得到解的解应为,小明解题时把3、已知方程组??cx?20y??224y??10??x?12?222a?b?c值为多少?,则?y??13?例2、二元一次方程组的两种通用解法x?1?y? 1、用代入法解方程组?2x?3y?5?2x?3y?1? 2、用加减法解方程组?3x?5y?1?例3、解二元一次方程组及高元一次方程组(综合)21???1?63y?23x?173y?x?16??、解方程组1、解方程组2??1117x?23y?57????0?2x?22y?1??115???xy16?zyy?x????8y?23x?711???、解方程组、解方程组43 ??y?zz?x12xy1?????2x?3y7311????z?xx?y4?1 / 5a?a?a?aa?a?a?aa?a?a?aa?a?a?a5324245553112431??? 5、若aaaa4132a?a?a?a4312a?a?a?a?a?0k??k的值。
,求,且51432a5bcdef??4?a?acdef?9??b?abdef?16??c(a?c?e)?,d,ef(b?d?f),ab,c,的满足解方程组,求6、已知正数?abcef1??4d??abcdf1??e9??abcde1??f16?值。
x?x?x?x?x?x?...?x?x?x?x?1?19994219972199831199837、解方程组?x?x?...?x?x?1999?1219981999例4、含绝对值的方程组|x|?|y|?7|x?y|?1??1、解方程组2、解方程组??2|x|?3|y|??1|x|?2|y|?3??2 / 5例5、含字母系数方程组的解及杂题y?kx?b?bk,有唯一解,无解,有无穷多解?为何值时,方程组、当1?y?(3k?1)x?2?a0a?a(?2)y?5?2(a?1)x?y,x每取一个值时就有一的二元一次方程,、已知关于2 个方程,而这些方程有一个公共解,你能求出这个解吗?222z??25xy4x?3y?6z?0,x?2y?7z?0(xyz?0)则代数式的值为多少?、若32222x?3y?10z4x?3y?6?mm的值。
初中数学竞赛专题选讲列表法一、内容提要 只要有可能,依题意画个图或列个表给问题以直观的描述,对解题大有好处因为图表常能把数据的题设和结论之间的相互关系,有条不紊地形象表达出来,特别是纵横关系较多的问题,利用图表,不仅便于思考答题方案,还可以作为答题的步骤 图解已在枚举法,交集法等处介绍过,本讲主要介绍表解使用表解的关键是合理地设计纵横栏目其前提是正确地理解题意,明确各条件之间的从属、并列、交叉关系数学逻辑推理有一个最基本的定律,就是排中律,即“不是真,必为假”,“不是假,便是真”,列表推理就是把诸多数据按题目条件,逐一填入表中,当发现与题设矛盾时就排除,在排除淘汰的基础上,推出满足所有条件的结论 二、例题例1 n 为正整数,试证2 n 7 n2能被5整除解: n 分别取1,2,3,4时,观察2 n 7 n2的个位数字情况如下:并且∵2与2; 7 与7为整数的个位数字相同∴n 不论取什么自然数值,2n 7n2均能被5整除例2 小张步行每小时走10里,骑车每小时走30里,他从甲地到乙地步行和骑车走了同样长的路程;然后沿着同一条路从乙地返回甲地,这次步行和骑车走了同样多的时间,结果返回时比去时少用了40分钟求甲、乙两地的距离及从乙到甲所用的时间解:设甲乙两地的距离为里,从乙到甲所用的时间是 小时 列表如下:根据题意,得 ⎪⎪⎩⎪⎪⎨⎧=⨯+⨯+=+xy y y x x23021032302102解这个方程组,得⎩⎨⎧==240y x答:甲乙两地的距离为40里,从乙返甲用了2小时例3 从1到10这十个自然数中,每次取两个,要使它们的和大于10,共有几种取法试列表统计解:有两种列表法:由大数取小数或以小数取大数共有123454321=25种取法例4 A,B,C,D,E五个人,每人头上戴一顶帽子,只有红或白两种颜色中的一种他们看见别人所戴的帽子颜色,分别说了以下的话:A说:我看到的是3白1红; B说:我看到的是4红;C说:我看到的是1白3红; E说:我看到的是4白已知戴白帽子的人说真话,,B,C,D,E各戴什么颜色的帽子解:先由易到难,用否定判断法:若E说了真话,则共有5白,即大家都说了真话,这与其他人所说内容相矛盾,所以E 必是戴红帽;若A说了真话,则共有4白1红,那么除A、E以外,还有2人说真话,就是B、C也说真话,这也不可能,所以A也戴红帽;在确定A、E之后,我们把B、C说真话或假话的情况列表来判断:若B说真话,则C、D都为红∵B看到的是4红,那么C应是说假话,但C说1白3红却是真的,所以矛盾,B没有说真话,应是戴红帽最后,C确实说了真话看到1白3红这时可知D是戴白帽∴A,B,C,D,E所戴帽子的颜色分别是:红,红,白,白,红三、练习1.用列表法,求不等式21-2-3∴不等式210-2-3<0的解集是_____________或____________2.n为自然数,3n与7n的和或差必有一个能被10整除试证之,并说明n取什么值时,其和能被10整除3.若自然数a不是2和3的倍数,试证a223能被24整除4.原计划在一定时间内插秧152亩,实际工作时,每天比原计划多插2亩,结果比原计划提前3天并超额完成8亩问原计划每天插秧几亩5.甲,乙两人接受同样的任务,开始时乙比甲每天少做4件,做到两人都剩下624件时,乙比甲多用了2天此后乙改进技术,每天比原来多做6件,这样两人在同一时间内定成任务求甲、乙两人的工作效率6.A,B,C,D,E,F六个球队,进行单循环比赛(每队都要与其他各队各比赛一场),经过一段时间询问了A,B,C,D,E五个队,结果是他们都参加了比赛,并且比赛的场数各不相同,问未查询的F队比赛了几场7.甲,乙,丙三人参加高考后,甲说:我一定考上重点大学乙说:重点大学我考不上丙说:我考上大学是没有问题的发榜后,这三人中有一人考上重点天学,一人考上一般大学,一人落选对他们的预言,只有一人正确试判断甲,乙,丙的录取情况8.甲,乙,丙三同学,来自初三①,②③班各一人,参加语、数、英兴趣小组各一项已知甲不是①班的,乙不在②班,在①班的不参加数学组,在②班的参加英语组,乙不参加语文组问丙是哪个班参加什么组9.甲,乙,丙,丁四人参加数学竞赛,得了前四名,三位同学在议论名次A说:甲第一,乙第二;B说:甲第二,丁第四;C说:丙第二,丁第三结果他们各对了一半问甲,乙,丙,丁的正确名次是多少10.一次校运会,小王,小林,小江三人包揽了五个项目的前三名,小王共得22分,小林,小江各得9分,每项目的一,二,三名得分,分别是5,2,1分,并知小江得铅球第一名试问他们各得几个第一名,第二名,第三名11.四位外国朋友,他们都会说英、法、日、汉四种语言中的2种,有一种语言三个人会说,但没有一种大家都会说的语言还知道:①A会讲日语,D却不会,但他们用同一种语言交谈;②B不会讲英语,当A、C交谈时,他当翻译;③B、C、D三人谈时,没有一种共同的语言;④四人中没有一人既会讲日语,又会讲法语试问A,B,C,D四人各会讲何种语言练习题参考答案2 列表n=1,2,3,4仿例13 已知可表示为6±14 8亩5 24,206 3场(仿例3)7 甲落选,乙重点,丙一般8丙是(1)班学生,参加语文组9甲,乙,丙,丁分别是1,3,2,410.王(4个一,1个二);江(1个一,4个三);林(4个二,1个三)该种语言,答案列表如右:。
初中高联数学竞赛题
题目:已知方程组
ax + 3y = 7
3x - 2y = 1
求方程组的解,其中a为任意实数
分析:本题是一道二元一次方程组的题目,需要利用加减消元法求解
解答:
将方程组中的两个方程相加,得到
(a+3)x + (3-2)y = 8
化简可得
ax + y = 4
将这个结果代入任何一个方程中,即可消去y,得到一个关于x的一元一次方程
解得: $\left\{ \begin{matrix} x = \frac{4 - a}{a + 3} \\
y = \frac{a + 3}{a + 3} \\
\end{matrix} \right$.
由于求的是方程组的解,所以需要将求得的x、y的值代入原方程组中的任何一个方程中,看是否成立
验证:将求得的x、y的值代入原方程组中的第一个方程中,得到
$\frac{4 - a}{a + 3}a + 3 \times \frac{a + 3}{a + 3} = 7$,成立
将求得的x、y的值代入原方程组中的第二个方程中,得到
$3 \times \frac{4 - a}{a + 3} - 2 \times \frac{a + 3}{a + 3} = 1$,成立
综上所述,方程组的解为 $\left\{ \begin{matrix} x = \frac{4 - a}{a + 3} \\
y = \frac{a + 3}{a + 3} \\
\end{matrix} \right$.
注意事项:在求解过程中要注意消元时不要漏掉常数项,同时要检验
解是否符合题意。
27.不定方程、方程组知识纵横不定方程(组)是指未知数的个数多于方程的个数的方程(组),•其特点是解往往有无穷多个,不能惟一确定.对于不定方程(组),我们往往限定只求整数解,甚至只求正整数解,•加上条件限制后,解就可确定.二元一次不定方程是最简单的不定方程,一些复杂的不定方程(组)•常常转化为二元一次不定方程问题加以解决,与之相关的性质有:设a 、b 、c 、d 为整数,则不定方程ax+by=c 有如下两个重要命题: (1)若(a,b)=d,且d c,则不定方程ax+by=c 没有整数解;(2)若x 0,y 0是方程ax+by=c 且(a,b)=1的一组整数解(称特解),则00x x bt y y at =+⎧⎨=-⎩(t 为整数)是方程的全部整数解(称通解).解不定方程(组),没有现成的模式、固定的方法可循,•需要依据方程(组)的特点进行恰当的变形,并灵活运用以下知识与方法:奇数偶数、整数的整除性、分离整系数、因数分解、配方利用非负数性质、穷举、乘法公式、不等式分析等。
例题求解【例1】正整数m 、n 满足8m+9n=mn+6,则m 的最大值为________. (2000年新加坡数学竞赛题)思路点拨 把m 用含n 的代数式表示,并分离其整数部分(简称分离整系数法),再结合整除知识,求出m 的最大值. 解:75 提示:m=968n n --=9+668n -,n=9时,m 最大值为75. 【例2】如图,在高速公路上从3千米处开始,每隔4千米设一个速度限制标志,而且从千米处开始,每隔9千米设一个测速照相机标志,则刚好在19•千米处同时设置这两种标志.问下一个同时设置这两种标志的地点的千米数是( ).A.32千米B.37千米C.55千米D.90千米(2003年河南省竞赛题) 思路点拨 设置限速标志、照相机标志千米数分别表示为3+4x 、10+9y(x,y•为自然数),问题转化为求不定方程3+4x=10+9y的正整数解.解:选C 提示:x=794y+=2y+1+34y+,4│y+3,135xy=⎧⎨=⎩为所求的解.【例3】(1)求方程15x+52y=6的所有整数解.(2)求方程x+y=x2-xy+y2的整数解. (莫斯科数学奥林匹克试题)(3)求方程11156x y z++=正整数解. (“希望杯”邀请赛试题)思路点拨对于(1)通过观察或辗转相除法,先求出特解.对于(2)易想到完全平方公式,从配方入手;对于(2)易知x,y,z都大于1,不妨设1<x≤y≤z,则1x≥1y≥1z,•将复杂的三元不定方程转化为一元不等式,通过解不等式对某个未知数的取值作出估计,逐步缩小其取值范围,求出其结果.解:(1)观察易得一个特解x=42,y=-12,原方程所有整数解为42521215x ty t=-⎧⎨=-+⎩(t为整数).解法2:x=-4y+6815y+,令6815y+=t1,得y=2t1-168t+,令168t+=t,得t=8t-6,化简得42521215(x ty t t=-⎧⎨=-+⎩为整数)(2)原方程化为(x-y)2+(x-1)2+(y-1)2=2,由此得方程的解为(0,0),(2,2),(1,0),(0,1),(2,1),(1,2)(3)提示: 1x<1x+1y+1z≤3x,即1x<56≤3x,由此得x=2或3,当x=2时, 1x<1y+1z=56-12=13≤1y+1y=2y,即1y<13≤2y,由此得y=4或5或6,同理当x=3时,y=3或4,由此可得当1≤x≤y≤z时,(x,y,z)共有(2,4),(4,2,12),(4,12,2),•(12,2,4),(12,4,2),(2,6,6),(6,2,6),(6,6,2),(3,3,6),(3,6,3),(6,3,3),(3,4,4),(4,4,3),(4,3,4)【例4】一个盒子里装有不多于200粒棋子,如果每次2粒,3粒,4粒或6粒地取出,最终盒内都剩一粒棋子;如果每次11粒地取出,那么正好取完,求盒子里共有多少粒棋子?(2002年重庆市竞赛题)思路点拨 无论怎样取,盒子里的棋子数不变,恰当设未知数,•把问题转化为求不定方程的正整数解.解:提示:设盒子里共有x 粒棋子,则x 被2、3、4、6的最小公倍数12除时,余数为1,即x=12a+1(a 为自然数),又x=11b(b 为自然数),得12a+1=11b,b=12111a + =a+111a +,11│a+1• 因0<x ≤200,故0<12a+1≤200,得0<a<16712,a=10,所以x=12×10+1=•121,•即盒子里共有121粒棋子.【例5】中国百鸡问题:鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一.百钱买百鸡,问鸡翁、鸡母、鸡雏各几何? (出自中国数学家张丘建的著作《算经》)思路点拨 设鸡翁、鸡母、鸡雏分别为x,y,z,则有100531003x y z zx y ++=⎧⎪⎨++=⎪⎩通过消元,将问题转化为求二元一次不定方程的非负整数解.解:消去方程组中的z,得7x+4y=100,显然,(0,25)是方程的一个特解,•所以方程的通解为4257x ty t=-⎧⎨=+⎩(t 为整数),于是有t=100-x-y=100+4t-(25+7t)=75-3t,由x,y,z ≥0且t•为整数得4025707530t t t -≥⎧⎪+≥⎨⎪-≥⎩,t=0,-1,-2,-3,将t 的值代入通解,得四组解 (x,y,z)=(0,25,75),(4,18,78) (8,11,81),(12,4,84)【例6】甲组同学每人有28个核桃,乙组同学每人有30个核桃,•丙组同学每人有31个核桃,三组的核桃总数是365个,问三个小组共有多少名同学?(2001年海峡两岸友谊赛试题)思路点拨 设甲组同学a 人,乙组学生b 人,丙组学生c 人,由题意得28a+30b+31c=365,怎样解三元一次不定方程?运用放缩法,从求出a+b+c 的取值范围入手.解:设甲组、乙组、丙组分别有学生a 人、b 人、c 人,则28a+30b+31c=365 因28(a+b+c)<28a+30b+31c=365,得a+b+c<36528<13.04 所以a+b+c ≤13因31(a+b+c)>28a+30b+31c=365,得(a+b+c)>36531>11.7 所以a+b+c ≥12因此,a+b+c=12或13当a+b+c=13时,得2b+3c=1,此方程无正整数解.故a+b+c≠13,a+b+c=12学力训练一、基础夯实1.已知x,y,z满足x+y=5及z2=xy+y-9,则x+2y+3z=_______.(2002年山东省竞赛题)2.已知4x-3y-6z=0,x+2y-7z=0(xyz≠0),那么22222223657x y zx y z++++的值为________.3.用一元钱买面值4分、8分、1角的3种邮票共18张,每种邮票至少买一张,共有______种不同的买法.4.购买512345则55.希望中学收到王老师捐赠的足球、篮球、排球共20个,其总价值为330元,•这三种球的价格分别是足球每个60元,篮球每个30元,排球每个10个,•那么其中排球有________个. (2003年温州市中考题)6.方程(x+1)2+(y-2)2=1的整数解有( ).A.1组B.2组C.4组D.无数组7.三元方程x+y+z=1999的非负整数解的个数有( ).A.20001999个B.19992000个C.2001000个D.2001999个 (第11届“希望杯”邀请赛试题)8.以下是一个六位数乘上一个一位数的竖式,a、b、c、d、e、f各代表一个数(不一定相同),则a+b+c+d+e+f=( ).abcdef× 4efabcdA.27B.24C.30D.无法确定 (“五羊杯”邀请赛试题)9.求下列方程的整数解: (1)11x+5y=7; (2)4x+y=3xy.10.在车站开始检票时,有a(a>0)名旅客在候车室排队等候检票进站.•检票开始后,仍有旅客继续前来排队检票进站,设旅客按固定的速度增加,•检票口检票的速度也是固定的,若开放一个检票口,则需30分钟才可将排队等候检票的旅客全部检票完毕;若开放两个检票口,则只需10分钟便可将排队等候检票的旅客全部检票完毕;•如果要在5分钟内将排队等候检票的旅客全部检票完毕,以便后来到站的旅客能随到随检,至少要同时开放几个检票口? (2001年广州市中考题)11.下面是同学们玩过的“锤子、剪子、•布”的游戏规则:游戏在两位同学之间进行,用伸出手掌表示“布”,两人同时口念“锤子、剪子、布”,一念到“布”时,同时出手,“布”赢“锤子”,“锤子”赢“剪子”,“剪子”赢“布”。
