全国各地2017届高三文科数学模拟试卷精彩试题汇编19 Word版含答案解析
- 格式:doc
- 大小:349.00 KB
- 文档页数:5
1. (包头十校联考文科数学第11题) 在正方体1111ABCD A BC D -中,点P 在线段1AD 上运动,则异面直线CP 与1BA 所成角θ的取值范围是( )A .02πθ<< B .02πθ<≤C .03πθ<≤解:D.2. (数学(文)卷·2017届广西钦州市高新区高三上学期期末考试第9题) 已知AB AC ⊥,1AB t =,AC t =,若P 点是ABC ∆ 所在平面内一点,且AB ACAP AB AC=+,当t 变化时,PB PC ⋅ 的最大值等于( )A .-2 B .0 C .2 D .4解:B.3. (江西省师大附中、临川一中2017届高三1月联考数学(文)试卷第12题) 已知函数kx x f =)( )1(2e x e≤≤,与函数2)1()(xe x g =,若)(xf 与)(xg 的图象上分别存在点N M ,, 使得MN 关于直线x y =对称,则实数k 的取值范围是( ) A. ],1[e e - B. ]2,2[e e - C. )2,2(e e - D. ]3,3[e e- 解:B.4. (江西省重点中学协作体2017届高三下学期第一次联考数学(文)试卷第8题) 设当θ=x 时,函数x x y cos sin 3-=取得最大值,则θsin = ( )A .1010-B .1010C .10103-D .10103 解:D.5. (数学(文)卷·2017届河北省涞水波峰中学2017届高三下学期周考第11题)四棱锥P ABCD -的三视图如下图所示,四棱锥P ABCD -的五个顶点都在一个球面上,E 、F 分别是棱AB 、CD 的中点,直线EF 被球面所截得的线段长为 )A .12πB .24π C.36π D .48π 解:A.6. (数学(文)卷·2017届山西省实验中学高三上学期第四次月考第11题) 气象意义上的春季进入夏季的标志为:“连续五天每天日平均温度不低于22℃”,现在甲、乙、丙三地连续五天的日平均温度的记录数据(记录数据都是正整数,单位℃): 甲地:五个数据的中位数是24,众数为22;乙地:五个数据的中位数是27,平均数为24;丙地:五个数据中有一个数据是30,平均数是24,方差为10.则肯定进入夏季的地区有( )A .0个B .1个C .2个D .3个 解:B.7. (数学文卷·2017届北京市丰台区高三上学期期末考试第7题) 学校计划在周一至周四的艺术节上展演《雷雨》、《茶馆》、《天籁》和《马蹄声碎》四部话剧,每天一部.受多种因素影响,话剧《雷雨》不能在周一和周四上演;《茶馆》不能在周一和周三上演;《天籁》不能在周三和周四上演;《马蹄声碎》不能在周一和周四上演.那么下列说法正确的是( )A .《雷雨》只能在周二上演B . 《茶馆》可能在周二或周四上演C . 周三可能上演《雷雨》或《马蹄声碎》D . 四部话剧都有可能在周二上演 解:C.8. (数学文卷·2017届甘肃省河西五市部分普通高中高三第一次联合考试第9题) 已知函数()f x 的定义域为[1,4]-,部分对应值如下表,()f x 的导函数'()y f x =的图象如右图所示. 当12a <<时,函数()y f x a =-的零点个数为( )A .2 B .3 C .4 D .5 解:C.9. (数学文卷·2017届广东省普宁市华侨中学高三下学期摸底考试第12题) 定义在R 上的可导函数()f x 满足()11=f ,且()12>'x f ,当3,22x ππ⎡⎤∈-⎢⎥⎣⎦时,不等式()232c o s 2s i n 22x f x >-的解集为( )A .4,33ππ⎛⎫ ⎪⎝⎭ B .4,33ππ⎛⎫- ⎪⎝⎭C .0,3π⎛⎫⎪⎝⎭D .⎪⎭⎫ ⎝⎛-3,3ππ解:D.10. (数学文卷·2017届湖南省衡阳市八中高三第六次月考第11题) 数列{}n a 满足1a =与11[]{}n n n a a a +=+([]n a 与{}n a 分别表示n a 的整数部分与小数部分,如,1),则2017a =( )A .3024.3024C .3022.3022解:A.11. (武昌区2017届高三元月调考数学文数第9题)一名法官在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下,甲说:“罪犯在乙、丙、丁三人之中”;乙说:“我没有作案,是丙偷的”;丙说:“甲、乙两人中有一人是小偷”;丁说:“乙说的是事实”.经过调查核实,四人中有两人说的是真话,另外两人说的是假话,且这四人中只有一人是罪犯,由此可判断罪犯是( )A. 甲B. 乙C.丙D.丁 解:B.12. (三省十校联考文科数学第16题) 函数262sin 4)(x x x x f --=π所有零点的和等于__________. 解:1813. (数学(文)卷·2017届广西钦州市高新区高三上学期期末考试第15题) 用()g n 表示自然数n 的所有因数中最大的那个奇数,例如:9的因数有1,3,9,则(9)9g =;10的因数有1,2,5, 10,(10)5g =;那么2016(1)(2)(3)(21)g g g g ++++-= .解:2016413- 14. (数学(文)卷·2017届河北省涞水波峰中学2017届高三下学期周考第16题) 已知函数()()x x af x e a R e=+∈在区间[]0 1,上单调递增,则实数a 的取值范围是 . 解:[]1 1-,15. (数学文卷·2017届甘肃省河西五市部分普通高中高三第一次联合考试第16题)函数()y f x =满足对任意x R ∈都有(2)()f x f x +=-成立,且函数(1)y f x =-的图像关于点(1,0)对称,(1)4f =,则(2016)(2017)(2018)f f f ++的值为 .解:416. (数学文卷·2017届河南省新乡一中、鹤壁高中、开封高中、安阳一中高三1月尖子生联赛第15题) 设函数31,1()2,1x x x f x x -<⎧=⎨≥⎩,则满足()(())2f a f f a =的a 的取值范围是 . 解:2+3⎡⎫∞⎪⎢⎣⎭, 17. (数学文卷·2017届湖北省荆、荆、襄、宜四地七校考试联盟高三2月联考第16题) 若函数32()(0)f x ax bx cx d a =+++≠图象的对称中心为00(,())M x f x ,记函数()f x 的导函数为)(x g ,则有)(0='x g .若函数32()3f x x x =-,则12()()20172017f f +40324033()()20172017f f +++=________. 解:8066-18. (数学文卷·2017届湖北省荆州市高三上学期期末考试第16题) 对于实数x ,将满“01y ≤<且x y -为整数”的实数y 称为实数x 的小数部分,用符号x 〈〉表示.对于实数a ,无穷数列{}n a 满足如下条件:①1a a =〈〉; ②11(0)0(0)n nn n a a a a +⎧〈〉≠⎪=⎨⎪=⎩.(Ⅰ)若a =时,数列{}n a 通项公式为 ;(Ⅱ)当21>a 时,对任意*n N ∈都有n aa =,则a 的值为 ; 解:1n a =215-。
2017年普通高等学校招生全国统一考试文科数学(必修+选修I)解析版本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷 注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.3.第Ⅰ卷共l2小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的. 一、选择题 (1)设集合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则U =(M N )Ið(A ){}12, (B ){}23, (C ){}2,4 (D ){}1,4 【命题意图】本题主要考查集合交并补运算.【解析】{2,3},(){1,4}U M N C M N =∴=【答案】D(2)函数0)y x =≥的反函数为(A )2()4x y x R =∈ (B )2(0)4x y x =≥(C )24y x =()x R ∈ (D )24(0)y x x =≥ 【命题意图】本题主要考查反函数的求法.【解析】由0)y x =≥反解得24y x =,又原函数的值域为0y ≥,所以函数0)y x =≥的反函数为2(0)4x y x =≥.【答案】B(3)设向量,a b 满足||||1a b == ,12a b ⋅=-r r ,则2a b +=(A(B(C(D【命题意图】本题主要考查平面向量的数量积与长度的计算方法.【解析】2221|2|||44||14()432a b a a b b +=+⋅+=+⨯-+= ,所以2a b +=【答案】B(4)若变量x ,y 满足约束条件63-21x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则=23z x y +的最小值为(A )17 (B )14 (C )5 (D )3 【命题意图】本题主要考查简单的线性规划.【解析】作出不等式组表示的可行域,从图中不难观察当直线=23z x y +过直线x=1与x-3y=-2的交点(1,1)时取得最小值,所以最小值为5. 【答案】C(5)下面四个条件中,使a b >成立的充分而不必要的条件是(A )1a b +> (B )1a b -> (C )22a b > (D )33a b >【命题意图】本题主要考查充要条件及不等式的性质.【解析】即寻找命题P ,只需由P a b ⇒>,且由a b >不能推出P ,可采用逐项验证的方法,对A ,由1a b +>,且1b b +>,所以a b >,但a b >时,并不能得到1a b +>,故答案为A 。