数学初中竞赛方程与不等式专题训练一.选择题1.方程x2+2xy+3y2=34的整数解(x,y)的组数为()A.3 B.4 C.5 D.62.已知两块边长都为a厘米的大正方形,两块边长都为b厘米的小正方形和五块长、宽分别是a厘米、b厘米的小长方形(a>b),按如图的方式正好不重叠地拼成一个大长方形,若已知拼成的大长方形周长为78厘米,四个正方形的面积和为242平方厘米,则每个小长方形的面积为()A.11平方厘米B.12平方厘米C.24平方厘米D.48平方厘米3.球赛入场券有10元、15元、20元三种票价,老师用480元买了40张入场券,其中票价为10元的比票价为20元的多的张数是()A.12 B.16 C.20 D.244.由方程组消去y后化简得到的方程是()A.2x2﹣2x﹣6=0 B.2x2+2x+5=0 C.2x2+5=0 D.2x2﹣2x+5=0 5.某班将举行“庆祝建党95周年知识竞赛”活动,班长安排小明购买奖品,如图是小明买回奖品时与班长的对话情境:请根据如图对话信息,计算乙种笔记本买了()A.25本B.20本C.15本D.10本6.中国有个名句“运筹帷幄之中,决胜千里之外”.其中的“筹”原意是指《孙子算经》中记载的“算筹”.算筹是古代用来进行计算的工具,它是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式(如图).当表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间:个位、百位、万位数用纵式表示;十位,千位,十万位数用横式表示;“0”用空位来代替,以此类推.例如3306用算筹表示就是,则2022用算筹可表示为()A.B.C.D.7.如图是某汽车公司销售点的环形分布图.公司在年初分配给A、B、C、D四个销售点某种汽车各50辆.在销售前发现需将A、B、C、D四个销售点的这批汽车分别调整为40、45、54、61辆,但调整只能在相邻销售点之间进行,那么要完成上述调整,最少的调动辆次n为(一辆汽车从一个销售点调整到相邻销售点为一次)()A.15 B.16 C.17 D.188.已知在代数式a+bx+cx2中,a、b、c都是整数,当x=3时,该式的值是2008;当x=7时,该式的值是2009,这样的代数式有()A.0个B.1个C.10个D.无穷多个9.对于任意的有理数a,方程2x2+(a+1)x﹣(3a2﹣4a+b)=0的根总是有理数,则b的值为()A.1 B.﹣1 C.2 D.010.已知关于x的方程(x﹣a)(x﹣b)﹣1=0(a<b)的两根为p、q(p<q,且pq>0),则一定有()A.a<p<q<b B.>C.<<<D.<<<11.为了预防甲流,某班级准备300元钱,计划购入一批体温计.已知有两种体温计可供选购,其中水银体温计3元/支,电子体温计10元/支,由于水银体温计容易破裂且水银具有毒性,所以希望尽可能多地购买电子体温计.如果该班级共53名同学,且要求每位同学有一支体温计,则最多可购买电子体温计()支.A.20 B.21 C.30 D.3312.初二(1)班有48名同学,其中有男同学n名,将他们编成1号、2号、…,n号.在寒假期间,1号给3名同学打过电话,2号给4名同学打过电话,3号给5名同学打过电话,…,n号同学给一半同学打过电话,由此可知该班女同学的人数是()A.22 B.24 C.25 D.26二.填空题13.已知p,q都是正整数,方程7x2﹣px+2009q=0的两个根都是质数,则p+q=.14.将108个苹果放到一些盒子中,盒子有三种规格:一种可以装10个苹果,一种可以装9个苹果,一种可以装6个苹果,要求每种规格都要有且每个盒子均恰好装满,则不同的装法总数为.15.初三某班共有60名同学,学号依次为1号,2号,…,60号,现分成A,B,C三个小组,每组人数若干,若将B组的小俊(27号)调整到A组,将C组的小芸(43号)调整到B组,此时A,C两组同学学号的平均数都将比调整前增加0.5,B组同学学号的平均数将比调整前增加0.8,同时B组中的小营(37号)计算发现,她的学号数高于调整前B 组同学学号的平均数,却低于调整后的平均数.请问调整前A组共有名同学.16.“十一”国庆期间,某一商品搞清仓促销活动,从10月2日起每天比前一天降价50元,每一天的销售量比前一天增加50件,若“十一”期间7天这种商品的销售共收入308700元,则10月4日这一天收入元.17.某小区打算购买100盆花装饰花园,20人分三组刚好搬完(假设每人都需要搬),每组人的搬花量如下表,请问第一组可能有人.组别第一组第二组第三组每人搬花盆数 5 4 1018.在车站开始检票时,有a(a>0)名旅客在候车室等候检票进站,检票开始后,仍有旅客继续前来排队检票进站,设旅客按固定的速度增加,检票口检票的速度也是固定的.若开放一个检票口,则需30分钟才可将排队等候检票的旅客全部检票完毕;若开放两个检票口,则只需10分钟便可将排队等候检票的旅客全部检票完毕;如果要在5分钟内将排队等候检票的旅客全部检票完毕,以使后来到站的旅客能随到随检,至少要同时开放个检票口.19.某中学有九百多名师生外出参加社会实践活动,准备租某种客车若干辆.如果每辆车刚好坐满(即每个人都刚好有一个座位),就会余下14个人;如果多准备一辆车,那么每辆车刚好都空1个座位,则这种客车每辆的乘客座位有个.20.甲、乙两商店某种铅笔标价都是1元,一天,让学生小王欲购这种铅笔,发现甲、乙两商店都让利优惠:甲店实行每买5枝送1枝(不足5枝不送);乙店实行买4枝或4枝以上打8.5折,小王买了13枝这种铅笔,最少需要花元.三.解答题21.解方程组:22.已知关于x的一元二次方程x2+2(k+1)x+k2+2=0有两个实根x1,x2.(1)求实数k的取值范围;(2)若|x1|﹣|x2|=2,求k的值.23.将一个三位数分成4个数,使得第一个数乘以2,第二个数除以2,第三个数减1,第四个数加2,得到的结果相等,若该三位数比这四个数中最大的数的2倍大59,求这三位数.24.a、b、c为正整数,关于x的方程ax2+bx+c=0的两实根的绝对值都小于,求a+b+c 的最小值.25.《见微知著》谈到:从一个简单的经典问题出发,从特殊到一般,由简单到复杂:从部分到整体,由低维到高维,知识与方法上的类比是探索发展的重要途径,是思想阀门发现新问题、新结论的重要方法.阅读材料一:利用整体思想解题,运用代数式的恒等变形,使不少依照常规思路难以解决的问题找到简便解决方法,常用的途径有:(1)整体观察;(2)整体设元;(3)整体代入;(4)整体求和等.例如,ab=1求证:=1证明:原式===1波利亚在《怎样解题》中指出:“当你找到第一个藤菇或作出第一个发现后,再四处看看,他们总是成群生长”类似问题,我们有更多的式子满足以上特征.阅读材料二:基本不等式(a>0,b>0),当且仅当a=b时等号成立,它是解决最值问题的有力工具.例如:在x>0的条件下,当x为何值时,x+有最小值,最小值是多少?解:∵x>0,>0∴,即x,∴当且仅当x=,即x=1时,x+有最小值,最小值为2.请根据阅读材料解答下列问题:(1)已知ab=1,求下列各式的值:=;②=.(2)若abc=1,解方程=1(3)若正数a、b满足ab=1,求M=的最小值.参考答案一.选择题1.解:方程变形得:(x+y)2+2y2=34,∵34与2y2是偶数,∴x+y必须是偶数,设x+y=2t,则原方程变为:(2t)2+2y2=34,∴2t2+y2=17,它的整数解为,则当y=3,t=2时,x=1;当y=3,t=﹣2时,x=﹣7;当y=﹣3,t=2时,x=7;当y=﹣3,t=﹣2时,x=﹣1.∴原方程的整数解为:(1,3),(﹣7,3),(7,﹣3),(﹣1,﹣3)共4组.故选:B.2.解:依题意,得:,整理,得:,(①2﹣②)÷2,得:ab=24.故选:C.3.解:分别设三种票买了x、y、z张.则根据题意,得,由②,得:y=40﹣x﹣z,③将③代入①,得:x﹣z=24.故选:D.4.解:,由①,得x=y+1③,将③代入②,得(x﹣1)2+x2+4=0,化简,得2x2﹣2x+5=0,故选:D.5.解:设甲种笔记本买了x本,甲种笔记本的单价是y元,则乙种笔记本买了(40﹣x)本,乙种笔记本的单价是(y+3)元,根据题意,得:,解得:,答:甲种笔记本买了25本,乙种笔记本买了15本.故选:C.6.解:∵各位数码的筹式需要纵横相间:个位、百位、万位数用纵式表示;十位,千位,十万位数用横式表示;“0”用空位来代替,∴2022用算筹可表示为故选:C.7.解:根据题意可得:互不相邻两点B、D,B处至少调动5辆次,D处至少调入11辆次,两处之和至少16辆次,因而四个销售点调动至少16辆次,又A、B的数量减少,C、D的数量增加,所以从A调11辆到D,从B调1辆到A,调4辆到C,共调整了11+1+4=16辆.综上,最少调动16辆次.故选:B.8.解:根据题意,得,由②﹣①,得4b+40c=1,③∵a、b、c都是整数,∴③的左边是4的倍数,与右边不等,所以,这样的代数式不存在;故选:A.9.解:∵方程的△=(a+1)2+8(3a2﹣4a+b)=(5a﹣3)2+8b﹣8≥0,∴当8b﹣8≥0时,必定△≥0,即方程必有实根,∴b≥1,当b=1时,3a2﹣4a+1=(3a﹣1)(a﹣1),∴十字因式分解得方程为(x﹣a+1)(2x+3a﹣1)=0,∴b=1成立,当b=2时,3a2﹣4a+b=3a2﹣4a+2不能因式分解,∴方程有可能为无理数解,同理可得b=﹣1以及0时,方程有可能为无理数解,故b的值为1.故选:A.10.解:设y=(x﹣a)(x﹣b),则此二次函数开口向上,当(x﹣a)(x﹣b)=0时,即函数与x轴的交点为:(a,0),(b,0),当(x﹣a)(x﹣b)=1时,∵p、q是关于x的方程(x﹣a)(x﹣b)﹣1=0的两实根,∴函数与y=1的交点为:(p,1),(q,1),根据二次函数的增减性,可得:当a<b,p<q时,p<a<b<q,故<<<当p,q同为负数不合题意,故>不成立,故选:C.11.解:设可购买电子体温计x支,则需买水银体温计(53﹣x)支,由题意,得.10x+3×(53﹣x)≤300.解得:x≤20∴最多可购买电子体温计20支,故选:A.12.解:一半同学是48÷2=24人,1号给3=2+1名打电话,2号给4=2+2名打电话,3号给5=2+3名打电话,…n号给2+n=24名打电话,所以n=22,48﹣22=26,该班有女生26名,故选:D.二.填空题(共8小题)13.解:x 1+x2=x 1x2==287q=7×41×qx 1和x2都是质数则只有x1和x2是7和41,而q=1所以7+41=p=336所以p+q=337故填:33714.解:设装10个苹果的有x盒,装9个苹果的有y盒,装6个苹果的有z盒,∵每种规格都要有且每个盒子均恰好装满,∴0<x<10,0<y≤11,0<z≤15,且x,y,z都是整数,则10x+9y+6z=108,∴x==,∵0<x<10,且为整数,∴36﹣3y﹣2z是10的倍数,即:36﹣3y﹣2z=10或20或30,当36﹣3y﹣2z=10时,y=,∵0<y≤11,0<z≤15,且y,z都为整数,∴26﹣2z=3或6或9或12或15或18或21或24,∴z=(舍)或z=10或z=(舍)或z=7或z=(舍)或z=4或z=(舍)或z=1,当z=10时,y=2,x=3,当z=7时,y=4,x=3,当z=4时,y=8,x=3当z=1时,y=8,x=3,当36﹣3y﹣2z=20时,y=,∵0<y≤11,0<z≤15,且y,z都为整数,∴16﹣2z=3或6或9或12或15或18或21或24,∴z=(舍)或z=5或z=(舍)或z=2或z=(舍)当z=5时,y=2,x=6,当z=2时,y=4,x=6,当36﹣3y﹣2z=30时,y=,∵0<y≤11,0<z≤15,且y,z都为整数,∴6﹣2z=3,∴z=(舍)即:满足条件的不同的装法有6种,故答案为6.15.解:设A,B,C组调整前的人数分别是n A,n B,n C,则A,B,C调整后的人数分别是n A+1,n,n C﹣1,B设A,B,C组调整前各组的号码之和分别为w A,w B,w C,则A,B,C调整后各组的号码之和分别为w A+27,w+16,w C﹣43,B根据题意得:由③得,n B=20∴36.2<<37,即724<w B<740又∵n A+n B+n C=60∴n C=40﹣n A④整理得:由①得∴w C+w A=2500﹣56n A又∵∴w B=1830﹣(2500﹣56n A)=﹣670+56n A∴724<﹣670+56n A<740解得∵n A为正整数,所以n A=25所以本题答案为2516.解:设10月1日这种商品每件x元,销售量为a件,由题意,得ax+(x﹣50)(a+50)+(x﹣100)(a+100)+(x﹣150)(a+150)+(x﹣200)(a+200)+(x﹣250)(a+250)+(x﹣300)(a+300)=308700,化简整理,得7ax+1050x﹣1050a﹣227500=308700,两边除以7,得ax+150x﹣150a﹣32500=44100,所以(x﹣150)(a+150)=54100.即10月4日这一天收入54100元.故答案为:54100.17.