2017 年高考文科数学模拟试题(1)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
注意事项:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2. 第Ⅰ卷每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
第Ⅱ卷必须用 0.5 毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。
3. 考试结束,监考员将试题卷、答题卡一并收回。
第Ⅰ卷(选择题,共 60 分)一.选择题.( 本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.设集合 M ={-1,0,1},N ={0,1,2}.若 x ∈M 且 x ∉N ,则 x 等于( )A .1B .-1C .0D .2⎧ 2. 设 A = ⎨x ∈ R ⎩⎫ 1⎬ ,B ={x ∈R |ln(1-x )≤0},则“x ∈A ”是“x ∈B ”的()⎭ A. 充分不必要条件B .既不充分也不必要条件C .充要条件D .必要不充分条件 3. 定义在 R 上的函数 g (x )=e x +e -x +|x |,则满足 g (2x -1)<g (3)的 x 的取值范围是( )A .(-∞,2)B .(-2,2)C .(-1,2)D .(2,+∞)→ → → →4. 在△ABC 所在的平面内有一点P ,如果2P A +P C =A B -P B ,那么△PBC 的面积与△ABC 的面积之比是()1 32 1 A .2 B . C . D .43 3 5. 如图所示是一个算法的程序框图,当输入 x 的值为-8 时,输出的结果是( )A .-6B .9C .0D .-3a 16b 6. 若不等式 x 2+2x < + 对任意 a ,b ∈(0,+∞)恒成立,则实数 x 的取值范围是( )b aA .(-4,2)B .(-∞,-4)∪(2,+∞)C .(-∞,-2)∪(0,+∞)D .(-2,0)7. 点 M ,N 分别是正方体 ABCD A 1B 1C 1D 1 的棱 A 1B 1,A 1D 1 的中点,用过点 A ,M ,N 和点 D ,N ,C 1的两个截面截去正方体的两个角后得到的几何体如图所示,则该几何体的主视图、左视图、俯视图依次为( )1 x ≥3 22 2 2 2A.①③④B.②④③C.①②③D.②③④x2 y28.已知双曲线-=1(a>0,b>0)的渐近线与圆x2+(y-3)2=1 相切,则双曲线的离心率为( )a2 b2A.2 B. C D.39.《九章算术》之后,人们进一步地用等差数列求和公式来解决更多的问题.《张邱建算经》卷上第22题为:今有女善织,日益功疾(注:从第2 天起每天比前一天多织相同量的布),第一天织5 尺布,现在一月(按30 天计),共织390 尺布,则第2 天织的布的尺数为( )161 161 81 80A.B.C.D.29 31 15 1510.我们把平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系中,利用求动点轨迹方程的方法,可以求出过点A(-3,4),且法向量为n=(1,-2)的直线(点法式)方程为1×(x+3)+(-2)×(y-4) =0,化简得x-2y+11=0。
最新文件---------------- 仅供参考--------------------已改成-----------word 文本 --------------------- 方便更改2017年普通高等学校招生全国统一模拟考试文科数学考场:___________座位号:___________本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
满分150分,考试时间120分钟.第I 卷(选择题共60分)选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设集合A={4,5,7,9},B={3,4,7,8,9},全集U AB =,则集合()UA B 中的元素共有( )(A) 3个 (B ) 4个 (C )5个 (D )6个(2)(2) 复数3223ii+=-( ) (A )1 (B )1- (C )i (D)i -(3)已知()()3,2,1,0a b =-=-,向量a b λ+与2a b -垂直,则实数λ的值为( )(A )17-(B )17 (C )16- (D )16(4)已知tan a =4,cot β=13,则tan(a+β)=( )…(A)711 (B)711- (C) 713 (D) 713- (5)已知双曲线)0(13222>=-a y a x 的离心率为2,则=a ( ) A. 2 B.26 C. 25D. 1 (6)已知函数()f x 的反函数为()()10g x x =+2lgx >,则=+)1()1(g f ( )(A )0 (B )1 (C )2 (D )4(7)在函数①|2|cos x y =,②|cos |x y = ,③)62cos(π+=x y ,④)42tan(π-=x y 中,最小正周期为π的所有函数为( ) A.①②③ B. ①③④ C. ②④ D. ①③(8)如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱(9)若0tan >α,则( )A. 0sin >αB. 0cos >αC. 02sin >αD. 02cos >α (10) 如果函数3cos(2)y x φ=+的图像关于点4(,0)3π中心对称,那么φ的最小值为( )(A)6π (B) 4π (C) 3π (D) 2π (11)设,x y 满足24,1,22,x y x y x y +≥⎧⎪-≥⎨⎪-≤⎩则z x y =+ ( )(A )有最小值2,最大值3 (B )有最小值2,无最大值 (C )有最大值3,无最小值 (D )既无最小值,也无最大值(12)已知椭圆22:12x C y +=的右焦点为F,右准线l ,点A l ∈,线段AF 交C 于点B 。
2017高考仿真卷·文科数学(二)(考试时间:120分钟试卷满分:150分)第Ⅰ卷选择题(共60分)一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知i是虚数单位,则复数=()A.-2+iB.iC.2-iD.-i2.已知集合M={x|x2-4x<0},N=,则M∪N=()A.[-2,4)B.(-2,4)C.(0,2)D.(0,2]3.采用系统抽样的方法从1 000人中抽取50人做问卷调查,为此将他们随机编号为1,2,3,…,1 000,适当分组后,在第一组中采用简单随机抽样的方法抽到的号码为8.若编号落入区间[1,400]上的人做问卷A,编号落入区间[401,750]上的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷C的人数为()A.12B.13C.14D.154.已知命题p:函数y=ln(x2+3)+的最小值是2;命题q:“x>2”是“x>1”的充分不必要条件.则下列命题是真命题的是()A.p∧qB.( p)∧( q)C.( p)∧qD.p∧( q)5.已知点A是抛物线C1:y2=2px(p>0)与双曲线C2:=1(a>0,b>0)的一条渐近线的交点,若点A到抛物线C1的焦点的距离为p,则双曲线C2的离心率等于()A. B. C. D.6.某产品的广告费用x(单位:万元))的统计数据如下表:根据表中数据求得回归直线方程为=9.5x+,则等于()A.22B.26C.33.6D.19.57.设a,b,c分别是△ABC的内角A,B,C所对边的边长,则直线sin A·x-ay-c=0与bx+sin B·y+sin C=0的位置关系是()A.