解:设第一组x人,第二组y人,第三组(20﹣x﹣y)人,由题意得:5x+4y+10(20﹣x﹣y)=100∴x=∵x,y为正整数,∴100﹣6y为5的整数倍,∴y=5或10或15∴x=14或8或2故答案为:14或8或218.解:设一个窗口每分检出的人是c,每分来的人是b,至少要开放x个窗口;a+30b=30c①,a+10b=2×10c②,a+5b≤5×x×c,由①﹣②得:c=2b,a=30c﹣30b=30b,30b+5b≤5×x×2b,即35b≤10bx,∵b>0,∴在不等式两边都除以10b得:x≥3.5,答:至少要同时开放4个检票口.19.解:设准备客车x辆,每辆客车有座位x个,根据题意知:xy+14=(x+1)y﹣x﹣1,得y=x+15,又知xy>900,即x(x+15)>900,x2+15x﹣900>0,解得:x>或x<(舍去)即x>23.43,当x =24时,y =39,xy =936,当x =25时,y =40,xy =1000(不符合题意)即这种客车每辆的乘客座位有39个,故答案为:39.20.解:因为甲店实行每买5枝送1枝,所以小王先到甲店花5元钱买了6枝,剩下7枝到乙店购买,用去了7×0.85=5.95,所以小王一共花了:5+5.95=10.95元.故填:10.95.三.解答题(共5小题)21.解:由①得,( x +y )2=9,则x +y =3或x +y =﹣3, 与②组成方程组和, 解得,,, 所以原方程组的解为,.22.解:(1)∵原方程有两个实数根,∴△=[2(k +1)]2﹣4(k 2+2)=8k ﹣4≥0,解得k ≥.(2)∵x 1、x 2是方程x 2+2(k +1)x +k 2+2=0有两个实根,k ≥,∴x 1+x 2=﹣2(k +1)<0,x 1x 2=k 2+2>0,∴(|x 1|﹣|x 2|)2=x 12﹣2|x 1•x 2|+x 22=x 12+2x 1x 2+x 22﹣4x 1x 2=(x 1+x 2)2﹣4x 1x 2=(2)2=20,∴[﹣2(k +1)]2﹣4(k 2+2)=20,即8k ﹣24=0,解得:k =3.故k 的值为3.23.解:设这个相等的结果为x ,则由三位数分成的四个数分别为:、2x 、x +1、x ﹣2,则这个三位数为:+2x +(x +1)+(x ﹣2)=﹣1 ∴100≤﹣1<1000 ∴≤x <∴四个数、2x 、x +1、x ﹣2中,2x 最大,由题意得:﹣1=2×2x +59 ∴=60∴x =120 ∴这个三位数为:×120﹣1=539答:这个三位数为539.24.解:由于a ,b ,c 是正整数,关于x 的一元二次方程ax 2+bx +c =0的两个实数根, 则判别式△=b 2﹣4ac ≥0,若方程的两根设为x 1,x 2,且x 1≤x 2,则由题设可得x 1+x 2=﹣,x 1x 2=, 则﹣<x 1≤x 2<0.令f (x )=ax 2+bx +c ,即有f (﹣)>0, 即﹣b +c >0,且﹣<﹣<0.整理可得:2a >3b ,且a +9c >3b ,且b 2>4ac即有2a >3b >18c .结合前者,可知,最小为a =16,b =9,c =1.则a +b +c 的最小值为26.25.解:(1)①∵ab =1∴a=∴原式=+=+=1故答案为:1②∵ab=1∴a=原式=+=1故答案为:1(2)∵=1,且abc=1,∴+=15x=1x=(3)∵正数a、b满足ab=1∴b=,a>0,b>0,∴a+=(﹣)2+2≥2∵M====1﹣∴当a+=2时,M的值最小,∴M最小值=1﹣=2﹣2。
二元一次方程组典型例题【例1】已知方程组的解x,y满足方程5x-y=3,求k的值.【思考与分析】本题有三种解法,前两种为一般解法,后一种为巧解法.(1)由已知方程组消去k,得x与y的关系式,再与5x-y=3联立组成方程组求出x,y的值,最后将x,y的值代入方程组中任一方程即可求出k的值.(2)把k当做已知数,解方程组,再根据5x-y=3建立关于k的方程,便可求出k的值.(3)将方程组中的两个方程相加,得5x-y=2k+11,又知5x-y=3,所以整体代入即可求出k的值.把代入①,得,解得k=-4.解法二:①×3-②×2,得17y=k-22,解法三:①+②,得5x-y=2k+11.又由5x-y=3,得2k+11=3,解得k=-4.【小结】解题时我们要以一般解法为主,特殊方法虽然巧妙,但是不容易想到,有思考巧妙解法的时间,可能这道题我们已经用一般解法解了一半了,当然,巧妙解法很容易想到的话,那就应该用巧妙解二元一次方程组能力提升讲义知识提要1. 二元一次方程组⎩⎨⎧=+=+222111c y b x a c y b x a 的解的情况有以下三种: ① 当212121c c b b a a ==时,方程组有无数多解。
(∵两个方程等效) ② 当212121c c b b a a ≠=时,方程组无解。
(∵两个方程是矛盾的) ③ 当2121b b a a ≠(即a 1b 2-a 2b 1≠0)时,方程组有唯一的解: ⎪⎪⎩⎪⎪⎨⎧--=--=1221211212211221b a b a a c a c y b a b a b c b c x (这个解可用加减消元法求得) 2. 方程的个数少于未知数的个数时,一般是不定解,即有无数多解,若要求整数解,可按二元一次方程整数解的求法进行。
3. 求方程组中的待定系数的取值,一般是求出方程组的解(把待定系数当己知数),再解含待定系数的不等式或加以讨论。
九年级数学竞赛题一、代数部分1. 一元二次方程竞赛题题目:已知关于公式的一元二次方程公式有两个实数根公式和公式。
(1)求实数公式的取值范围;(2)当公式时,求公式的值。
解析:(1)对于一元二次方程公式,判别式公式。
在方程公式中,公式,公式,公式,因为方程有两个实数根,所以公式。
展开公式得公式,即公式,解得公式。
(2)由公式可得公式。
根据韦达定理,在一元二次方程公式中,公式,公式。
对于方程公式,公式,公式。
当公式时,即公式,解得公式,但公式不满足公式(由(1)得),舍去。
当公式时,即公式,那么公式,由(1)中公式,解得公式。
2. 二次函数竞赛题题目:二次函数公式的图象经过点公式,且与公式轴交点的横坐标分别为公式、公式,其中公式,公式,求公式的取值范围。
解析:因为二次函数公式的图象经过点公式,所以公式,则公式。
二次函数与公式轴交点的横坐标是方程公式的根,由韦达定理公式,公式。
设公式,因为公式,公式,当公式时,公式;当公式时,公式;当公式时,公式。
将公式代入公式,公式中:由公式得公式,化简得公式,即公式。
由公式得公式,化简得公式,即公式,公式。
所以公式,则公式,解得公式。
二、几何部分1. 圆的竞赛题题目:在公式中,弦公式与弦公式相交于点公式,公式、公式分别是弦公式、公式的中点,连接公式、公式,若公式,公式的半径为公式。
(1)求证:公式是等边三角形;(2)求公式的长(用公式表示)。
解析:(1)连接公式、公式。
因为公式、公式分别是弦公式、公式的中点,根据垂径定理,公式,公式。
在四边形公式中,公式,公式,根据四边形内角和为公式,可得公式。
又因为公式(半径),公式、公式分别是弦公式、公式的中点,所以公式,公式。
在公式中,公式,公式(同圆中,弦心距相等则弦相等的一半也相等),所以公式是等边三角形。
(2)设公式与公式交于点公式,公式与公式交于点公式。
在公式中,公式,公式,公式,则公式。
同理,在公式中,公式。
因为公式是等边三角形,公式,在公式中,公式,公式,则公式,所以公式。
初中数学竞赛精品标准教程及练习二元一次方程组解的讨论二元一次方程组是初中数学中的一个重要内容,也是数学竞赛中经常出现的题型。
解二元一次方程组的方法主要有代入法、消元法和等式法。
下面是对这三种方法进行详细讨论的精品标准教程。
一、代入法代入法是解二元一次方程组最常见的方法之一、它的基本思想是通过一个方程的解来代入另一个方程,从而得到另一个未知数的解。
例题1:解方程组2x+y=6x-y=2解析:由于第二个方程的形式比较简单,所以可以先解x,然后带入第一个方程来解y。
解方程x-y=2得到x=2+y将x=2+y代入第一个方程2x+y=6得到2(2+y)+y=6化简得4+2y+y=6化简得3y=2解得y=2/3带入第一个方程2x+y=6得到2x+2/3=6化简得2x=6-2/3化简得2x=16/3解得x=8/3所以,解得x=8/3,y=2/3二、消元法消元法是解二元一次方程组的另一种常见方法。
它的基本思想是通过消去一个未知数,得到只含有一个未知数的一次方程,从而求出这个未知数的值,然后代入原方程组来求出另一个未知数的值。
例题2:解方程组2x+y=6x-y=2解析:首先观察发现,两个方程都有x-y,所以可以消去y。
将第二个方程两边同时乘以2得到2x-2y=4将这个方程与第一个方程相加,得到(2x+y)+(2x-2y)=6+4化简得4x=10解得x=10/4=5/2将x=5/2带入第一个方程2(5/2)+y=6化简得5+y=6解得y=1所以,解得x=5/2,y=1三、等式法等式法是解二元一次方程组的另一种常见方法。
它的基本思想是将其中一个方程的左右两边都化成同样的形式,然后将两个方程相减或相加,从而消去一个未知数。
例题3:解方程组3x-2y=72x+3y=1解析:为了消去x或y,我们可以将第一个方程乘以3,将第二个方程乘以2,从而使得两个方程的x系数一样。
将第一个方程乘以3得到9x-6y=21将第二个方程乘以2得到4x+6y=2将两个方程相加,得到(9x-6y)+(4x+6y)=21+2化简得13x=23解得x=23/13将x=23/13带入第一个方程3(23/13)-2y=7化简得69/13-2y=7解得y=(69/13-7)/(-2)化简得y=5/13所以,解得x=23/13,y=5/13通过以上的讨论,我们可以看出代入法、消元法和等式法都是解二元一次方程组的有效方法。
初中数学竞赛专题选讲(初三.11)未知数例如程个数多的方程组解法一、内容提要在一样情形下,解方程或方程组,未知数的个数老是与方程的个数一样的,但也有一些方程或方程组,所含的未知数的个数多于方程的个数,包括在列方程解应用题时,引入的辅助未知数.解这种方程或方程组,一样有两种情形:一是依题意只求其特殊解,如整数解,或几个未知数的和(积)等,无需求出所有的解;二是在实数范围内,可运用其性质,增加方程或不等式的个数. 例如,利用取值范围,非负数的性质等.二、例题例1. 在实数范围内,解以下方程或方程组: ①0211122=++--+-y x x x ; ②x 2+xy+y 2-3x -3y+3=0; ③⎩⎨⎧=-=++4222z xy z y x解:① 依照在实数范围内,二次根式被开方数是非负数,分母不等于零.得不等式组 ⎪⎩⎪⎨⎧≠-≥-≥-01010122x x x解得x 2=1而x ≠1, ∴⎩⎨⎧-=-=21y x ② 整理为关于x 的二次方程,利用方程有实数根,那么判别式 △≥0.x 2+(y -3)x+(y 2-3y+3)=0.∵x 是实数, ∴△≥0.即( y -3)2-4(y 2-3y+3)≥0 .解得 (y -1)2≤0 .而(y -1)2≥0. ∴y=1.∴⎩⎨⎧==11y x 是原方程的解.③消去一元后,利用实数平方是非负数性质.由①得z=2-x -y .代入②得2xy -(2-x -y)2-4=0.整理配方,得(x -2)2+(y -2)2=0.∵相加得0的两个数,只有是互为相反数.而 x, y 是实数,∴(x -2)2≥0,(y -2)2≥0.∴知足等式的条件只能是:⎩⎨⎧=-=-0202y x . ∴方程组的解是 ⎪⎩⎪⎨⎧-===222z y x此题在消去z 后,也能够仿②,写成关于 x 的二次方程,用判别式求解.例2. 一个自然数除以4余1,除以5余2,除以11余4,求适合条件的最小自然数.分析:此题有多种解法:①交集法, ②设三元,消去一元,用二元一次方程求整数解,③设二元,求二元一次方程的整数解.解法一:除以4余1的自然数集合:{1,5,9,13,17,21,…37…};除以5余2的自然数集合:{2,7,12,17,…37…};除以11余4的自然数集合:{4,15,26,37,…}.三个集合的公共元素中最小的自然数是37.解法二:设所求的自然数 为4a+1或5b+2 或11c+4 (a,b,c 都是自然数).得方程组 ⎩⎨⎧+=++=+)2(41114)1(2514c a b a 由(1)得 a=41415++=+b b b . 设k b =+41 (k 为正整数), 那么 b=4k -1, a=5k -1. 由(2)得 c=117911720113)15(41134-+=-=--=-k k k k a .要使1179-k 为整数,k 取最小正整数2. 这时c=3 (也可求得b=7, a=9), 所求自然数 是37.解法三:设所求的自然数为x, 那么41-x ,52-x , 114-x 都是自然数. ∵41-x >52-x >114-x . ∴41-x +114-x -52-x 也是自然数. 设y=41-x +114-x -52-x . 去分母,得 200y=31x -47. x=31163173147200+++=+y y y . y 取最小正整数5,能使31163+y 为整数. ∴x=37, 即最小的自然数是37.例3. 有甲,乙,丙三种货物.假设购买甲3件,乙7件,丙1件共需3.15元;假设购买甲4件,乙10件,丙1件共需4.20元.问购买甲、乙、 丙各1件共需几元?解:设甲,乙,丙每件别离为x, y, z 元.依照题意,得⎩⎨⎧=++=++)2(20.4104)1(15.373z y x z y x ( 依题意只要求出x+y+z 的值) (1)×3-(2)×2:x+y+z=1.05〔元〕.答:买甲、乙、 丙各1件共需1.05元.例4. 甲、乙两车别离从A 、B 两站同时动身,相向而行,当甲车走完全程的一半时,乙车距A 站24千米;当乙车走完全程的一半时,甲车距B 站15千米.求A 、B 两站的距离.解:设A 、B 两站的距离为x 千米,并引入辅助未知数V 甲,V 乙别离表示甲、乙两车的速度. 依照题意,得⎪⎪⎪⎩⎪⎪⎪⎨⎧=--=)2(215)1(242乙甲乙甲V x V x V x V x ( 这方程组可同时消去两个辅助未知数.) ∵ 方程(2)左、右不等于零 ∴(1)÷(2)得224152x x x x-=-. 解得, x=40;或 x=12 (不合题意 舍去).答:A 、B 两站的距离为40千米.三、练习1. 甲,乙,丙,丁,戊做一件工程,甲,乙,丙合作需7.5小时,甲,丙戊合作需5小时,甲,丙,丁合作需6小时,乙,丁,戊合作需4小时.问五人合作需几小时?2. 服装厂向百货商店购买甲、乙两种布,共付42.9元,售货员收款时发觉甲、乙两种布单价对调了,退给厂方1.6元,厂方把这1.6元又买 了甲、乙两种布各1尺.问服装厂共买布几尺?3. 两只船别离从河的两岸同时对开,速度维持不变,第一次相遇时,距河的一岸700米,继续前进抵达对岸后当即返回,第二次相遇时,距河的另一岸400米,求河的宽.4. 游泳运发动自闽江逆流而上,在解放大桥把水壶丧失,继续前游20分钟才发觉,于是返回查找,在闽江大桥处追到,两桥相距1000米,求水流的速度.5. 长方形的长和宽均为整数,且周长的数值与面积的数值相等.问这长方形的长和宽各是多少?6. 有一队士兵,假设排成3列纵队,那么最后一行只有1人;假设排成5列纵队,那么最后一行只有7. 人;排成7列纵队,那么最后一行只有6人.问这队士兵最少是几人?7. 求以下方程的实数解:① 0311221=++-+-y x x② 5x 2+6xy+2y 2-14x -8y+10=0③ (x 2+1)(y 2+4)=8xy④ 052312=+-+-+y x y x8. 一件工程,若是甲单独完成所需的时刻是乙,丙合做,完成这件工程所需时刻的a 倍;若是乙单独完成所需的时刻是甲,丙合做,完成这件工程所需时刻的b 倍.(其中b>a>1),那么丙单独完成所需的时刻是甲,乙合做,完成这件工程所需时刻的多少倍?9. 甲,乙两车从东站,丙,丁两车从西站,同时相向而行.甲车行120千米遇丙车,再行20千米遇丁车;乙车在离西站126千米处遇丙车,在半途遇丁车.求东西两站的距离.10. 三辆车A ,B ,C 从甲到乙.B 比C 迟开5分钟,动身后20分钟追上C ;A 比B 迟开10分钟,动身后50分钟追上C.求A 动身后追上B 的时刻.11. 学生假设干人住宿,若是每间4人,有20人没房住;若是每间8人,那么有一间不满也不空.求学生人数.12.一只船从甲码头顺水航行到乙码头用5小时,由乙码头逆水航行到甲码头需7小时。