平行B.重合C.垂直D.相交但不垂直8.如图,正四棱锥P-ABCD底面的四个顶点A,B,C,D在球O的同一个大圆上,点P在球面上,若V =,则球O的表面积是()正四棱锥P-ABCDA.4πB.8πC.12πD.16π9.已知变量x,y满足线性约束条件若目标函数z=kx-y仅在点(0,2)处取得最小值,则k的取值范围是()A.k<-3B.k>1C.-1<k<1D.-3<k<110.某几何体的三视图如图所示,当a+b取最大值时,这个几何体的体积为()A. B. C. D.11.已知M是△ABC内一点(不含边界),且=2,∠BAC=30°.若△MBC,△MCA,△MAB的面积分别为x,y,z,记f(x,y,z)=,则f(x,y,z)的最小值为()A.26B.32C.36D.4812.已知集合M={(x,y)|y=f(x)},若对于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,则称集合M是“商高线”.给出下列四个集合:①M=;②M={(x,y)|y=sin x+1};③M={(x,y)|y=log2x};④M={(x,y)|y=e x-2}.其中是“商高线”的序号是()A.①②B.②③C.①④D.②④第Ⅱ卷非选择题(共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.执行如图所示的程序框图,若输入x=0.1,则输出的m的值是.14.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=3x+m(m为常数),则f(-log35)的值为.15.关于函数f(x)=2(sin x-cos x)cos x的下列四个结论:①函数f(x)的最大值为;②把函数f(x)=sin 2x-1的图象向右平移个单位后可得到函数f(x)=2(sin x-cos x)·cos x的图象;③函数f(x)的单调递增区间为,k∈Z;④函数f(x)的图象的对称中心为,k∈Z.其中正确的结论有个.16.已知数列{a n}满足a1=,a n-1-a n=(n≥2),则该数列的通项公式为.三、解答题(本大题共6小题,满分70分,解答须写出文字说明、证明过程或演算步骤)17.(本小题满分12分)在△ABC中,角A,B,C的对边分别为a,b,c,已知A=,sin B=3sin C.(1)求tan C的值;(2)若a=,求△ABC的面积.18.(本小题满分12分)国家教育部要求高中阶段每学年都要组织学生进行“国家学生体质健康数据测试”,方案要求以学校为单位组织实施.某校对高一(1)班的同学按照“国家学生体质健康数据测试”的项目进行了测试,并对测试成绩进行统计,其频率分布直方图如图所示,若分数在[90,100]上的人数为2.(1)请求出分数在[70,80)内的人数;(2)现根据测试成绩从第一组和第五组(从低分段到高分段依次分为第一组,第二组,…,第五组)中任意选出2人,形成搭档小组.若选出的2人成绩差大于30,则称这2人为“互补组”,试求选出的2人为“互补组”的概率.19.(本小题满分12分)如图,在正方体ABCD-A1B1C1D1中,E,F分别为AB,BB1的中点.(1)求证:EF⊥平面A1D1B;(2)若AA1=2,求三棱锥D1-DEF的体积.20.(本小题满分12分)已知椭圆C的中心在原点,焦点在x轴上,长轴长为4,且点在椭圆C上.(1)求椭圆C的方程;(2)设P是椭圆C长轴上的一个动点,过P作斜率为的直线l交椭圆C于A,B两点,求证:|P A|2+|PB|2为定值.21.(本小题满分12分)设函数f(x)=.(1)求证:f(x)在(0,1)和(1,+∞)内都是增函数;(2)若在函数f(x)的定义域内,不等式af(x)>x恒成立,求a的取值范围.请考生在第22、23两题中任选一题做答,如果多做,则按所做的第一题评分.22.(本小题满分10分)选修4—4:坐标系与参数方程在平面直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系.已知曲线C:ρcos2θ=2a sin θ(a>0),过点P(-4,-2)的直线l的参数方程为(t为参数),直线l与曲线C分别交于点M,N.(1)写出C的直角坐标方程和l的普通方程;(2)若|PM|,|MN|,|PN|成等比数列,求a的值.23.(本小题满分10分)选修4—5:不等式选讲已知函数f(x)=|x-1|+|x+1|.(1)求不等式f(x)≥3的解集;(2)若关于x的不等式f(x)>a2-x2+2x在R上恒成立,求实数a的取值范围.参考答案2017高考仿真卷·文科数学(二)1.B解析(方法一)=i.(方法二)=i.2.A解析∵M={x|0<x<4},N={x|-2≤x≤2},∴M∪N=[-2,4).3.A解析若采用系统抽样的方法从1 000人中抽取50人做问卷调查,则需要分为50组,每组20人.若第一组抽到的号码为8,则以后每组抽取的号码分别为28,48,68,88,108,…,所以编号落入区间[1,400]上的有20人,编号落入区间[401,750]上的有18人,所以做问卷C的有12人.4.C解析因为命题p为假命题,命题q为真命题,所以( p)∧q为真命题.5.C解析因为点A到抛物线C1的焦点的距离为p,所以点A到抛物线准线的距离为p.所以点A的坐标为.所以双曲线的渐近线方程为y=±2x.所以=2,所以b2=4a2.又b2=c2-a2,所以c2=5a2.所以双曲线的离心率为.6.B解析由题意知=2,=45.又由公式,得=26,故选B.7.C解析因为,所以两条直线斜率的乘积为=-1,所以这两条直线垂直.8.D解析连接PO,由题意知,PO⊥底面ABCD,PO=R,S正方形ABCD=2R2.因为V正四棱锥P-ABCD=,所以·2R2·R=,解得R=2,所以球O的表面积是16π.9.D解析如图,作出不等式组所表示的平面区域.由z=kx-y得y=kx-z,要使目标函数z=kx-y 仅在点A(0,2)处取得最小值,则阴影部分区域在直线y=kx+2的下方,故目标函数线的斜率k 满足-3<k<1.10.D解析由该几何体的三视图可得其直观图为如图所示的三棱锥,且从点A出发的三条棱两两垂直,AB=1,PC=,PB=a,BC=b.可知P A2+AC2=a2-1+b2-1=6,即a2+b2=8.故(a+b)2=8+2ab≤8+2,即a+b≤4,当且仅当a=b=2时,a+b取得最大值,此时P A=,AC=.所以该几何体的体积V=×1×.11.C解析由=2,∠BAC=30°,可得S△ABC=1,即x+y+z=1.故(x+y+z)=1+4+9+≥14+4+6+12=36,当且仅当x=,y=,z=时等号成立.因此,f(x,y,z)的最小值为36.12.D解析若对于函数图象上的任意一点M(x1,y1),在其图象上都存在点N(x2,y2),使OM⊥ON,则函数图象上的点的集合为“商高线”.对于①,若取M(1,1),则不存在这样的点;对于③,若取M(1,0),则不存在这样的点.②④都符合.故选D.13.0解析若输入x=0.1,则m=lg 0.1=-1.因为m<0,所以m=-1+1=0.所以输出的m的值为0.14.-4解析因为f(x)是定义在R上的奇函数,所以f(0)=1+m=0.所以m=-1.所以f(-log35)=-f(log35)=-(-1)=-4.15.2解析因为f(x)=2sin x·cos x-2cos2x=sin 2x-cos 2x-1=sin-1,所以其最大值为-1.所以①错误.因为函数f(x)=sin 2x-1的图象向右平移个单位后得到函数f(x)=sin-1=sin-1的图象,所以②错误.由-+2kπ≤2x-+2kπ,k∈Z,得函数f(x)的单调递增区间为,k∈Z,即为,k'∈Z.故③正确.由2x-=kπ,k∈Z,得x=,k∈Z,故④正确.16.a n=解析因为a n-1-a n=(n≥2),所以,所以.所以,…,.所以.所以.所以a n=(n≥2).经检验,当n=1时也适合此公式.所以a n=.17.解(1)∵A=,∴B+C=.∴sin=3sin C.∴cos C+sin C=3sin C.∴cos C=sin C.∴tan C=.(2)由,sin B=3sin C,得b=3c.在△ABC中,由余弦定理得a2=b2+c2-2bc cos A=9c2+c2-2×(3c)×c×=7c2.∵a=,∴c=1,b=3.∴△ABC的面积为S=bc sin A=.18.解(1)由频率分布直方图可知分数在[50,60)内的频率为0.1,[ 60,70)内的频率为0.25,[80,90)内的频率为0.15,[90,100]上的频率为0.05.故分数在[70,80)内的频率为1-0.1-0.25-0.15-0.05=0.45.因为分数在[90,100]上的人数为2,频率为0.05,所以参加测试的总人数为=40.所以分数在[70,80)内的人数为40×0.45=18.(2)因为参加测试的总人数为=40,所以分数在[50,60)内的人数为40×0.1=4.设第一组[50,60)内的同学为A1,A2,A3,A4;第五组[90,100]上的同学为B1,B2,则从中选出2人的选法有(A1,A2),(A1,A3),(A1,A4),(A1,B1),(A1,B2),(A2,A3),(A2,A4),(A2,B1),(A2,B2),(A3,A4),(A3,B1),(A3,B2),( A4,B1),(A4,B2),(B1,B2),共15种,其中2人成绩差大于30的选法有(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(A4,B1),(A4,B2),共8种,则选出的2人为“互补组”的概率为.19.(1)证明如图,连接AB1.因为E,F分别为AB与AB1的中点,所以EF∥AB1.因为AB1⊥A1B,所以EF⊥A1B.又因为D1A1⊥平面ABB1A1,平面ABB1A1⊃EF,所以D1A1⊥EF.又因为A1B∩D1A1=A1,所以EF⊥平面A1D1B.(2)解如图,连接DB.因为BB1∥DD1,所以.所以=S△DEB·DD1=×2=.20.(1)解因为2a=4,所以a=2.又因为焦点在x轴上,所以设椭圆方程为=1.将点代入椭圆方程得b2=1,所以椭圆方程为+y2=1.(2)证明设点P(m,0)(-2≤m≤2),可得直线l的方程是y=,由方程组消去y得2x2-2mx+m2-4=0.(*)设A(x1,y1),B(x2,y2),则x1,x2是方程(*)的两个根.所以x1+x2=m,x1x2=.所以|P A|2+|PB|2=(x1-m)2++(x2-m)2+=(x1-m)2+(x1-m)2+(x2-m)2+(x2-m)2=[(x1-m)2+(x2-m)2]=-2m(x1+x2)+2m2]=[(x1+x2)2-2m(x1+x2)-2x1x2+2m2]=[m2-2m2-(m2-4)+2m2]=5.所以|P A|2+|PB|2为定值.21.(1)证明由题意可得f'(x)==(x>0,x≠1).令g(x)=2ln x-,则g'(x)=.当0<x<1时,g'(x) <0,g(x)是减函数,g(x)>g(1)=0.于是f'(x)=g(x)>0,故f(x)在(0,1)内为增函数.当x>1时,g'(x)>0,g(x)是增函数,g(x)>g(1)=0,于是f'(x)=g(x)>0,故f(x)在(1,+∞)内为增函数.(2)解af(x)-x=-x=.令h(x)=-ln x(x>0),则h'(x)=.令φ(x)=ax2-x+a,当a>0,且Δ=1-4a2≤0,即a≥时,此时φ(x)=ax2-x+a>0在(0,1),(1,+∞)内恒成立,所以当a≥时,h'(x)>0在(0,1),(1,+∞)内恒成立,故h(x)在(0,1),(1,+∞)内是增函数,若0<x<1,则h(x)< h(1)=0,所以af(x)-x=h(x)>0;若x>1,则h(x)>h(1)=0,所以af(x)-x=h(x)>0,所以当x>0,x≠1时都有af(x)>x成立.当0<a<时,h'(x)<0,解得<x<,所以h(x)在内是减函数,h(x)<h(1)=0.故af(x)-x=h(x)<0,不符合题意.当a≤0时,x∈(0,1)∪(1,+∞),都有h'(x)<0,故h(x)在(0,1),(1,+∞)内为减函数,同理可知,在(0,1),(1,+∞)内,af(x)-x=h(x)<0,不符合题意.综上所述,a≥,即a的取值范围是.22.解(1)曲线C的直角坐标方程为x2=2ay(a>0),直线l的普通方程为x-y+2=0.(2)将直线l的参数方程与C的直角坐标方程联立,得t2-2(4+a)t+8(4+a)=0.(*)由Δ=8a(4+a)>0,可设点M,N对应的参数分别为t1,t2,且t1,t2是方程(*)的根,则|PM|=|t1|,|PN|=|t2|,|MN|=|t1-t2|.由题设得(t1-t2)2=|t1t2|,即(t1+t2)2-4t1t2=|t1t2|.由(*)得t1+t2=2(4+a),t1t2=8(4+a)>0.则有(4+a)2-5(4+a)=0,解得a=1或a=-4.因为a>0,所以a=1.23.解(1)原不等式等价于解得x≤-或x≥.故原不等式的解集为.(2)令g(x)=|x-1|+|x+1|+x2-2x,则g(x)=当x∈(-∞,1]时,g(x)单调递减;当x∈[1,+∞)时,g(x)单调递增.故当x=1时,g(x)取得最小值1.因为不等式f(x)>a2-x2+2x在R上恒成立,所以a2<1,解得-1<a<1.所以实数a的取值范围是(-1,1).。
(完整word版)2017-2019高考数学(文科)试卷及答案(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整word版)2017-2019高考数学(文科)试卷及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整word版)2017-2019高考数学(文科)试卷及答案(word版可编辑修改)的全部内容。
2017年广东省高考数学试卷(文科)(全国新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={x|x<2},B={x|3﹣2x>0},则()A.A∩B={x|x<} B.A∩B=∅C.A∪B={x|x<} D.A∪B=R2.(5分)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别是x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是()A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数3.(5分)下列各式的运算结果为纯虚数的是()A.i(1+i)2B.i2(1﹣i)C.(1+i)2D.i(1+i)4.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A.B.C.D.5.(5分)已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.6.(5分)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()A.B.C.D.7.(5分)设x,y满足约束条件,则z=x+y的最大值为( )A.0 B.1 C.2 D.38.(5分)函数y=的部分图象大致为()A.B.C.D.9.(5分)已知函数f(x)=lnx+ln(2﹣x),则()A.f(x)在(0,2)单调递增B.f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称10.(5分)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入()A.A>1000和n=n+1 B.A>1000和n=n+2C.A≤1000和n=n+1 D.A≤1000和n=n+211.(5分)△ABC的内角A,B,C的对边分别为a,b,c,已知sinB+sinA(sinC﹣cosC)=0,a=2,c=,则C=()A. B.C.D.(5分)设A,B是椭圆C:+=1长轴的两个端点,若C上存在点M满足∠AMB=120°,12.则m的取值范围是()A.(0,1]∪[9,+∞) B.(0,]∪[9,+∞) C.(0,1]∪[4,+∞)D.(0,]∪[4,+∞)二、填空题:本题共4小题,每小题5分,共20分。