初中数学竞赛辅导资料-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第一篇 一元一次方程的讨论第一部分 基本方法1. 方程的解的定义:能使方程左右两边的值相等的未知数的值叫做方程的解。
一元方程的解也叫做根。
例如:方程 2x +6=0, x (x -1)=0, |x |=6, 0x =0, 0x =2的解 分别是: x =-3, x =0或x =1, x =±6, 所有的数,无解。
2. 关于x 的一元一次方程的解(根)的情况:化为最简方程ax =b 后, 讨论它的解:当a ≠0时,有唯一的解 x =ab ; 当a =0且b ≠0时,无解;当a =0且b =0时,有无数多解。
(∵不论x 取什么值,0x =0都成立)3. 求方程ax =b (a ≠0)的整数解、正整数解、正数解当a |b 时,方程有整数解;当a |b ,且a 、b 同号时,方程有正整数解;当a 、b 同号时,方程的解是正数。
综上所述,讨论一元一次方程的解,一般应先化为最简方程ax =b第二部分 典例精析例1 a 取什么值时,方程a (a -2)x =4(a -2) ①有唯一的解②无解③有无数多解④是正数解例2 k取什么整数值时,方程①k(x+1)=k-2(x-2)的解是整数?②(1-x)k=6的解是负整数?例3己知方程a(x-2)=b(x+1)-2a无解。
问a和b应满足什么关系?例4a、b取什么值时,方程(3x-2)a+(2x-3)b=8x-7有无数多解?第三部分 典题精练1. 根据方程的解的定义,写出下列方程的解:① (x +1)=0, ②x 2=9, ③|x |=9, ④|x |=-3,⑤3x +1=3x -1, ⑥x +2=2+x2. 关于x 的方程ax =x +2无解,那么a __________3. 在方程a (a -3)x =a 中,当a 取值为____时,有唯一的解; 当a ___时无解;当a _____时,有无数多解; 当a ____时,解是负数。
第4章方程组§4.1方程组的解法4.1.1★已知关x 、y 的方程组()21,221 3.ax y a x a y +=+⎧⎪⎨+-=⎪⎩①② 分别求出当a 为何值时,方程组有唯一一组解;无解;有无穷多组解,解析与一元一次方程一样,含有字母系数的一次方程组求解时也要进行讨论,一般是通过消元,归结 为一元一次方程ax b =的形式进行讨论,但必须特别注意,消元时,若用含有字母的式子去乘或者去除方程的两边时,这个式子的值不能等于零.由①式得()21y a ax =+-,③将③代入②得()()()()122a a x a a -2+=-+.④当()210a a -+≠(),即2a ≠且1a ≠-时, 方程④有唯一解21a x a +=+,将此x 值代入③有 ()121y a =+, 因而原方程组有唯一一组解.当()()210a a -+=,且()()220a a -+≠时,即1a =-时,方程④无解,因此原方程组无解. 当()()210a a -+=且()()210a a -+=时,即2a =时,方程④有无穷多个解,因此原方程组有 无穷多组解.评注对于二元一次方程组111222a xb yc a x b y c +=⎧⎨+=⎩,(1a 、2a 、1b 、2b 为已知数,且1a 与1b ,2a 与2b 中都至少 有一个不为零).(1)当1122a b a b ≠时,方程组有唯一的解 2112122112211221b c b c x a b a b a c a c y a b a b -⎧=⎪-⎪⎨-⎪=⎪-⎩(2)当111222a b c a b c ==时,原方程组有无穷多组解. (3)当111222a b c a b c =≠时,原方程组无解.4.1.2★对k 、m 的哪些值,方程组()214y kx m y k x =+⎧⎪⎨=-+⎪⎩至少有一组解? 解析由原方程可得()214kx m k x +=-+.即()14k x m -=-.(1)当1≠k 时,方程有唯一解41m x k -=-,从而原方程组有唯一解. (2)当1k -,4m =时,方程有无穷多个解,从而原方程组也有无穷多组解.综上所述,当1k ≠且m 为任意数,或1k =且4m =时,方程组至少有一组解.4.1.3★已知关于x 、y 的二元一次方程 ()()12520a x a y a -+++-=.当a 每取一个值时,就有一个方程,而这些方程有一个公共解,试求出这个公共解.解析1根据题意,可分别令1a =,2a =-代入原方程得到一个方程组:330,390.y x +=⎧⎨-+=⎩解之得3,1.x y =⎧⎨=-⎩将3x =,1y =-代入原方程得()()()1321520a a a -⋅++⋅-+-=.所以对任何a 值3,1x y =⎧⎨=-⎩都是原方程的解.评注取1a =为的是使方程中()10a x -=,方程无x 项,可直接求出y 值;取2a =-的道理类似. 解析2可将原方程变形为()(2)250a x y x y +----=.由于公共解与a 无关,故有20,250.x y x y +-=⎧⎨--=⎩解之得公共解为3,1.x y =⎧⎨=-⎩4.1.4★★已知0xyz ≠,且20x y z ++=,5440x y z +-=,求22222610345x y z x yz z +--+的值.解析已知代数式中含有x 、y 、z 三个字母,而等式只有2个,在一般情况下是不可能求出x 、y 、z 的具体值来的.因此,可以把已知条件中的z 视为常数,得到关于x 、y 的方程组,从而找出x 、y 与z 的关系,由此可求出其值.把已知等式视作关于x 、y 的方程,z 视作常数,得关于x 、y 的方程组20,5440.x y z x y z ++=⎧⎨+-=⎩解得2,3.2x z y z =⎧⎪⎨=-⎪⎩ 因为0xyz ≠,所以0z ≠,于是()()32222222222326106102334532452z z z x y z x yz z z z z ⎛⎫+-- ⎪+-⎝⎭=-+⎛⎫⋅--+ ⎪⎝⎭ 22222227410152126546z z z z z z +-==++. 4.1.5★若x 、y 的值满足方程组3234571103,177543897,x y x y +=⎧⎨+=⎩①② 求422445x x y y ++的值.解析由①+②得50010002000x y +=,即24x y +=.③由③得:42x y =-.④把④代入①得:()323424571103y y -+=.解得1y =,把1y =代人④得:2x =,所以方程组解为2,1.x y =⎧⎨=⎩原式422424215137=+⨯⨯+⨯=.4.1.6★★当a 取何值时,关于x 、y 的方程组5,232x y a x y a +=+⎧⎨-=-⎩有正整数解. 解析解方程组得223,12.3a x a y a -⎧=+⎪⎪⎨+⎪=++⎪⎩所以,a 是被3除余2的整数.由221,31213a a a -⎧+⎪⎪⎨+⎪++⎪⎩≥≥得15a -≤≤.所以1a =-,2,5. 4.1.7★k 为何值时,方程组1,3316kx y y x⎧-=-⎪⎨⎪=-⎩ (1)当163k -≠,即2k ≠-时,原方程组有唯一解0,1;3x y =⎧⎪⎨=⎪⎩(2)当113631k --==,即2k =-时,原方程组无穷多组解; (3)由于1331--1=,故方程组不可能无解. 4.1.8★若方程组344,12322x y m x y m +=-⎧⎪⎨-=+⎪⎩的解满足0x y +=,求m 的值. 解析将x y =-代入原方程组,得4,,5332y m y m =-⎧⎪⎨-=+⎪⎩ 所以,5312302m m -++=,192m =. 4.1.9★甲、乙二人同时求7ax by -=的整数解. 甲求出一组解为3,4,x y =⎧⎨=⎩而乙把7ax by -=中的7错看成1,求得一组解为1,2,x y =⎧⎨=⎩求a 、b 的值. 解析 把3x =,4y =代入7ax by -=,得347a b -=.把1x =,2y =代入1ax by -=,得21a b ==.解方程组347,21,a b a b -=⎧⎨-=⎩得5,2.a b =⎧⎨=⎩ 4.1.10★甲、乙两人解方程组513,4 2.ax y x by +=⎧⎨-=-⎩①② 由于甲看错了方程①中的以而得到方程组的解为3,1;x y =-⎧⎨=-⎩乙看错了方程②中的b 而得到的解为5,4.x y =⎧⎨=⎩ 假如按正确的a 、b 计算,求出原方程组的解.解析因为甲只看错了方程①中的a ,所以甲所得到的解3,1x y =-⎧⎨=-⎩应满足无a 的正确的方程②,即()()4312b ⨯--⨯-=-.②同理,5,4x y =⎧⎨=⎩应满足正确的方程①,即 55413a ⨯+⨯=.④解由③、④联立的方程组得7,510.a b ⎧=-⎪⎨⎪=⎩ 所以原方程组应为7513,5410 2.x y x y ⎧-+=⎪⎨⎪-=-⎩ 解之得20,8.2.x y =⎧⎨=⎩4.1.11★★已知方程组35,4x my x ny +=⎧⎨+=⎩无解,m 、n 是绝对值小于10的整数,求m 、n 的值. 解析因为方程组1112220,0a xb yc a x b y c ++=⎧⎨++=⎩无解的条件是111222a b c a b c =≠参照这个条件问题便可解决. 原方程组可化为350,40.x my x ny +-=⎧⎨+-=⎩因为方程组无解,所以有 3514m n =≠, 所以3m n =,且45m n ≠,因为310m n =<,所以,101033n -<<,又因为n 是整数,所以3n =-, 2-,1-,0,1,2,3,相应地9m =-,-6,-3,0,3,6,9.所以,当9,3,m n =-⎧⎨=-⎩6,2,m n =-⎧⎨=-⎩3,1,m n =-⎧⎨=-⎩0,0,m n =⎧⎨=⎩3,1,m n =⎧⎨=⎩6,2,m n =⎧⎨=⎩9,3m n =⎧⎨=⎩时,原方程组无解. 4.1.12★已知关于x 和y 的方程组()()345,569,8810,51029x y x y n m x y x m n y +=-⎧⎪+=-⎪⎨--=⎪⎪++=-⎩有解,求22m n +的值.解析首先解方程组345,569,x y x y +=-⎧⎨+=-⎩得到3x =-,1y =,代入原方程组中后两个方程,得到86,5 3.m n m n -=⎧⎨+=⎩① 再解上面关于m 和n 的方程组,得到913m =,613n =-,22117916913m n +==. 4.4.13★已知2ab a b =+,5ac a c =+,4bc b c=+,求a b c ++的值. 解析根据题意有1,21,51.4a b ab a c ac b c bc +⎧=⎪⎪+⎪=⎨⎪⎪+=⎪⎩ 111,2111,51114a b a c b c ⎧+=⎪⎪⎪+=⎨⎪⎪⎪⎩①②+=.③(①+②+③)2÷,得1111940a b c ++=.④ ④-①得1140c =-,40c =-. ④-②得11140b = ,4011b =. ④-③得1940a =,409a =. 所以()404031604091199a b c ++=++-=-. 4.1.14★如果方程组,5311x y m x y +=⎧⎨+=⎩的解是正整数,求整数m 的值. 解析解方程组得113,25112m x m -⎧=⎪⎪⎨-⎪⎪⎩①y =.② 因为x 、y 都是正整数,所以1131,2511 1.2m m -⎧⎪⎪⎨-⎪⎪⎩≥≥ 解得1335m ≤≤. 因为m 是整数,所以3m =.将3m =代入①和②式,x 、y 的值均为正整数. 故3m =.4.1.15★★解方程组2347,423 2.32x y z x y y z +-=-⎧⎪-+⎨==⎪⎩ 解析因为423232x y y z -+==表示两个方程,即423x y -=和2322y z +=,或者42332x y y z -+=和423x y -=,或者42332x y y z -+=和2322y y +=,所以原方程组实际上是由三个方程组成的三元一次 方程组,将原方程组改写为2347,42,323 2.2x y z x y y z ⎧⎪+-=-⎪-⎪=⎨⎪⎪+=⎪⎩①②③ 由方程②得64x y =+,代入①化简得11419y z -=-.④由③得234y z +=.⑤④3⨯+⑤4⨯得3385716y y +=-+,所以,1y =-.将1y =-代入⑤,得2z =.将1y =-代入②,得2x =.所以2,1,2x y z =⎧⎪=-⎨⎪=⎩为原方程组的解.评注本题解法中,由①、②消去x 时,采用了代入消元法;解④、⑤组成的方程组时,若用代入法消元,无论消去y 还是消去z ,都会出现分数系数,计算较繁,而利用两个方程中z 的系数是一正一负,且系数的绝对值较小这一特征,采用加减消元法较简单.4.1.16★已知1230,165x y z x y z⎧++=⎪⎪⎨⎪--⎪⎩①=0.②求x y z y x x++的值. 解析①-②消去x 得880y z +=,即1y z =-.①3⨯+②消去y 得440x z +=,即1z x =-.①5⨯+②3⨯消去z 得880x y -=,即1x y =.所以,1111x y z y z x++=--=-即为所求. 4.1.17★解方程组5,1,15.x y z y x z x y --=⎧⎪--=⎨⎪--=-⎩①②z ③解析将①+②+③,得9x y z ++=.④由④+①得214x =,7x =.由④+②得210y =,5y =.由④+③得26z =-,3z =-.所以,原方程组的解为7,5,3,x y z =⎧⎪=⎨⎪=-⎩4.1.18★解方程组1,2,3,4,5.x y z y z u z u v u v x v x y ++=⎧⎪-+=⎪⎪-+=⎨⎪-+=⎪⎪-+=⎩①②③④⑤解析注意到各方程中同一未知数系数的关系,可以先得到下面四个二元方程:①+②得3x u +=,⑥②+③得5y v +=,⑦③+④得7z x +=,⑧④+⑤得9u y +=.⑨又①+②+③+④+⑤得15x y z u v ++++=.⑩⑩一⑥一⑦得7z =,把7z =代入⑧得0x =,把0x =代入⑥得3u =,把3u =代入⑨得6y =,把6y =代入⑦得1v =-.所以0,6,7,3,1.x y z u v =⎧⎪=⎪⎪=⎨⎪=⎪=-⎪⎩为原方程组的解.4.1.19★解方程组1124,11411125x y x x y xx y⎧+-=-⎪⎪⎪-⎨⎪⎪⎪⎩①+=,②+=.③解析①2⨯+②得313x y+=,④ 由③得125x y=-,⑤ 代入④得1125y =, 代入⑤得115x =. 再把115x =,1125y =代入①得13310z =,所以 5,5,121033x y z ⎧⎪=⎪⎪=⎨⎪⎪=⎪⎩为原方程组的解.解析2令1A x=,1B y =,1C z =,则原方程化为 24,411,2 5.A B C A B C A B ++=-⎧⎪-+=⎨⎪+=⎩解得15A =,125B =,3310C =,即 5,5,121033x y z ⎧⎪=⎪⎪=⎨⎪⎪=⎪⎩为原方程组的解,评注解法1称为整体处理法,即从整体上进行加减消元或代人消元(此时的“元”是一个含有未知数的代数式,如1x 、1y等);解法2称为换元法,也就是干脆引入一个新的辅助元来代替原方程组中的“整 体元”,从而简化方程组的求解过程.4.1.20★★解方程组()()()222392522782x y z x x y z x y y z x y z z ⎧+-=-⎪⎪+--⎨⎪+--⎪⎩,①=,②=.③解析原方程组可化为()()()395278.x x y z y x y z x y z ++⎧⎪++⎨⎪++⎩=,①=,②z =③④+⑤+⑥得()2169x y z ++=,故13x y z ++=±.⑦将⑦分别代入④、⑤、⑥,得原方程组的解为 1113,4,6,x y z =⎧⎪=⎨⎪=⎩2223,4,6.x y z =-⎧⎪=-⎨⎪=-⎩ 4.1.21★★解方程组53,53,53.x y z a y z x b z x y c -+=⎧⎪-+=⎨⎪-+=⎩①②③解析①2⨯+②-③消去y 、z ,得142x a b c =+-,所以214a b c x +-=. 由②2⨯+③-①,得 214b c a y +-=. 由③2⨯+①-②,得 214c a b z +-=. 所以,原方程组的解为 2,142,142,14a b c x b c a y c a b z +-⎧=⎪⎪+-⎪=⎨⎪+-⎪=⎪⎩4.1.22★★解方程组25,28,211,2 6.x y y z z u u x +=⎧⎪+=⎪⎨+=⎪⎪+=⎩解析有原方程得52,82,112,62.x y y z z u u x =-⎧⎪=-⎪⎨=-⎪⎪=-⎩①②③④所以()525282x x y z =--=-- ()114114112z u =-+=-+- ()33833862u x =-=--1516x =-+, 即1516x x =-+,解之得1x =,将1x =代入④得4u =.将4u =代入③得3z =.将3z =代入②得2y =.所以原方程组解为 1,2,3,4.x y z u =⎧⎪=⎪⎨=⎪⎪=⎩ 4.1.23★★解方程组 111,2111,3111.4x y z y z x z x y ⎧+=⎪+⎪⎪+=⎨+⎪⎪+=⎪+⎩ 解析先把各方程左边通分,再对每个方程两边取倒数,并设x y z k ++=,则原方程可化为 2,3,4.xy xz k yz yx k zx zy k +=⎧⎪+=⎨⎪+=⎩①②③ ①+②+③,得92xy yz zx k ++=.④用④分别减去①、②、③,可得 1,25,23.2xy k yz k zx k ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩显然0x ≠,0y ≠,0z ≠,0k ≠.由上面三式易得3515x y z =∶∶∶∶,又x y z k ++=,所以 323x k =,523y k =,1523z k =.则有35123232k k k ⎛⎫⎛⎫⋅= ⎪ ⎪⎝⎭⎝⎭,所以22330k =.所以,原方程组的解为(经检验)23,1023,623.2x y z ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩4.1.24★★解方程组 ()()2,122,212 4.3xy xx y xz xx z y z y z +⎧=⎪++⎪⎪+=⎨++⎪⎪++=⎪++⎩解析原方程可变形为 111,12111,23111.124x y x z y z ⎧+=⎪+⎪⎪+=⎨+⎪⎪+=⎪++⎩解得1724x =,15124y =+,11224z =+. 所以,方程组的解为 24,719,522.x y z ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩4.1.25★★解方程组 1,21,21.2x y zx y z xy z x yz ⎧++=⎪⎪⎪++=⎨⎪⎪++=⎪⎩①②③ 解析①-③得0y zx z yz +--=,则1yz y x =+-.把式④代入①、②,整理分别得22232221y y x xy x y +++-=,⑤ 2223221y y x x xy ++-+=.⑥⑤-⑥得()()10y x xy x -+-=. 若y x =,由式⑤得 22410x x +-=,解得x =将x y ==z = 若10xy x +-=,同理,10yz y +-=.将11x y=-,1y z y -=代入式①得3223320y y y --+=.分解因式得()()()21120y y y -+-=.故(x ,y ,z )为(1-,2,12)、(2,12,1-)(12,1-,2) 综上,共有5组解⎝⎭,⎝⎭,(1-,2,12)(2,12,1-) (12,1-,2). 4.1.26★解方程组 2224220,3630.x xy x y x xy x y ⎧+--+=⎪⎨+-+=⎪⎩①②解析②2⨯-①3⨯得 4960x y +-=.解方程组24960,3630x y x xy x y +-=⎧⎨+-+=⎩得112,14;9x y =-⎧⎪⎨=⎪⎩223,2.x y =-⎧⎨=⎩ 4.1.27★解方程组222224220,2240.x xy y x y x xy y x y ⎧-++-+=⎪⎨--+-+=⎪⎩①②解析②()2⨯-+①得23360y y +-=,所以11y =,22y =-. 解方程组221,2240y x xy y x y =⎧⎨--+-+=⎩与222,2240,y x xy y x y =-⎧⎨--+-+=⎩ 得原方程组的解 111,2;x y =-⎧⎨=-⎩224,2.x y =-⎧⎨=-⎩ 4.1.28★解方程组22225,2320.x y x xy y ⎧+=⎪⎨--=⎪⎩①②解析由②得()()220x y x y +-=,所以20x y +=或20x y -=. 因此,原方程组可化为两个方程组 225,20x y x y ⎧+=⎨+=⎩与225,20.x y x y ⎧+=⎨-=⎩ 解两个方程组得原方程组的解为 111,2;x y =⎧⎨=-⎩221,2;x y =-⎧⎨=⎩332,1;x y =⎧⎨=⎩442,1.x y =-⎧⎨=-⎩ 评注方程组至少有一个方程可以分解为一次方程时,可用因式分解法解.4.1.29★解方程组222238, 4.x y x xy y ⎧-=⎪⎨++=⎪⎩①②解析由①-②2⨯得 22230x xy y --=,即()()30x y x y +-=, 所以0x y +=或30x y -=.所以0x y +=或30x y =-=. 分别解下列两个方程组 2238,0;x y x y ⎧-=⎨+=⎩2238,30,x y x y ⎧-=⎨-=⎩得原方程组的解为 112,2;x y =⎧⎨=-⎩222,2;x y =-⎧⎨=⎩33x y ⎧=⎪⎪⎨⎪=⎪⎩44x y ⎧=⎪⎪⎨⎪=⎪⎩评注如果两个方程都没有一次项,可用加减消元法消去常数项,再用因式分解法求解. 4.1.30★解方程组2226.x xu y x y ⎧++=+⎪⎨+=⎪⎩ 解析原方程组可变形为 ()()222 6.x y xy x y xy ⎧++=+⎪⎨+-=⎪⎩①②①2⨯+②得()()2210x y x y +++=+令u x y =+,则22100u u +--,所以12u =24u =-即2x y +=4x y +=-当2x y +=xy =2x y xy ⎧+=⎪⎨=⎪⎩ 可得12x =,1y =2x =22y =.当4x y +=-6xy =+ 而方程组46x y xy ⎧+=-⎪⎨=+⎪⎩ 无实数解.综上所述,方程组的解为112,x y =⎧⎪⎨=⎪⎩22 2.x y ⎧=⎪⎨=⎪⎩ 评注由于一般的二元对称式总可以用基本对称式x y +和xy 表示,因此在解二元对称方程组时,一定可以用x y +和xy 作为新的未知数,通过换元转化为基本对称方程组. 4.1.31★★解方程组5,210.x y +=⎩①②解析本题是一个对称方程组的形式,观察知它可转化为基本对称方程组的形式. 由①得52=.③4=,所以 16xy =.④由②、④可得基本对称方程组 10,16.x y xy +=⎧⎨=⎩于是可得方程组的解为 112,8;x y =⎧⎨=⎩228,2.x y =⎧⎨=⎩ 4.1.32★解方程组222100,2100.x xy x y xy y ⎧+-=⎪⎨+-=⎪⎩①②解析本题属于二元轮换对称方程组类型,通常可以把两个方程相减,因为这样总能得到一个方程 0x y -=,从而使方程降次化简. ①-②,再因式分解得()()100x y x y -+-=,所以0x y -=或100x y +-=. 解下列两个方程组20,2100;x y x xy x -=⎧⎨--=⎩2100,2100,x y x xy x +-=⎧⎨--=⎩得原方程组的四组解为 112,0;x y =⎧⎨=⎩2210,310;3x y ⎧=⎪⎪⎨⎪=⎪⎩330,10;x y =⎧⎨=⎩4410,0.x y =⎧⎨=⎩4.1.33★★★解方程组6,6.①②解析1 用换元法.设45x A+=,45y B+=,则有54Ax-=,54By-=,4A Bx y--=.6,6,==即12,12.==⎪⎩③④③-④并平方得594A B-++459A B=+-+整理得4A B-=,所以45959AB A AB BA B--+-=化得())360A B-=,360>,因此A B-=.解方程组12,0,A B=-=⎪⎩得9,9.AB=⎧⎨=⎩经检验,9A B==适合方程③、④,由此得原方程的解是1,1.xy=⎧⎨=⎩解析2①-②得即所以1x -与1y -同号或同为零.由方程①得))330+=,51410x y --+=,所以1x -与1y -不能同正,也不能同负.从而 10x -=,10y -=. 由此解得1,1.x y =⎧⎨=⎩经检验,1x =,1y =是方程组的解. 4.1.34★★★解方程组: 2113221122,22,22,22.n n n n n x x x x x x x x x x x x -1-⎧=+⎪⎪⎪=+⎪⎪⎪⋯⋯⎨⎪⎪=+⎪⎪⎪=+⎪⎩解析 本例各方程中,未知数的出现是循环对称的.若用消元法求解将十分困难.故而采用不等式求解.显然方程组的解1x ,2x ,⋯,n x 都同号,且若1x ,2x ,⋯,n x 是方程组的解,则1x -,2x -,⋯,n x -也是方程组的解.故不妨先设()01i x i n >≤≤.因为122n x x x =+≥1x 2x,⋯,n x .把方程组的所有方程相加,整理,得 1212222n n x x x x x x ⋯⋯+++=+++.①但12n x x x ⋯+++≥12222nnx x x⋯+++=≤因此要等式①成立,只能12nx x x⋯====容易检验,12nx x x⋯====因此,原方程组有两组解,它们是12nx x x⋯====4.1.35★★★解方程组:212212232221212122,12,12,12.1nnnnxxxxxxxxxxxx--⎧=⎪+⎪⎪=⎪+⎪⎪⋯⋯⎨⎪⎪=⎪+⎪⎪=⎪+⎩解析1首先有()01ix i n≥≤≤.再由2211xx+≤(x为实数)得21212121xx xx=+≤,32x x≤,⋯,1n nx x-≤,1nx x≤;所以11321n nx x x x x x-⋯≤≤≤≤≤≤.只能12nx x x⋯===.进而求得本题的两组解1270nx x x⋯===或121nx x x⋯====.解析2若1x,2x,⋯,nx中有一个为零,则由方程组可推出其余1n-个未知数都是零,则12nx x x⋯====是原方程组的解.下设()1ix i n≤≤都不是零,则2122122232212122111,211,211,211;2nn nnnxx xxx xxx xxx x--⎧+=⎪⎪⎪+=⎪⎪⎪⋯⋯⎨⎪+⎪=⎪⎪+⎪=⎪⎩2212322121121,121,121,121;n nnx xx xx xx x-⎧+=⎪⎪⎪+=⎪⎪⎪⋯⋯⎨⎪⎪+=⎪⎪⎪+=⎪⎩将所有方程相加,并整理、配方,得222121111110nx x x⎛⎫⎛⎫⎛⎫⋯-+-++-=⎪⎪ ⎪⎝⎭⎝⎭⎝⎭.因为2110i x ⎛⎫- ⎪⎝⎭≥,所以只能121111110nx x x ⋯-=-==-=, 121n x x x ⋯====.易知它确实原方程组的解.因此,原方程组的解由两组:120n x x x ⋯====,或121n x x x ⋯====. 4.1.36★★★★已知原方程组: 1111221332112222333113223330,0,0.a x a x a x a x a x a x a x a x a x ++=⎧⎪++=⎨⎪++=⎩ 它的系数满足下列条件: (1)11a 、22a 、33a 都是正数; (2)所有其他系数都是负数;(3)每一方程中系数之和是正数.求证:1230x x x ===是已知方程组的唯一解.解析 本例是一个三元线性齐次方程组,1230x x x ===,显然是它的解,因而只要证明已知方程组不存在不全为零的解集即可.用反证法.若方程组有不全为零的解11x k =,22x k =,33x k =,由对称性不设防1k 、2k 、3k 中以1k 为最大,则10k >.于是由110a >,120a <,130a <,1112130a a a ++>,得 1111221330a k a k a k =++ 111122133a k a k a k --≥ 111122133a k a k a k =-- 111121131a k a k a k --≥ ()11121310a a a k =++>.上面的不等式显然是矛盾的.故已知方程组只有唯一解: 1230x x x ===.4.1.37★★解方程组22222228,2226,322231,2222,2328.a a b c d e b a b c d e c a b c d e d a b c d e e a b c d e ⎧=+-++-⎪=---++-⎪⎪=++++-⎨⎪=++++-⎪⎪=++++-⎩解析将这个5个方程相加,得2222642a a b b c c d -+-+-+2108550d e e -+-+=,所以()()()()()22222321540a b c d e -+-+-+-+-=, 故(a ,b ,c ,d ,e )=(3,2,1,5,4). 经检验知,(a ,b ,c ,d ,e )=(3,2,1,5,4)是方程组的解.。