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={x|x 2+x ﹣12≤0},N={y|y=3x ,x ≤1},则集合{x|x ∈M 且x ∉N}为( ) A .(0,3] B .[﹣4,3]C .[﹣4,0)D .[﹣4,0]2.向量,,在正方形网格中的位置如图所示,若=λ+μ(λ,μ∈R ),则=( )A .2B .4C .D .3.已知,则f[f (1﹣i )]等于( )A .3B .1C .2﹣iD .3+i4.如图的程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a ,b 分别为16,28,则输出的a=( )A .0B .2C .4D .145.设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则等于( )A .11B .5C .﹣8D .﹣116.某一简单几何体的三视图如所示,该几何体的外接球的表面积是( )A.13πB.16πC.25πD.27π7.已知直线m和平面α,β,则下列四个命题中正确的是()A.若α⊥β,m⊂β,则m⊥αB.若α∥β,m∥α,则m∥βC.若α∥β,m⊥α,则m⊥βD.若m∥α,m∥β,则α∥β8.已知tanx=,则sin2(+x)=()A.B.C.D.9.已知m,n是满足m+n=1,且使取得最小值的正实数.若曲线y=xα过点P(m, n),则α的值为()A.﹣1 B.C.2 D.310.△ABC的三内角A,B,C所对边长分别是a,b,c,若=,则角B的大小为()A.B.C.D.11.设点P是双曲线﹣=1(a>0,b>0)与圆x2+y2=a2+b2在第一象限的交点,F1、F2分别是双曲线的左、右焦点,且|PF1|=3|PF2|,则双曲线的离心率()A.B. C.D.12.对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f′(x)是函数y=f(x)的导数,f″(x)是f′(x)的导数,若方程f″(x)=0有实数解x0,则称点(x,f(x))为函数y=f(x)的“拐点”.经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数g(x)=,则g()+g()+…+g()=()A.2016 B.2015 C.4030 D.1008二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知实数x,y满足:,z=2x﹣2y﹣1,则z的取值范围是.14.已知抛物线y2=4x上一点P到焦点F的距离为5,则△PFO的面积为.15.已知O是坐标原点,A,B分别是函数y=sinπx以O为起点的一个周期内的最大值点和最小值点.则tan∠OAB= .16.已知函数f(x)=kx,,若f(x)与g(x)的图象上分别存在点M,N,使得MN关于直线y=e对称,则实数k的取值范围是.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知数列{an }为公差不为零的等差数列,其前n项和为Sn,满足S5﹣2a2=25,且a1,a4,a 13恰为等比数列{bn}的前三项(Ⅰ)求数列{an },{bn}的通项公式;(Ⅱ)设Tn 是数列{}的前n项和,是否存在k∈N*,使得等式1﹣2Tk=成立,若存在,求出k的值;若不存在,说明理由.18.今年我校高二文科班学生共有800人参加了数学与地理的学业水平测试,现学校决定利用随机数表法从中抽取100人进行成绩抽样统计,先将800人按001,002,…800进行编号:(1)如果从第8行第7列的数开始向右读,请你依次写出最先检测的三个人的编号:(下面摘取了第7行至第9行)(2)抽出100人的数学与地理的水平测试成绩如表:成绩分为优秀、良好、及格三个等级,横向、纵向分别表示地理成绩与数学成绩,例如:表中数学成绩良好的共有20+18+4=42人,若在该样本中,数学成绩优秀率是30%,求a、b的值;(3)在地理成绩为及格的学生中,已知a≥10,b≥8,求数学成绩为优秀的人数比及格的人数少的概率.19.如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD所在平面和圆O所在的平面互相垂直.已知AB=2,EF=1.(Ⅰ)求证:平面DAF⊥平面CBF;(Ⅱ)设几何体F﹣ABCD、F﹣BCE的体积分别为V1、V2,求V1:V2的值.20.已知函数f(x)=+nlnx(m,n为常数)的图象在x=1处的切线方程为x+y﹣2=0(1)判断函数f(x)的单调性;(2)已知p∈(0,1),且f(p)=2,若对任意x∈(p,1),任意t∈[,2],f(x)≥t3﹣t2﹣2at+2与f(x)≤t3﹣t2﹣2at+2中恰有一个恒成立,求实数a的取值范围.21.已知椭圆的离心率,过椭圆的左焦点F 且倾斜角为30°的直线与圆x 2+y 2=b 2相交所得弦的长度为1. (I )求椭圆E 的方程;(Ⅱ)若动直线l 交椭圆E 于不同两点M (x 1,y 1),N (x 2,y 2),设=(bx 1,ay 1),=((bx 2,ay 2),O 为坐标原点.当以线段PQ 为直径的圆恰好过点O 时,求证:△MON 的面积为定值,并求出该定值.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy 中,圆C 1和C 2的参数方程分别是(ϕ为参数)和(β为参数),以O 为极点,x 轴的正半轴为极轴建立极坐标系. (1)求圆C 1和C 2的极坐标方程;(2)射线OM :θ=α与圆C 1的交点分别为O 、P ,与圆C 2的交点分别为O 、Q ,求|OP|•|OQ|的最大值.[选修4-5:不等式选讲]23.(Ⅰ)若关于x 的不等式|x+1|﹣|x ﹣2|>|a ﹣3|的解集是空集,求实数a 的取值范围;(Ⅱ)对任意正实数x ,y ,不等式+<k恒成立,求实数k 的取值范围.2017届高三数学一模试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={x|x2+x﹣12≤0},N={y|y=3x,x≤1},则集合{x|x∈M且x∉N}为()A.(0,3] B.[﹣4,3] C.[﹣4,0)D.[﹣4,0]【考点】集合的表示法.【分析】集合M为不等式的解集,集合N为指数函数的值域,分别求出,再根据新定义求集合{x|x∈M且x∉N}B即可.【解答】解:M={x|x2+x﹣12≤0}=[﹣4,3],N={y|y=3x,x≤1}=(0,3],所以集合{x|x∈M且x∉N}=[﹣4,0).故选:C.2.向量,,在正方形网格中的位置如图所示,若=λ+μ(λ,μ∈R),则=()A.2 B.4 C.D.【考点】平面向量的基本定理及其意义.【分析】如图所示,建立直角坐标系.利用向量的坐标运算性质、向量相等即可得出.【解答】解:以向量,的公共点为坐标原点,建立如图直角坐标系可得=(﹣1,1),=(6,2),=(﹣1,﹣3)∵=λ+μ(λ,μ∈R),∴,解之得λ=﹣2且μ=﹣,因此,则=4故选:B.3.已知,则f[f(1﹣i)]等于()A.3 B.1 C.2﹣i D.3+i【考点】函数的值.【分析】根据f(x)中的范围带值计算即可.【解答】解:∵1﹣i∉R∴f(1﹣i)=(1+i)(1﹣i)=2.那么:f[f(1﹣i)]=f(2)=1+2=3.故选A.4.如图的程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b分别为16,28,则输出的a=()A.0 B.2 C.4 D.14【考点】程序框图.【分析】由循环结构的特点,先判断,再执行,分别计算出当前的a,b的值,即可得到结论.【解答】解:由a=16,b=28,不满足a>b,则b变为28﹣16=12,由b <a ,则a 变为16﹣12=4, 由a <b ,则,b=12﹣4=8, 由a <b ,则,b=8﹣4=4, 由a=b=4, 则输出的a=4. 故选:C .5.设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则等于( )A .11B .5C .﹣8D .﹣11【考点】等比数列的性质.【分析】由题意可得数列的公比q ,代入求和公式化简可得. 【解答】解:设等比数列{a n }的公比为q ,(q ≠0) 由题意可得8a 2+a 5=8a 1q+a 1q 4=0,解得q=﹣2,故====﹣11故选D6.某一简单几何体的三视图如所示,该几何体的外接球的表面积是( )A .13πB .16πC .25πD .27π【考点】由三视图求面积、体积.【分析】几何体为底面为正方形的长方体,底面对角线为4,高为3.则长方体的对角线为外接球的直径.【解答】解:几何体为底面为正方形的长方体,底面对角线为4,高为3,∴长方体底面边长为2.则长方体外接球半径为r,则2r==5.∴r=.∴长方体外接球的表面积S=4πr2=25π.故选C.7.已知直线m和平面α,β,则下列四个命题中正确的是()A.若α⊥β,m⊂β,则m⊥αB.若α∥β,m∥α,则m∥βC.若α∥β,m⊥α,则m⊥βD.若m∥α,m∥β,则α∥β【考点】空间中直线与平面之间的位置关系.【分析】利用面面垂直、面面平行、线面平行的判定定理和性质定理分别分析解答.【解答】解:对于选项A,若α⊥β,m⊂β,则m与α可能平行或者斜交;故A错误;对于选项B,若α∥β,m∥α,则m∥β或者m⊂α;故B 错误;对于选项C,若α∥β,m⊥α,则由面面平行的性质定理可得m⊥β;故C正确;对于选项D,若m∥α,m∥β,则α与β可能相交;故D错误;故选C.8.已知tanx=,则sin2(+x)=()A.B.C.D.【考点】二倍角的正弦.【分析】由条件利用半角公式、同角三角函数的基本关系,求得要求式子的值.【解答】解:tanx=,则sin2(+x)===+=+=+=,故选:D.9.已知m,n是满足m+n=1,且使取得最小值的正实数.若曲线y=xα过点P(m, n),则α的值为()A.﹣1 B.C.2 D.3【考点】基本不等式.