七年级数学竞赛题:一次方程组的应用一次方程组是解数学题的重要工具之一,其应用主要体现在以下两个方面:1.求代数式的值一些表面与方程组无关的问题,借助相关概念、性质、对题意的理解等将问题转化为解方程组而获解.2.列方程组解应用题不同的应用问题应采用不同的解决手段或方法,对于含有多个未知量的问题,利用方程组求解常常比单设一个未知数建立一元方程容易,列方程组解应用题的步骤与列一元方程解应用题的步骤类似,它们的不同之处在于:首先,列方程组所解决的应用题中含有多个未知量,须设多个未知数,而列方程只能设一个未知数,其他未知量只能用这一个未知数的代数式表示;其次,列方程组解应用题应列出彼此独立的方程来组成方程组,而列方程解应用题只需列出一个方程.例1 设x 、y 满足x +3y +y x -3=192x+y=6,则x=_______,Y =_______.(第十届“希望杯”邀请赛试题)解题思路 两等式联立可得关于x ,y的方程组,解题的关键是如何脱去绝对值符号.例2 4x -3y 一6z=0,x+2y -7x=O 222222103225z y x z y x ---+等于( ). (A)-21 (B)-219 (C)一15 (D)一13 (1997年重庆市竞赛题)解题思路 x、y、z的值不惟一确定,不妨视2为常数,解关于x ,y的方程组.例3 某班进行个人投篮比赛,下表记录了在规定时间内投进几个球的人数分布情况。
同时,已知进球3个或3个以上的人平均每人投进3.5个球;进球4个或4个以下的人平均每人投进2.5个球,问投进3个球和4个球的各有多少人?(2002年上海市中考题)解题思路 已知两种情况的每人投进球的平均数,利用平均每人投进的球数=总人数投进总球数列出方程组.例4 某工程由甲、乙两队合做6天完成,厂家需付甲、乙两队8700元;乙、丙两队合做10天完成,厂家需支付乙、丙两队共9500元;甲、丙两队合做5天完成全部工程的32,厂家需付甲、丙两队共5500元.(1)求甲、乙、丙各队单独完成全部工程各需多少天?(2)若工期要求不超过15天完成全部工程,问可由哪队单独完成此项工程花钱最少?请说明理由.(天津市中考题)解题思路 求出每队工作效率及每天需支付每队的费用,通过计算比较,进行正确的经济决策.例5 有甲、乙、丙三种规格的钢条,已知甲种2根,乙种l 根,丙种3根共长23米;甲种1根,乙种4根,丙种5根共长36米.问甲种l 根、乙种2根、丙种3根共长多少米?(天津市竞赛题)解题思路 三个未知量却只有两个等量关系,需运用相关的解方程组的技巧,如视某个变量为常量、整体思想等.A 级1.若a 一b =2,a-c=21,则(b一c)3一3(b一c)+49=_______. 2.2002年全国足球甲A 联赛前12轮(场)的比赛后,前三名比赛成绩如下表,则每队胜一场、平一场、负一场分别各得——分.(南京市中考题) \ 胜场 平场 负场 积分大连万达队 8 22 26 上海申花队 6 51 23 北京国安队 57 0 223.若x+2y+3x=10,4x+3y+2z=15,则x+y+z=_______.4.如图,在长方形ABCD 中,放人六个形状大小相同的长方形,所标尺寸如图所示,则图中阴影部分的面积为_______.5.已知一4xn m +yn m +与32xm -7yn +1是同类项,则m、n的值分别为( ). (A)m=l ,n=7 (B)m=3,n=1(C)m=1029,n=65 (D)m=45 n=-2 6.把x =1和x =一1分别代入代数式x2+bx+c,它的值分别是2和8,则b、c的值是( ).(A)b=3,c =4 (B)b=3,c =一4(C)6=一3,c =一4 (D)b=一3,c=47.方程32--y x +1++y x =1的整数解的个数是( ).(A)1个 (B)2个 (C)3个 (D)4个8.甲是乙现在的年龄时,乙10岁;乙是甲现在的年龄时,甲25岁.那么( ).(A)甲比乙大5岁 (B)甲比乙大10岁(C)乙比甲大10岁 (D)乙比甲大5岁(2000年全国初中数学联赛题)9.某纸品加工厂为了制作甲、乙两种无盖的长方体小盒(如图1),利用边角料裁出正方形和长方形两种硬纸片,长方形的宽与正方形边长相等(如图2),现将150张正方形硬纸片和300张长方形硬纸片全部用于制作这种小盒,求可做成甲、乙两种小盒各多少个?(上海市中考题)10.某车间每天能生产甲种零件120个,或者乙种零件100个,或丙种零件200个,甲、乙、丙三种零件分别取3个、2个、1个才能配成一套,要在30天内生产最多的成套产品,问甲、乙、丙三种零件各应生产几天?(福建省中考题)11.项王故里的票价规定如表购票人数1~50人 51~100人 100人以上 每人门票价 5元 4.5元 4元某校初一甲、乙两班共103人(其中甲班人数多于乙班人数)去游项王故里,如果两班都以班为单位分别购票,则共付486元.(1)如果两班联合起来,作为一个团体购票,则可以节约多少元?(2)两班各有多少名学生? ‘(2002年江苏省宿迁市中考题)12.甲、乙、丙三人各有糖若干块,要求互相赠送,先由甲给乙、丙,所给的糖的块数等于乙、丙原来各自的糖块数;依同样的方法再由乙给甲、丙现有的糖块数;后由丙给甲、乙现有的糖块数,互相赠送后,每人恰好各有糖64块,问三人原来各有糖多少块?(天津市竞赛题)B 级1.定义新运算“▽”如下:x▽y=ax+by+c(a,b ,C 为常数),其中∣▽∣=2,2▽2=1,则2003▽2003的值为_______.(河南省竞赛题)2.《数理天地》(初中版)月刊,全年12期,每期定价2.5元,某中学初一年级组织集体订阅,有些学生订半年而另一些学生订全年,共需订费1320元,若订全年的改订半年,订半年的改订全年时,则共需订费1245元,则该中学初一年级订阅《数理天地》的学生共有_______人.(“希望杯”邀请赛试题)3.江堤边一洼地发生了管涌,江水不断地涌出,假定每分钟涌出的水量相等,如果用两台抽水机抽水,40分钟可抽完;如果用4台抽水机抽水,16分钟可抽完.如果要在10分钟抽完水,那么至少需要抽水机_______台.(全国初中数学联赛试题)4.购买五种数学用品A 1、A 2、A 3、A 4、A 5的件数和用钱总数列成下表则五种数学用品各买一件共需______元.5.买20枝铅笔、3块橡皮、2本日记本需32元;买39枝铅笔、5块橡皮、3本日记本需58元,则买5枝铅笔、5块橡皮、5本日记本需( ).(第十五届江苏省竞赛题)(A)20元 (B)25元 (C)30元 . (D)35元6.在一家三口人中,每两人的平均年龄加上余下一人的年龄分别得到47,6l ,60,那么这三个人中最大年龄与最小年龄的差是( ).(“希望杯”邀请赛试题)(A)28 (B)27 (C)26 (D)257.已知4x 一3y 一6z =0,x+2y -7x =0,(xyx ≠0),则22222275632z y x z y x ++++的值为( ). (安徽省竞赛题) (A)21 (B)-21 (C)l (D)一1 8.某赛季足球比赛的计分规则是胜一场得3分;平一场得1分;负一场得0分,一足球队打完15场,积33分,若不考虑顺序,该队胜、负、平的情况有( ).(A)3种 (B)4种 (C)5种 (D)6种(2001年全国高考题)9.在车站开始检票时,有a(a>0)名旅客在候车室排队等候检票进站.检票开始后,仍有旅客继续前来排队检票进站.设旅客按固定的速度增加,检票口检票的速度也是固定的.若开放一个检票口,则需30分钟才可将排队等候检票的旅客全部检票完毕;若开放两个检票口,则只需10分钟便可将排队等候检票的旅客全部检票完毕;如果要在5分钟内将排队等候检票的旅客全部检票完毕,以使后来到站的旅客能随到随检,至少要同时开放几个检票口?(2001年广州市中考题)10.某一次考试共需做20个小题,做对一个小题得8分,做错一个扣5分,不做的得0分,某学生共得13分,问这个学生没做的题有多少个?(湖北省荆州市竞赛题)11.编号为l 到25的25个弹珠被分放在两个篮子A 和B 中,15号弹珠在篮子A 中,把这个弹珠从篮子A 移至篮子B 中,这时篮子A 中的弹珠号码数的平均数等于原平均数加41,B 中弹珠号码数的平均数也等于原平均数加41.问原来在篮子A 中有多少个弹球? (第十六届江苏省竞赛题)。
专题29 方程思想例1. -1 提示:a 、b 是方程01))((=-++d x c x 的两个根,由根的性质得)(1))((b x a x d x c x --=-++)(,将x = - c 代入上式得-1=(-c -a )(-c -b ),即(a +c )(b +c )=-1. 例2 B 例3 A 提示:解法一:∵42423x x-=, 22222()()3x x ∴-+-=.又y 4+y 2=3,即(y 2)2+y 2=3,且220x -<,y 2≥0,∴220x-<,y 2是一元二次方程t 2+t -3=0的两个不等实根.由韦达定理,222y x -+=-1,222y x -=-3,4222422422()2()y y y x x x∴+=-+--=1+6=7. 解法二:∵x 2>0,y 2≥0,由已知条件得21x y 2=,∴4224224223367y y y x x x+=++-=-+=. 例42,3,4xy xz yz x y x z y z ===+++,1112x y ∴+=①,1113x z +=② 1114y z +=③. ①+②-③得2111234x =+-,解得x =247;①+③-②得2111243y =+-,解得245y =;②+③-①得2111342z =+-,解得z =24.∴7x +5y-2z =0. 例5 分当BP ≤14AB ,14AB <BP <12AB ,BP =12AB 三种情况讨论.当BP =4040640,,5,2111231时,HDE 为等腰三角形.例6 由题意得222612a b c a b a b c a b c S ab ≤<<+⎧⎪++=⎪⎪⎨+=⎪⎪=⎪⎩①②③④由①②得2c <a +b +c =6<3c ,∴2<c <3 ⑤.由②有(a +b )2=(6-c )2,将③④代入得3C =9-s ,∴有6<3c <9,从而3C =7或3c =8.若3c =7,则s =2,代入②④得a +b =113,ab =4,由于此时方程组无解,故此情形不可能;若3c =8,则s =1,此时a +b =103,ab =2.解得a b =而c =83,以这三个数为边长构成唯一的直角三角形.能力训练 1.-2 提示:2251a a a -=∴==-,∴a 2+a =1,3232332()2()2212(1)a a a a a a a a a a a a a a +--++--+∴=---=332211(1)21a a a a a a--=-=-++=---. 2.1 6 提示:六位同学读过的书的总本数等于六本书被读过的人次总数. 3.∵x -y =2,即x ≠y ,∴x ,y 是方程2z 2-2z +k =0的两根,x +y =1,xy =2k ,又x -y =2,∴k =2xy =-32. 4.4 由x +y =-z ,xy =2z知,x ,y 是方程t 2+zt +2z=0的两根,由Δ≥0得z ≥2,又|x |+|y |=-(x +y )=z ≥2. 5.设∠BAC =x ,则'2,4,''4B BD x CBD x AA B ABA CBD x ∠=∠=∠=∠=∠=,01'(180)2A AB x ∠=-,∴01(180)2x -+4x +4x =1800,解得x =120. 6.B 7.C 提示:设该单位订甲、乙、丙三种盒饭分别有x ,y ,z 盒,则22853140x y x x y z ++=⎧⎨++=⎩①②①×8-②得3y +5z =36,5z =36-3y ≤36.由此可知z ≤7,且3y ,36均是3的倍数知z 是3的倍数.∴z 的可能值为0 ,3,6,相应的y 的值为12,7,2.∴共有3组解:10120x y z =⎧⎪=⎨⎪=⎩,1273x y z =⎧⎪=⎨⎪=⎩,1426x y z =⎧⎪=⎨⎪=⎩, 8.C 9.A 提示:设甲现在x 岁,乙现在y 岁,x >y ,则有()10()25y x y x x y --=⎧⎨+-=⎩, 10.D 提示:由已知得a 4+3a 2-1=0,211()3()10b b +-=,∴a 2,1b 是方程x 2+3x -1=0的根.又由a 2b ≠1得a 2≠1b ,由根与系数关系得a 2+1b=-3,2a b=-1,∴6326222331111()[()3]36a b a a a a b b b b b +=+=++-=-. 11.22263x xy y ≤-+≤ 提示:设22222x xy y m x xy y ⎧-+=⎪⎨++=⎪⎩,则22m xy -=,(x+y )=,∴x ,y 是方程2202m z -+=的两个实根.由Δ≥0得m 23≥,又26()02m x y -+=≥,263m ∴≤≤. 12.sin CBF =23,BC 提示:;连结OE ,DF ,则OE ∥BF ,∴AE :EF =AO :OB =3:1,OE :BF =3:4,∴AE =3EF ,AO :AB =3:4. 设OB =r ,则AO =3r ,BF =43r ,AD =2r . 由AE ·AF =AD ·AB 得EF .在Rt ΔABC 中,BC 2=CF ·CE =4(4+EF )=AC 2-AB 2,解得r ,sin ∠CBF =sin ∠BDF =FB DB . 13.设DP =x ,则PC ,AB y =AB ·S ΔABP =2(1)2(1)x x +-,即x 2+2(1-y )x +1+2y =0.由Δ≥0得y ≥4,故AB ·S ΔABP 的最小值为4. 14.由题设知x 1=a 1,x 2=a 2是一元二次方程(x +b 1)(x +b 2)-1=0的两根,∴(x +b 1)(x +b 2)-1=(x 1-a 1)(x 2-a 2).令x =-b 1,得(a 1+b 1)(a 2+b 1)=-1;令x =-b 2,得(a 1+b 2)(a 2+b 2)=-1. 15.设A (x 1,0),B (x 2,0),且x 1<x 2,则x 1,x 2是方程ax 2+bx+c的两根,∴x 1+x 2=b a -<0,x 1x 2=c a>0,则x 1<0,x 2<0.∵方程有两个不相等的实根,∴△=b 2-4ac >0,得b >.∵11OA x =<,21OB x =<,即-1<x 1<0, -1<x2<0,∴121cx x a=<,得c<a ②.从而a ≥1,故抛物线开口向上.旦当x=-1时,y>0.∴2(1)(1)0a b c-+-+>,得b<a+c.∵b,a+c是整数,∴a+c≥b+l③.由①得a+c>+1→2>1.,即a>)2≥+1)2=4,∴a≥5.又≥,∴b≥5.取a=5,b=5,c=1时.抛物线y=5x2+5x+l满足题设条件,故a+b+c的最小值为5+5+l=ll. 16.设y=m2,(x-90)2=k2,m,k都是非负数,则k2-m2=7×701=1×4907,即(k+m)(k-m)=7×701=1×4907.