【分析】由基本不等式易得m=且n=时取到最小值,可得=,解方程可得.【解答】解:∵正实数m,n是满足m+n=1,∴=()(m+n)=10++≥10+2=16,当且仅当=即m=且n=时取到最小值,∴曲线y=xα过点P(,),∴=,解得α=故选:B10.△ABC的三内角A,B,C所对边长分别是a,b,c,若=,则角B的大小为()A.B.C.D.【考点】余弦定理;正弦定理.【分析】利用正弦定理化简已知可得c2+a2﹣b2=﹣ac,由余弦定理可得cosB=﹣,结合范围B∈(0,π),即可解得B的值.【解答】解:在△ABC中,由正弦定理,可得:sinB=,sinA=,sinC=,∵=,可得: =,整理可得:c2+a2﹣b2=﹣ac,∴由余弦定理可得:cosB==﹣,∵B∈(0,π),∴B=.故选:B.11.设点P是双曲线﹣=1(a>0,b>0)与圆x2+y2=a2+b2在第一象限的交点,F1、F2分别是双曲线的左、右焦点,且|PF1|=3|PF2|,则双曲线的离心率()A.B. C.D.【考点】双曲线的简单性质.【分析】先由双曲线定义和已知求出两个焦半径的长,再由已知圆的半径为半焦距,知焦点三角形为直角三角形,从而由勾股定理得关于a、c的等式,求得离心率【解答】解:依据双曲线的定义:|PF1|﹣|PF2|=2a,又∵|PF1|=3|PF2|,∴|PF1|=3a,|PF2|=a,∵圆x2+y2=a2+b2的半径=c,∴F1F2是圆的直径,∴∠F1PF2=90°在直角三角形F1PF2中由(3a)2+a2=(2c)2,得故选 D12.对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f′(x)是函数y=f(x)的导数,f″(x)是f′(x)的导数,若方程f″(x)=0有实数解x0,则称点(x,f(x))为函数y=f(x)的“拐点”.经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数g(x)=,则g()+g()+…+g()=()A.2016 B.2015 C.4030 D.1008【考点】利用导数研究函数的极值.【分析】由题意对已知函数求两次导数可得图象关于点(,1)对称,即f(x)+f(1﹣x)=2,即可得到结论.【解答】解:函数g(x)=,函数的导数g′(x)=x2﹣x+3,g″(x)=2x﹣1,由g″(x0)=0得2x﹣1=0解得x=,而g()=1,故函数g(x)关于点(,1)对称,∴g(x)+g(1﹣x)=2,故设g()+g()+…+g()=m,则g()+g()+…+g()=m,两式相加得2×2015=2m,则m=2015.故选:B.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知实数x,y满足:,z=2x﹣2y﹣1,则z的取值范围是[﹣,5).【考点】简单线性规划.【分析】根据画出不等式组表示的平面区域,利用数形结合结合目标函数的意义,利用平移即可得到结论.【解答】解:不等式对应的平面区域如图:(阴影部分).由z=2x﹣2y﹣1得y=x﹣,平移直线y=x﹣,由平移可知当直线y=x﹣,经过点C时,直线y=x﹣的截距最小,此时z取得最大值,由,解得,即C(2,﹣1),此时z=2x﹣2y﹣1=4+2﹣1=5,可知当直线y=x﹣,经过点A时,直线y=y=x﹣的截距最大,此时z取得最小值,由,得,即A(,)代入z=2x﹣2y﹣1得z=2×﹣2×﹣1=﹣,故z∈[﹣,5).故答案为:[﹣,5).14.已知抛物线y2=4x上一点P到焦点F的距离为5,则△PFO的面积为 2 .【考点】抛物线的简单性质.【分析】由抛物线方程求出抛物线的焦点坐标和准线方程,结合抛物线的定义得答案.【解答】解:抛物线y2=4x的焦点坐标为F(1,0),准线方程为x=﹣1,∵抛物线y2=4x上的一点P到焦点的距离为5,由抛物线定义可知,点P到准线x=﹣1的距离是5,则点P到x轴的距离是4,∴△PFO的面积为=2,故答案为:2.15.已知O是坐标原点,A,B分别是函数y=sinπx以O为起点的一个周期内的最大值点和最小值点.则tan∠OAB= .【考点】正弦函数的图象.【分析】根据题意画出图形,结合图形,利用函数y=sinπx的对称性得出∠OAB=2∠OAC,结合二倍角公式求出tan∠OAB的值.【解答】解:如图所示;O是坐标原点,A,B分别是函数y=sinπx以O为起点的一个周期内的最大值点和最小值点,∴AB过点D,且∠OAB=2∠OAC;又A(,1),∴tan∠OAC=,∴tan∠OAB===.故答案为:.16.已知函数f(x)=kx,,若f(x)与g(x)的图象上分别存在点M,N,使得MN关于直线y=e对称,则实数k的取值范围是[﹣,2e] .【考点】函数的图象.【分析】设M(x,kx),则N(x,2e﹣kx),推导出k=﹣lnx,由此利用导数性质能求出实数k的取值范围.【解答】解:∵函数f(x)=kx,g(x)=2lnx+2e(≤x≤e2),f (x )与g (x )的图象上分别存在点M ,N ,使得M ,N 关于直线y=e 对称, ∴设M (x ,kx ),则N (x ,2e ﹣kx ),∴2e ﹣kx=2lnx+2e ,∴k=﹣lnx ,k′=,由k′=0,得x=e ,∵≤x ≤e 2,∴x ∈[,e )时,k′<0,k=﹣lnx 是减函数;x ∈(e ,e 2]时,k′>0,k=﹣lnx 是增函数,∴x=e 时,k=﹣lne=﹣;x=e 2时,k=﹣lne 2=﹣;x=时,k=﹣ln =2e ,∴k min =﹣,k max =2e .∴实数k 的取值范围是[﹣,2e].故答案为:三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.已知数列{a n }为公差不为零的等差数列,其前n 项和为S n ,满足S 5﹣2a 2=25,且a 1,a 4,a 13恰为等比数列{b n }的前三项(Ⅰ)求数列{a n },{b n }的通项公式;(Ⅱ)设T n 是数列{}的前n 项和,是否存在k ∈N *,使得等式1﹣2T k =成立,若存在,求出k 的值;若不存在,说明理由. 【考点】数列的求和;数列递推式.【分析】(I )利用等差数列与等比数列的通项公式及其前n 项和公式即可得出; (II )利用“裂项求和”与数列的单调性即可得出. 【解答】解:(Ⅰ)设等差数列{a n }的公差为d (d ≠0),∴,解得a 1=3,d=2, ∵b 1=a 1=3,b 2=a 4=9,∴.(Ⅱ)由(I)可知:a=3+2(n﹣1)=2n+1.n,∴=,∴,单调递减,得,而,所以不存在k∈N*,使得等式成立.18.今年我校高二文科班学生共有800人参加了数学与地理的学业水平测试,现学校决定利用随机数表法从中抽取100人进行成绩抽样统计,先将800人按001,002,…800进行编号:(1)如果从第8行第7列的数开始向右读,请你依次写出最先检测的三个人的编号:(下面摘取了第7行至第9行)(2)抽出100人的数学与地理的水平测试成绩如表:成绩分为优秀、良好、及格三个等级,横向、纵向分别表示地理成绩与数学成绩,例如:表中数学成绩良好的共有20+18+4=42人,若在该样本中,数学成绩优秀率是30%,求a、b的值;(3)在地理成绩为及格的学生中,已知a≥10,b≥8,求数学成绩为优秀的人数比及格的人数少的概率.【考点】古典概型及其概率计算公式.【分析】(1)利用随机数表法能求出最先检测的3个人的编号.(2)由,能求出a、b的值.(3)由题意,知a+b=31,且a≥10,b≥8,满足条件的(a,b)有14组,其中数学成绩为优秀的人数比及格的人数少有6组,由此能求出数学成绩为优秀的人数比及格的人数少的概率.【解答】解:(1)依题意,最先检测的3个人的编号依次为785,667,199.…(2)由,得a=14,…∵7+9+a+20+18+4+5+6+b=100,∴b=17.…(3)由题意,知a+b=31,且a≥10,b≥8,∴满足条件的(a,b)有:(10,21),(11,20),(12,19),(13,18),(14,17),(15,16),(16,15),(17,14),(18,13),(19,12),(20,11),(21,10),(22,9),(23,8)共14组,且每组出现的可能性相同.….…其中数学成绩为优秀的人数比及格的人数少有:(10,21),(11,20),(12,19),(13,18),(14,17),(15,16)共6组.…∴数学成绩为优秀的人数比及格的人数少的概率为.…19.如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD所在平面和圆O所在的平面互相垂直.已知AB=2,EF=1.(Ⅰ)求证:平面DAF⊥平面CBF;(Ⅱ)设几何体F﹣ABCD、F﹣BCE的体积分别为V1、V2,求V1:V2的值.【考点】棱柱、棱锥、棱台的体积;平面与平面垂直的判定.【分析】(1)由面面垂直可得AD ⊥平面ABEF ,从而得到AD ⊥BF ,由直径的性质得BF ⊥AF ,故得出BF ⊥平面ADF ,从而得出平面DAF ⊥平面CBF ;(2)V F ﹣BCE =V C ﹣BEF ,设AD=a ,则可用a 表示出V 1,V 2.从而得出体积比.【解答】证明:(1)∵平面ABCD ⊥平面ABEF ,平面ABCD ∩平面ABEF=AB ,AD ⊥AB ,AD ⊂平面ABCD ,∴AD ⊥平面ABEF ,∵BF ⊂平面ABE , ∴AD ⊥BF ,∵AB 是圆O 的直径,∴BF ⊥AF ,又AD ⊂平面ADF ,AF ⊂平面ADF ,AD ∩AF=A , ∴BF ⊥平面ADF ,∵BF ⊂平面BCF , ∴平面DAF ⊥平面CBF .(2).连结OE ,OF ,则OE=OF=EF=1, ∴△AOF ,△OEF ,△BOE 是等边三角形,过F 作FM ⊥AB 于M ,则FM=,FM ⊥平面ABCD ,设AD=BC=a ,则V 1=V F ﹣ABCD ==.V 2=V F ﹣BCE =V C ﹣BEF ===.∴V 1:V 2=:=4:1.20.已知函数f(x)=+nlnx(m,n为常数)的图象在x=1处的切线方程为x+y﹣2=0(1)判断函数f(x)的单调性;(2)已知p∈(0,1),且f(p)=2,若对任意x∈(p,1),任意t∈[,2],f(x)≥t3﹣t2﹣2at+2与f(x)≤t3﹣t2﹣2at+2中恰有一个恒成立,求实数a的取值范围.【考点】利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.【分析】(1)利用导数的意义求得m,进而求出单调区间;(2)f(x)在[p,1]上的最小值为f(1)=1,最小值f(p)=2,只需2a≥t2﹣t+对t∈[,2]恒成立或2a≤t2﹣t对t∈[,2]恒成立,利用导数求出函数的单调性,列出不等式,即可求得结论;【解答】解:(1)由f(x)=+nlnx(m,n为常数)的定义域为(0,+∞),∴f′(x)=﹣+,∴f′(1)=﹣+n=﹣1,把x=1代入x+y﹣2=0得y=1,∴f(1)==1,∴m=2,n=﹣,∴f(x)=﹣lnx,f′(x)=﹣﹣,∵x>0,∴f′(x)<0,∴f(x)的单调递减区间为(0,+∞),没有递增区间.(2)由(1)可得,f(x)在[p,1]上单调递减,∴f(x)在[p,1]上的最小值是f(1)=1,最大值是f(p)=2,∴只需t3﹣t2﹣2at+2≤1或≥2,即2a ≥t 2﹣t+对t ∈[,2]恒成立或2a ≤t 2﹣t 对t ∈[,2]恒成立,令g (t )=t 2﹣t+,则g′(t )=,令g′(t )=0,解得:t=1,而2t 2+t+1>0恒成立,∴≤t <1时,g′(t )<0,g (t )递减,1<t ≤2时,g′(t )>0,g (t )递增,∴g (t )的最大值是max{g (),g (2)},而g ()=<g (2)=,∴g (t )在[,2]的最大值是g (2)=,又t 2﹣t ∈[﹣,2],∴2a ≥或2a ≤﹣,解得:a ≥或a ≤﹣,故a 的范围是(﹣∞,﹣]∪[,+∞).21.已知椭圆的离心率,过椭圆的左焦点F 且倾斜角为30°的直线与圆x 2+y 2=b 2相交所得弦的长度为1. (I )求椭圆E 的方程;(Ⅱ)若动直线l 交椭圆E 于不同两点M (x 1,y 1),N (x 2,y 2),设=(bx 1,ay 1),=((bx 2,ay 2),O 为坐标原点.当以线段PQ 为直径的圆恰好过点O 时,求证:△MON 的面积为定值,并求出该定值.【考点】椭圆的简单性质.【分析】(I )运用离心率公式和直线与圆相交的弦长公式,结合a ,b ,c 的关系,解方程可得a ,b ,进而得到椭圆方程;(Ⅱ)讨论直线MN 的斜率存在和不存在,以线段PQ 为直径的圆恰好过点O ,可得⊥,运用向量的数量积为0,联立直线方程和椭圆方程,运用韦达定理,化简整理,由三角形的面积公式,计算即可得到定值.【解答】解:(I )由题意可得e==,过椭圆的左焦点F (﹣c ,0)且倾斜角为30°的直线方程为:y=(x+c ),由直线与圆x 2+y 2=b 2相交所得弦的长度为1,可得2=2=1,又a 2﹣b 2=c 2,解方程可得a=2,b=1,c=,即有椭圆的方程为+y 2=1;(Ⅱ)证明:(1)当MN 的斜率不存在时,x 1=x 2,y 1=﹣y 2,以线段PQ 为直径的圆恰好过点O ,可得⊥,即有•=0,即有b 2x 1x 2+a 2y 1y 2=0,即有x 1x 2+4y 1y 2=0,即x 12﹣4y 12=0, 又(x 1,y 1)在椭圆上,x 12+4y 12=4,可得x 12=2,|y 1|=,S △OMN =|x 1|•|y 1﹣y 2|=••=1;(2)当MN 的斜率存在,设MN 的方程为y=kx+t , 代入椭圆方程(1+4k 2)x 2+8ktx+4t 2﹣4=0, △=64k 2t 2﹣4(1+4k 2)(4t 2﹣4)=4k 2﹣t 2+1>0,x 1+x 2=﹣,x 1x 2=,又•=0,即有x 1x 2+4y 1y 2=0,y 1=kx 1+t ,y 2=kx 2+t ,(1+k 2)x 1x 2+4kt (x 1+x 2)+4t 2=0, 代入整理,可得2t 2=1+4k 2,即有|MN|=•=•=•,又O 到直线的距离为d=,S △OMN =d•|MN|=|t|•=|t|•=1.故△MON 的面积为定值1.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy 中,圆C 1和C 2的参数方程分别是(ϕ为参数)和(β为参数),以O 为极点,x 轴的正半轴为极轴建立极坐标系. (1)求圆C 1和C 2的极坐标方程;(2)射线OM :θ=α与圆C 1的交点分别为O 、P ,与圆C 2的交点分别为O 、Q ,求|OP|•|OQ|的最大值.【考点】参数方程化成普通方程;简单曲线的极坐标方程. 【分析】(1)先分别求出普通方程,再写出极坐标方程; (2)利用极径的意义,即可得出结论. 【解答】解:(1)圆C 1和C 2的参数方程分别是(ϕ为参数)和(β为参数),普通方程分别为(x ﹣2)2+y 2=4,x 2+(y ﹣1)2=1,极坐标方程分别为ρ=4cos θ,ρ=2sin θ;(2)设P ,Q 对应的极径分别为ρ1,ρ2,则|OP|•|OQ|=ρ1ρ2=4sin2α, ∴sin2α=1,|OP|•|OQ|的最大值为4.[选修4-5:不等式选讲]23.(Ⅰ)若关于x 的不等式|x+1|﹣|x ﹣2|>|a ﹣3|的解集是空集,求实数a 的取值范围;(Ⅱ)对任意正实数x ,y ,不等式+<k恒成立,求实数k 的取值范围.【考点】绝对值三角不等式;绝对值不等式的解法.【分析】(Ⅰ)利用绝对值不等式,结合关于x的不等式|x+1|﹣|x﹣2|>|a﹣3|的解集是空集,即可求实数a的取值范围;(Ⅱ)利用柯西不等式,结合对任意正实数x,y,不等式+<k恒成立,求实数k的取值范围.【解答】解:(Ⅰ)∵||x+1|﹣|x﹣2||≤|(x+1)﹣(x﹣2)|=3,∴﹣3≤|x+1|﹣|x﹣2|≤3,∵关于x的不等式|x+1|﹣|x﹣2|>|a﹣3|的解集是空集∴|a﹣3|≥3,∴a≥6或a≤0;(Ⅱ)由柯西不等式可得(+)(8x+6y)≥()2,∴≤,∵对任意正实数x,y,不等式+<k恒成立,∴k>,即实数k的取值范围是(,+∞).。
高三数学(文科)试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}(){}x y x B x x x A -==<--=2ln ,0322,则=B A ( )A .{}31<<-x xB .{}21<<-x xC .{}23<<-x x D .{}21<<x x2. =-02215sin 165cos ( ) A .21 B .22 C .23 D .33 3.已知i iz+=+221,则复数5+z 的实数与虚部的和为( ) A .10 B .10- C .0 D .5-4.“22bc ac >”是“b a >”的( )A .充分不必要条件B .必要不充分条件 C.充要条件 D .既不充分也不必要条件5.将函数()13cos 2-⎪⎭⎫⎝⎛-=πx x f 的图象向右平移3π个单位,再把所有的点的横坐标缩短到原来的21倍(纵坐标不变),得到函数()x g y =的图像,则函数()x g y =的一个对称中心为( ) A .⎪⎭⎫⎝⎛0,6π B .⎪⎭⎫ ⎝⎛0,12π C. ⎪⎭⎫ ⎝⎛-1,6π D .⎪⎭⎫ ⎝⎛-1,12π 6.已知y x ,满足⎪⎩⎪⎨⎧≤≥-+≥-4040x y x y x ,则y x -4的最小值为( )A .4B .6 C. 12 D .167.