∴7017k mk m+=⎧⎨-=⎩或49071k mk m+=⎧⎨-=⎩,解得11354,347;km=⎧⎨=⎩222454,2453.km=⎧⎨=⎩∴11444,120409;xy=⎧⎨=⎩22264,120409;xy=-⎧⎨=⎩3325446017209xy=⎧⎨=⎩4423646017209xy=-⎧⎨=⎩∴“好点”共有4个,它们的坐标分别为:(444,120409).(-264,120 409),(2 544,6 017 209),(-2 364,6 017 209).17.①×②得()()b c a a c b a b ca b cbc ca ab+-+-+-++++=8→222222()()()b c a a c b a b cbc ca ab+-+-+-++=8→222222()()()44b c a c a b a b cbc ca ab+-+-+--+-+=0→222222()()()b c a c a b a b cbc ca ab----+-++=0→()()()()()()b c a b c a c b a c b a a b c a b cbc ca ab---+--+-+-++++=0→[]()()()()b c aa b c a b c a b c a b cabc-+-+--++++=0→222()(2)0b c aab a b cabc-+--+=→22()()0b c ac a babc-+⎡⎤--=⎣⎦→()()()b c a c a b c a babc-++--+=故b-c+a=0或c+a- b=0或c-a+b=0,即b+a-c=0或c+a-b=0或c-a+b=0.18.设每个新轮胎报废时的总磨损量为k,则安装在前轮的轮胎每行驶lkm磨损量为5000k,安装在后轮的轮胎每行驶1km的磨损量为3000k,又设一对新轮胎交换位置前走了xkm,交换位置后走了ykrn分别以一个轮胎的总磨损量为等量关系列方程.有5000300050003000kx ky k ky kx k⎧+=⎪⎪⎨⎪+=⎪⎩两式相加,得()()250003000k x y k x y k +++=,则237501150003000x y +==+.19.连结AC ,BC ,O 1E ,O 2F ,设A D=a,BD=b.∵⊙O 2与AB ,CD 相切,∴O 2F=DF=x ,∴AF=AD+DF=a+x.在Rt △OFD 2中,OF 2=OO 22-O 2F 2,易证2111O F AF BF =+,即111x a x b x=++-,化简得x 2+2ax-ab=0,∴x=-a+AF 2=a (a+b )=AD AB=AC 2,∴AF=AC.同理,BE= BC.∴∠ECF=∠ACF+∠BCE-∠ACB=∠CFE+∠CEF-90°=180°-∠ECF-90°,∴∠ECF=45°.。
初中数学竞赛专题:方程组 §4.1方程组的解法4.1.1★已知关x 、y 的方程组()21,221 3.ax y a x a y +=+⎧⎪⎨+-=⎪⎩①② 分别求出当a 为何值时,方程组有唯一一组解;无解;有无穷多组解,解析与一元一次方程一样,含有字母系数的一次方程组求解时也要进行讨论,一般是通过消元,归结为一元一次方程ax b =的形式进行讨论,但必须特别注意,消元时,若用含有字母的式子去乘或者去除方程的两边时,这个式子的值不能等于零. 由①式得()21y a ax =+-,③将③代入②得()()()()122a a x a a -2+=-+.④当()210a a -+≠(),即2a ≠且1a ≠-时,方程④有唯一解21a x a +=+,将此x 值代入③有 ()121y a =+, 因而原方程组有唯一一组解.当()()210a a -+=,且()()220a a -+≠时,即1a =-时,方程④无解,因此原方程组无解. 当()()210a a -+=且()()210a a -+=时,即2a =时,方程④有无穷多个解,因此原方程组有 无穷多组解.评注对于二元一次方程组111222a xb yc a x b y c +=⎧⎨+=⎩,(1a 、2a 、1b 、2b 为已知数,且1a 与1b ,2a 与2b 中都至少有一个不为零). (1)当1122a b a b ≠时,方程组有唯一的解 2112122112211221b c b c x a b a b a c a c y a b a b -⎧=⎪-⎪⎨-⎪=⎪-⎩(2)当111222a b c a b c ==时,原方程组有无穷多组解. (3)当111222a b c a b c =≠时,原方程组无解. 4.1.2★对k 、m 的哪些值,方程组()214y kx my k x =+⎧⎪⎨=-+⎪⎩至少有一组解?解析由原方程可得()214kx m k x +=-+.即()14k x m -=-.(1)当1≠k 时,方程有唯一解41m x k -=-,从而原方程组有唯一解. (2)当1k -,4m =时,方程有无穷多个解,从而原方程组也有无穷多组解. 综上所述,当1k ≠且m 为任意数,或1k =且4m =时,方程组至少有一组解. 4.1.3★已知关于x 、y 的二元一次方程()()12520a x a y a -+++-=.当a 每取一个值时,就有一个方程,而这些方程有一个公共解,试求出这个公共解. 解析1根据题意,可分别令1a =,2a =-代入原方程得到一个方程组:330,390.y x +=⎧⎨-+=⎩解之得3,1.x y =⎧⎨=-⎩将3x =,1y =-代入原方程得()()()1321520a a a -⋅++⋅-+-=.所以对任何a 值3,1x y =⎧⎨=-⎩都是原方程的解.评注取1a =为的是使方程中()10a x -=,方程无x 项,可直接求出y 值;取2a =-的道理类似. 解析2可将原方程变形为()(2)250a x y x y +----=.由于公共解与a 无关,故有20,250.x y x y +-=⎧⎨--=⎩解之得公共解为3,1.x y =⎧⎨=-⎩4.1.4★★已知0xyz ≠,且20x y z ++=,5440x y z +-=,求22222610345x y z x yz z+--+的值. 解析已知代数式中含有x 、y 、z 三个字母,而等式只有2个,在一般情况下是不可能求出x 、y 、z 的具体值来的.因此,可以把已知条件中的z 视为常数,得到关于x 、y 的方程组,从而找出x 、y与z 的关系,由此可求出其值.把已知等式视作关于x 、y 的方程,z 视作常数,得关于x 、y 的方程组20,5440.x y z x y z ++=⎧⎨+-=⎩解得2,3.2x z y z =⎧⎪⎨=-⎪⎩因为0xyz ≠,所以0z ≠,于是()()32222222222326106102334532452z z z x y z x yz z z z z⎛⎫+-- ⎪+-⎝⎭=-+⎛⎫⋅--+ ⎪⎝⎭22222227410152126546z z z z z z +-==++. 4.1.5★若x 、y 的值满足方程组3234571103,177543897,x y x y +=⎧⎨+=⎩①② 求422445x x y y ++的值.解析由①+②得50010002000x y +=,即24x y +=.③由③得:42x y =-.④ 把④代入①得:()323424571103y y -+=.解得1y =,把1y =代人④得:2x =,所以方程组解为2,1.x y =⎧⎨=⎩原式422424215137=+⨯⨯+⨯=.4.1.6★★当a 取何值时,关于x 、y 的方程组5,232x y a x y a +=+⎧⎨-=-⎩有正整数解. 解析解方程组得223,12.3a x a y a -⎧=+⎪⎪⎨+⎪=++⎪⎩所以,a 是被3除余2的整数. 由221,31213a a a -⎧+⎪⎪⎨+⎪++⎪⎩≥≥得15a -≤≤.所以1a =-,2,5.4.1.7★k 为何值时,方程组1,3316kx y y x⎧-=-⎪⎨⎪=-⎩ (1)当163k -≠,即2k ≠-时,原方程组有唯一解0,1;3x y =⎧⎪⎨=⎪⎩ (2)当113631k --==,即2k =-时,原方程组无穷多组解;(3)由于1331--1=,故方程组不可能无解.4.1.8★若方程组344,12322x y m x y m +=-⎧⎪⎨-=+⎪⎩的解满足0x y +=,求m 的值.解析将x y =-代入原方程组,得4,,5332y m y m =-⎧⎪⎨-=+⎪⎩ 所以,5312302m m -++=,192m =. 4.1.9★甲、乙二人同时求7ax by -=的整数解.甲求出一组解为3,4,x y =⎧⎨=⎩而乙把7ax by -=中的7错看成1,求得一组解为1,2,x y =⎧⎨=⎩求a 、b 的值. 解析 把3x =,4y =代入7ax by -=,得347a b -=. 把1x =,2y =代入1ax by -=,得21a b ==. 解方程组347,21,a b a b -=⎧⎨-=⎩得5,2.a b =⎧⎨=⎩4.1.10★甲、乙两人解方程组513,4 2.ax y x by +=⎧⎨-=-⎩①② 由于甲看错了方程①中的以而得到方程组的解为3,1;x y =-⎧⎨=-⎩乙看错了方程②中的b 而得到的解为5,4.x y =⎧⎨=⎩假如按正确的a 、b 计算,求出原方程组的解. 解析因为甲只看错了方程①中的a ,所以甲所得到的解3,1x y =-⎧⎨=-⎩应满足无a 的正确的方程②,即 ()()4312b ⨯--⨯-=-.②同理,5,4x y =⎧⎨=⎩应满足正确的方程①,即 55413a ⨯+⨯=.④解由③、④联立的方程组得7,510.a b ⎧=-⎪⎨⎪=⎩ 所以原方程组应为7513,5410 2.x y x y ⎧-+=⎪⎨⎪-=-⎩ 解之得20,8.2.x y =⎧⎨=⎩4.1.11★★已知方程组35,4x my x ny +=⎧⎨+=⎩无解,m 、n 是绝对值小于10的整数,求m 、n 的值.解析因为方程组1112220,0a xb yc a x b y c ++=⎧⎨++=⎩无解的条件是111222a b ca b c =≠参照这个条件问题便可解决.原方程组可化为350,40.x my x ny +-=⎧⎨+-=⎩因为方程组无解,所以有3514m n =≠, 所以3m n =,且45m n ≠,因为310m n =<,所以,101033n -<<,又因为n 是整数,所以3n =-, 2-,1-,0,1,2,3,相应地9m =-,-6,-3,0,3,6,9.所以,当9,3,m n =-⎧⎨=-⎩6,2,m n =-⎧⎨=-⎩3,1,m n =-⎧⎨=-⎩0,0,m n =⎧⎨=⎩3,1,m n =⎧⎨=⎩6,2,m n =⎧⎨=⎩9,3m n =⎧⎨=⎩时,原方程组无解. 4.1.12★已知关于x 和y 的方程组()()345,569,8810,51029x y x y n m x y x m n y +=-⎧⎪+=-⎪⎨--=⎪⎪++=-⎩有解,求22m n +的值. 解析首先解方程组345,569,x y x y +=-⎧⎨+=-⎩得到3x =-,1y =,代入原方程组中后两个方程,得到86,5 3.m n m n -=⎧⎨+=⎩① 再解上面关于m 和n 的方程组,得到913m =,613n =-,22117916913m n +==. 4.4.13★已知2ab a b =+,5ac a c =+,4bcb c=+,求a b c ++的值. 解析根据题意有1,21,51.4a b ab a c ac b c bc +⎧=⎪⎪+⎪=⎨⎪⎪+=⎪⎩111,2111,51114a b a c b c ⎧+=⎪⎪⎪+=⎨⎪⎪⎪⎩①②+=.③ (①+②+③)2÷,得1111940a b c ++=.④ ④-①得1140c =-,40c =-. ④-②得11140b = ,4011b =. ④-③得1940a =,409a =. 所以()404031604091199a b c ++=++-=-. 4.1.14★如果方程组,5311x y m x y +=⎧⎨+=⎩的解是正整数,求整数m 的值.解析解方程组得113,25112m x m -⎧=⎪⎪⎨-⎪⎪⎩①y =.② 因为x 、y 都是正整数,所以1131,2511 1.2mm -⎧⎪⎪⎨-⎪⎪⎩≥≥ 解得1335m ≤≤. 因为m 是整数,所以3m =.将3m =代入①和②式,x 、y 的值均为正整数. 故3m =.4.1.15★★解方程组2347,423 2.32x y z x y y z+-=-⎧⎪-+⎨==⎪⎩ 解析因为423232x y y z -+==表示两个方程,即423x y -=和2322y z +=,或者42332x y y z-+=和423x y -=,或者42332x y y z -+=和2322y y+=,所以原方程组实际上是由三个方程组成的三元一次方程组,将原方程组改写为2347,42,323 2.2x y z x yy z⎧⎪+-=-⎪-⎪=⎨⎪⎪+=⎪⎩①②③ 由方程②得64x y =+,代入①化简得11419y z -=-.④由③得234y z +=.⑤ ④3⨯+⑤4⨯得3385716y y +=-+,所以,1y =-.将1y =-代入⑤,得2z =.将1y =-代入②, 得2x =.所以2,1,2x y z =⎧⎪=-⎨⎪=⎩为原方程组的解.评注本题解法中,由①、②消去x 时,采用了代入消元法;解④、⑤组成的方程组时,若用代入法消元,无论消去y 还是消去z ,都会出现分数系数,计算较繁,而利用两个方程中z 的系数是一正一负,且系数的绝对值较小这一特征,采用加减消元法较简单. 4.1.16★已知1230,165x y zxy z⎧++=⎪⎪⎨⎪--⎪⎩①=0.②求x y z y x x++的值.解析①-②消去x 得880yz+=,即1y z =-.①3⨯+②消去y 得440x z +=,即1z x=-.①5⨯+②3⨯消去z 得880x y -=,即1x y =.所以,1111x y zy z x++=--=-即为所求. 4.1.17★解方程组5,1,15.x y z y x z x y --=⎧⎪--=⎨⎪--=-⎩①②z ③ 解析将①+②+③,得9x y z ++=.④由④+①得214x =,7x =. 由④+②得210y =,5y =. 由④+③得26z =-,3z =-. 所以,原方程组的解为7,5,3,x y z =⎧⎪=⎨⎪=-⎩4.1.18★解方程组1,2,3,4,5.x y z y z u z u v u v x v x y ++=⎧⎪-+=⎪⎪-+=⎨⎪-+=⎪⎪-+=⎩①②③④⑤解析注意到各方程中同一未知数系数的关系,可以先得到下面四个二元方程: ①+②得3x u +=,⑥ ②+③得5y v +=,⑦ ③+④得7z x +=,⑧ ④+⑤得9u y +=.⑨ 又①+②+③+④+⑤得15x y z u v ++++=.⑩⑩一⑥一⑦得7z =,把7z =代入⑧得0x =,把0x =代入⑥得3u =,把3u =代入⑨得6y =,把6y =代入⑦得1v =-.所以0,6,7,3,1.x y z u v =⎧⎪=⎪⎪=⎨⎪=⎪=-⎪⎩ 为原方程组的解. 4.1.19★解方程组1124,11411125x y x x y x x y⎧+-=-⎪⎪⎪-⎨⎪⎪⎪⎩①+=,②+=.③ 解析①2⨯+②得313x y+=,④ 由③得125x y=-,⑤ 代入④得1125y=, 代入⑤得115x =. 再把115x =,1125y =代入①得13310z =,所以 5,5,121033x y z ⎧⎪=⎪⎪=⎨⎪⎪=⎪⎩为原方程组的解.解析2令1A x =,1B y =,1C z=,则原方程化为24,411,2 5.A B C A B C A B ++=-⎧⎪-+=⎨⎪+=⎩解得15A =,125B =,3310C =,即5,5,121033x y z ⎧⎪=⎪⎪=⎨⎪⎪=⎪⎩为原方程组的解,评注解法1称为整体处理法,即从整体上进行加减消元或代人消元(此时的“元”是一个含有未知数的代数式,如1x 、1y等);解法2称为换元法,也就是干脆引入一个新的辅助元来代替原方程组中的“整体元”,从而简化方程组的求解过程.4.1.20★★解方程组()()()222392522782x y z x x y z x y y z x y z z ⎧+-=-⎪⎪+--⎨⎪+--⎪⎩,①=,②=.③解析原方程组可化为()()()395278.x x y z y x y z x y z ++⎧⎪++⎨⎪++⎩=,①=,②z =③④+⑤+⑥得()2169x y z ++=,故13x y z ++=±.⑦将⑦分别代入④、⑤、⑥,得原方程组的解为1113,4,6,x y z =⎧⎪=⎨⎪=⎩2223,4,6.x y z =-⎧⎪=-⎨⎪=-⎩ 4.1.21★★解方程组53,53,53.x y z a y z x b z x y c -+=⎧⎪-+=⎨⎪-+=⎩①②③解析①2⨯+②-③消去y 、z ,得142x a b c =+-,所以214a b c x +-=.由②2⨯+③-①,得214b c a y +-=. 由③2⨯+①-②,得214c a b z +-=. 所以,原方程组的解为2,142,142,14a b c x b c a y c a b z +-⎧=⎪⎪+-⎪=⎨⎪+-⎪=⎪⎩4.1.22★★解方程组25,28,211,2 6.x y y z z u u x +=⎧⎪+=⎪⎨+=⎪⎪+=⎩ 解析有原方程得52,82,112,62.x y y z z u u x =-⎧⎪=-⎪⎨=-⎪⎪=-⎩①②③④ 所以()525282x x y z =--=--()114114112z u =-+=-+-()33833862u x =-=--1516x =-+,即1516x x =-+,解之得1x =,将1x =代入④得4u =.将4u =代入③得3z =.将3z =代入②得2y =.所以原方程组解为1,2,3,4.x y z u =⎧⎪=⎪⎨=⎪⎪=⎩ 4.1.23★★解方程组2111,3111.4x y z y z x z x y ⎪+⎪⎪+=⎨+⎪⎪+=⎪+⎩ 解析先把各方程左边通分,再对每个方程两边取倒数,并设x y z k ++=,则原方程可化为2,3,4.xy xz k yz yx k zx zy k +=⎧⎪+=⎨⎪+=⎩①②③①+②+③,得92xy yz zx k ++=.④ 用④分别减去①、②、③,可得1,25,23.2xy k yz k zx k ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩显然0x ≠,0y ≠,0z ≠,0k ≠.由上面三式易得3515x y z =∶∶∶∶,又x y z k ++=,所以323x k =,523y k =,1523z k =. 则有35123232k k k ⎛⎫⎛⎫⋅=⎪ ⎪⎝⎭⎝⎭, 所以22330k =. 所以,原方程组的解为(经检验)23,1023,623.2x y z ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩4.1.24★★解方程组()()122,212 4.3x y xz x x z y z y z ⎪++⎪⎪+=⎨++⎪⎪++=⎪++⎩解析原方程可变形为111,12111,23111.124x y x z y z ⎧+=⎪+⎪⎪+=⎨+⎪⎪+=⎪++⎩解得1724x =,15124y =+,11224z =+. 所以,方程组的解为24,719,522.x y z ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩4.1.25★★解方程组1,21,21.2x y zx y z xy z x yz ⎧++=⎪⎪⎪++=⎨⎪⎪++=⎪⎩①②③ 解析①-③得0y zx z yz +--=, 则1y z y x=+-. 把式④代入①、②,整理分别得22232221y y x xy x y +++-=,⑤2223221y y x x xy ++-+=.⑥⑤-⑥得()()10y x xy x -+-=.若y x =,由式⑤得22410x x +-=,解得x将x y =代入式④,得z =. 若10xy x +-=,同理,10yz y +-=. 将11x y =-,1y z y-=代入式①得 3223320y y y --+=.分解因式得()()()21120y y y -+-=.故(x ,y ,z )为(1-,2,12)、(2,12,1-)(12,1-,2)综上,共有5组解⎝⎭,⎝⎭,(1-,2,12)(2,12,1-) (12,1-,2).4.1.26★解方程组2224220,3630.x xy x y x xy x y ⎧+--+=⎪⎨+-+=⎪⎩①② 解析②2⨯-①3⨯得4960x y +-=.解方程组24960,3630x y x xy x y +-=⎧⎨+-+=⎩得112,14;9x y =-⎧⎪⎨=⎪⎩223,2.x y =-⎧⎨=⎩ 4.1.27★解方程组222224220,2240.x xy y x y x xy y x y ⎧-++-+=⎪⎨--+-+=⎪⎩①② 解析②()2⨯-+①得23360y y +-=,所以11y =,22y =-.解方程组221,2240y x xy y x y =⎧⎨--+-+=⎩与222,2240,y x xy y x y =-⎧⎨--+-+=⎩得原方程组的解111,2;x y =-⎧⎨=-⎩224,2.x y =-⎧⎨=-⎩ 4.1.28★解方程组22225,2320.x y x xy y ⎧+=⎪⎨--=⎪⎩①②解析由②得()()220x y x y +-=,所以20x y +=或20x y -=.因此,原方程组可化为两个方程组225,20x y x y ⎧+=⎨+=⎩与225,20.x y x y ⎧+=⎨-=⎩解两个方程组得原方程组的解为111,2;x y =⎧⎨=-⎩221,2;x y =-⎧⎨=⎩332,1;x y =⎧⎨=⎩442,1.x y =-⎧⎨=-⎩ 评注方程组至少有一个方程可以分解为一次方程时,可用因式分解法解.4.1.29★解方程组222238, 4.x y x xy y ⎧-=⎪⎨++=⎪⎩①② 解析由①-②2⨯得22230x xy y --=,即()()30x y x y +-=,所以0x y +=或30x y -=.所以0x y +=或30x y =-=.分别解下列两个方程组2238,0;x y x y ⎧-=⎨+=⎩2238,30,x y x y ⎧-=⎨-=⎩得原方程组的解为112,2;x y =⎧⎨=-⎩222,2;x y =-⎧⎨=⎩33x y ⎧=⎪⎪⎨⎪=⎪⎩44x y ⎧=⎪⎪⎨⎪=⎪⎩评注如果两个方程都没有一次项,可用加减消元法消去常数项,再用因式分解法求解.4.1.30★解方程组2226.x xu y x y ⎧++=+⎪⎨+=⎪⎩ 解析原方程组可变形为()()222 6.x y xy x y xy ⎧++=+⎪⎨+-=⎪⎩①②①2⨯+②得()()2210x y x y +++=+令u x y =+,则22100u u +--=,所以12u =+24u =-,即2x y +=4x y +=--当2x y +=,代入①得xy =2x y xy ⎧+=⎪⎨=⎪⎩ 可得12x =,1y =2x =22y =.当4x y +=--,代入①得6xy =+而方程组46x y xy ⎧+=-⎪⎨=+⎪⎩无实数解.综上所述,方程组的解为112,x y =⎧⎪⎨=⎪⎩222.x y ⎧=⎪⎨=⎪⎩ 评注由于一般的二元对称式总可以用基本对称式x y +和xy 表示,因此在解二元对称方程组时,一定可以用x y +和xy 作为新的未知数,通过换元转化为基本对称方程组.4.1.31★★解方程组5,210.x y =+=⎩①②解析本题是一个对称方程组的形式,观察知它可转化为基本对称方程组的形式.由①得52=.③ 将②代入③,4=,所以16xy =.④由②、④可得基本对称方程组10,16.x y xy +=⎧⎨=⎩ 于是可得方程组的解为112,8;x y =⎧⎨=⎩228,2.x y =⎧⎨=⎩ 4.1.32★解方程组222100,2100.x xy x y xy y ⎧+-=⎪⎨+-=⎪⎩①②解析本题属于二元轮换对称方程组类型,通常可以把两个方程相减,因为这样总能得到一个方程 0x y -=,从而使方程降次化简.①-②,再因式分解得()()100x y x y -+-=,所以0x y -=或100x y +-=.解下列两个方程组20,2100;x y x xy x -=⎧⎨--=⎩2100,2100,x y x xy x +-=⎧⎨--=⎩得原方程组的四组解为112,0;x y =⎧⎨=⎩2210,310;3x y ⎧=⎪⎪⎨⎪=⎪⎩330,10;x y =⎧⎨=⎩4410,0.x y =⎧⎨=⎩ 4.1.33★★★解方程组6,6.①②解析1 用换元法.设45x A +=,45y B +=,则有54A x -=,54B y -=,4A B x y --=.6,6,即12,12.+==⎪⎩③④③-④并平方得594A B -++459A B =+-+,整理得4A B -=, 所以45959AB A AB B A B --+-化得())360A B-=, 360>,因此0A B -=.解方程组12,0,A B =-=⎪⎩得9,9.A B =⎧⎨=⎩经检验,9A B ==适合方程③、④,由此得原方程的解是1,1.x y =⎧⎨=⎩ 解析2①-②得-即=.所以1x -与1y -同号或同为零.由方程①得))330+=,0=, 所以1x -与1y -不能同正,也不能同负.从而10x -=,10y -=.由此解得1,1.x y =⎧⎨=⎩经检验,1x =,1y =是方程组的解. 4.1.34★★★解方程组:2113221122,22,22,22.n n n n n x x x x x x x x x x x x -1-⎧=+⎪⎪⎪=+⎪⎪⎪⋯⋯⎨⎪⎪=+⎪⎪⎪=+⎪⎩解析 本例各方程中,未知数的出现是循环对称的.若用消元法求解将十分困难.故而采用不等式求解.显然方程组的解1x ,2x ,⋯,n x 都同号,且若1x ,2x ,⋯,n x 是方程组的解,则1x -,2x -,⋯,n x -也是方程组的解.故不妨先设()01i x i n >≤≤.因为122n x x x=+≥所以1x,2x ,⋯,n x . 把方程组的所有方程相加,整理,得1212222n nx x x x x x ⋯⋯+++=+++.① 但12n x x x ⋯+++≥12222n n x x x ⋯+++=≤ 因此要等式①成立,只能12n x x x ⋯====容易检验,12n x x x ⋯====确实原方程组的解. 因此,原方程组有两组解,它们是12n x x x ⋯====4.1.35★★★解方程组:212212232221212122,12,12,12.1n n nn x x x x x x x x x x x x --⎧=⎪+⎪⎪=⎪+⎪⎪⋯⋯⎨⎪⎪=⎪+⎪⎪=⎪+⎩解析1首先有()01i x i n ≥≤≤.再由2211xx+≤(x 为实数)得21212121x x x x =+≤,32x x ≤,⋯,1n n x x -≤, 1n x x ≤;所以11321n n x x x x x x -⋯≤≤≤≤≤≤.只能12n x x x ⋯===.进而求得本题的两组解1270n x x x ⋯===或121n x x x ⋯====.解析2若1x ,2x ,⋯,n x 中有一个为零,则由方程组可推出其余1n -个未知数都是零,则120n x x x ⋯====是原方程组的解.下设()1i x i n ≤≤都不是零,则2122122232212122111,211,211,211;2n n n n nx x x x x x x x x x x x --⎧+=⎪⎪⎪+=⎪⎪⎪⋯⋯⎨⎪+⎪=⎪⎪+⎪=⎪⎩2212322121121,121,121,121;n n nx xx x x x x x -⎧+=⎪⎪⎪+=⎪⎪⎪⋯⋯⎨⎪⎪+=⎪⎪⎪+=⎪⎩ 将所有方程相加,并整理、配方,得222121111110n x x x ⎛⎫⎛⎫⎛⎫⋯-+-++-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 因为2110i x ⎛⎫- ⎪⎝⎭≥,所以只能121111110n x x x ⋯-=-==-=, 121n x x x ⋯====.易知它确实原方程组的解.因此,原方程组的解由两组:120n x x x ⋯====,或121n x x x ⋯====. 4.1.36★★★★已知原方程组:1111221332112222333113223330,0,0.a x a x a x a x a x a x a x a x a x ++=⎧⎪++=⎨⎪++=⎩ 它的系数满足下列条件: (1)11a 、22a 、33a 都是正数; (2)所有其他系数都是负数; (3)每一方程中系数之和是正数.求证:1230x x x ===是已知方程组的唯一解.解析 本例是一个三元线性齐次方程组,1230x x x ===,显然是它的解,因而只要证明已知方程组不存在不全为零的解集即可.用反证法.若方程组有不全为零的解11x k =,22x k =,33x k =,由对称性不设防1k 、2k 、3k 中以1k 为最大,则10k >.于是由110a >,120a <,130a <,1112130a a a ++>,得1111221330a k a k a k =++111122133a k a k a k --≥ 111122133a k a k a k =-- 111121131a k a k a k --≥()11121310a a a k =++>.上面的不等式显然是矛盾的.故已知方程组只有唯一解:1230x x x ===.4.1.37★★解方程组22222228,2226,322231,2222,2328.a a b c d e b a b c d e c a b c d e d a b c d e e a b c d e ⎧=+-++-⎪=---++-⎪⎪=++++-⎨⎪=++++-⎪⎪=++++-⎩解析将这个5个方程相加,得2222642a a b b c c d -+-+-+ 2108550d e e -+-+=,所以()()()()()22222321540a b c d e -+-+-+-+-=, 故(a ,b ,c ,d ,e )=(3,2,1,5,4).经检验知,(a ,b ,c ,d ,e )=(3,2,1,5,4)是方程组的解.。