已知21,F F 是双曲线()0,01:2222>>=-b a by a x C 的左、右焦点,若直线x y 3=与双曲线C 交于Q P ,两点,且四边形21QF PF 是矩形,则双曲线的离心率为( )A .525-B .525+ C. 13+ D .13-8.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径,若该几何体的表面积是π17,则它的体积是( ) A .π8 B .356π C.314π D .328π9.圆:092222=-+++a ax y x 和圆:0414222=+--+b by y x 有三条公切线,若R b R a ∈∈,,且0≠ab ,则2214b a +的最小值为( ) A .1 B .3 C. 4 D .510.设函数()x f 的导函数为()x f ',且满足()()()e f xe xf x f x x==+'1,,则0>x 时,()x f ( )A .有极大值,无极小值B .有极小值,无极大值 C.既有极大值又有极小值 D .既无极大值也无极小值第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)11.下表是降耗技术改造后生产某产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对应数据,根据表中提供的数据,求出y 关于x 的线性回归方程ˆˆ0.70.3yx =+,那么表中m 的值为 .12.观察下列各式 ,7,4,3,1:443322=+=+=+=+b a b a b a b a ,则=+1010b a .13.已知()1,4a a b a b a =+=⋅-=- ,则a 与b夹角是 .14.执行如图的程序框图,如果输入的n 是4,则输出的p 是 .15.已知()1-=x e x f ,又()()()()R t x tf x f x g ∈-=2,若满足()1-=x g 的x 有三个,则t的取值范围是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)16.某中学拟在高一下学期开设游泳选修课,为了了解高一学生喜欢游泳是否与性别有关,现从高一学生中抽取100人做调查,得到如下22⨯列联表:已知在这100人中随机抽取一人抽到喜欢游泳的学生的概率为53, (Ⅰ)请将上述列联表补充完整,并判断是否有9.99%的把握认为喜欢游泳与性别有关?并说明你的理由;(Ⅱ)针对问卷调查的100名学生,学校决定从喜欢游泳的人中按分层抽样的方法随机抽取6人成立游泳科普知识宣传组,并在这6人中任选两人作为宣传组的组长,求这两人中至少有一名女生的概率,参考公式:()()()()()21122122121112212211211222n n n n n n n n n n n n n χ-=++++,其中22211211n n n n n +++=.参考数据:17.量2cos ,4444x x x x m n ⎫⎫=⋅=⎪⎪⎭⎭,设()f x m n =⋅ , (Ⅰ)若()2fα=,求cos 3πα⎛⎫+⎪⎝⎭的值;(Ⅱ)在ABC ∆中,角C B A ,,的对边分别是c b a ,,,且满足()B c C b a cos cos 2=-,求()A f 的取值范围;18.六面体ABCDE 中,面⊥DBC 面ABC ,⊥AE 面ABC.(Ⅰ)求证://AE 面DBC ;(Ⅱ)若CD BD BC AB ⊥⊥,,求证:面⊥ADB 面EDC ;19.列{}n a 与{}n b 满足()N n b b a a n n n n ∈-=-++,211,12-=n b n ,且.21=a (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设n n nn nn T b a c ,1-=为数列{}n c 的前n 项和,求.n T20.()().ln 222x x x ax x x f -++-= (Ⅰ)当2=a 时,求()x f 的单调区间;(Ⅱ)若()+∞∈,0x 时,()02>+x x f 恒成立,求整数a 的最小值;21. 在直角坐标系中,椭圆()01:2222>>=+b a by a x C 的左、右焦点分别为21,F F ,其中2F 也是抛物线x y C 4:22=的焦点,点P 为1C 与2C 在第一象限的交点,且352=PF , (Ⅰ)求椭圆的方程;(Ⅱ)过2F 且与坐标轴不垂直的直线交椭圆于N M ,两点,若线段2OF 上存在定点()0,t T 使得以TN TM ,为邻边的四边形是棱形,求t 的取值范围;试卷答案一、选择题1-5:BCCAD 6-10:BCDAD 二、填空题11. 8.2 12. 123 13. π65(或0150) 14.315.()+∞,2三、解答题16.解:(Ⅰ)由已知可得:喜欢游泳的人共6053100=⨯,不喜欢游泳的有:4060100=-人,又由表可知喜欢游泳的人女生20人,所以喜欢游泳的男生有402060=-人, 不喜欢游泳的男生有人,所以不喜欢游泳的女生有40-10=30人 由此:完整的列表如下:因为()22100403020105010.828604050503χ⨯-⨯==>⨯⨯⨯所以有9.99%的把握认为喜欢游泳与性别有关.(Ⅱ)从喜欢游泳的60人中按分层抽样的方法随机抽取6人成立游泳科普知识宣传组,其中男生应抽取460640=⨯人,分别设为D C B A ,,,;女生应抽取246=-人,分别设为F E ,,现从这6人中任取2人作为宣传组的组长,共有15种情况,分别为:()()()()()()()()()()()()()()()F E F D E D F C E C D C F B E B D B C B F A E A D A C A B A ,,,,,,,,,,,,,,,若记=M “两人中至少有一名女生的概率”,则M 包含9种情况,分别为:()()()()()()()()()F E F D E D F C E C F B E B F A E A ,,,,,,,,,,所以().53159==M P 17.Ⅰ)()4cos 4sin 324cos22x x x x f += 12cos 2sin 3++=xx162sin 2+⎪⎭⎫⎝⎛+=πx()2f α= 2162sin =⎪⎭⎫ ⎝⎛+∴πa21cos 12sin 3262παπα⎛⎫⎛⎫∴+=-+= ⎪ ⎪⎝⎭⎝⎭(Ⅱ)()B c C b a cos cos 2=-()B C C B A cos sin cos sin sin 2=-∴()C B C B C B C A +=+=sin sin cos cos sin cos sin 2A C A sin cos sin 2=∴0sin ≠A 21cos =∴C 3π=∴C π320<<∴A 2626πππ<+<A162sin 21<⎪⎭⎫⎝⎛+<∴πA ()162sin 2+⎪⎭⎫ ⎝⎛+=πA A f()A f ∴取值范围为()3,2.18.(Ⅰ)过点D 作O BC DO ,⊥为垂足,∴面⊥DBC 面ABC ,面 DBC 面⊂=DO BC ABC ,面DBC ,⊥∴DO 面ABC ,又⊥AE 面ABCDO AE //∴又⊄AE 面DBC 上,⊂DO 面.DBC//AE ∴面.DBC(Ⅱ)∴面⊥DBC 面ABC ,面 DBC 面BC AB BC ABC ⊥=,,⊥∴AB 面DBC ,又⊂DC 面DBC ,DC AB ⊥∴,又⊂=⊥BD AB B BD AB CD BD ,,, 面ADB ,⊥∴DC 面ADB ,又⊂DC 面EDC ,∴面⊥ADB 面.EDC19.(Ⅰ)因为()12,211-=-=-++n b b b a a n n n n n , 所以()()412122211=+-+=-=-++n n b b a a n n n n ,所以{}n a 是等差数列,首项为21=a ,公差为4,即24-=n a n ,(Ⅱ)()()()n n nn n nnn n n n b a c 212122411-=--==-- n n c c c c T ++++= 321()n n 21225232132-++⋅+⋅+⋅= ①()14322122523212+-++⋅+⋅+⋅=n n n T ②①-②得:()13221222222221+--⋅++⋅+⋅+⋅=-n n n n T()()112122121422+---⎥⎦⎤⎢⎣⎡--+=n n n()12326+---=n n().23261+-+=∴n n n T20.(Ⅰ)由题意可得()x f 的定义域为()+∞,0,当2=a 时,()()x x x x x x f ln 2222-++-=,所以()()()()x x xx x x x x x f ln 2412ln 122222-=⋅-+-++-=' 由()0>'x f 可得()0ln 24:>-x x ,所以⎩⎨⎧>>-0ln 024:x x 或⎩⎨⎧<<-0ln 024x x解得1>x 或210<<x ; 由()0<'x f 可得()0ln 24:<-x x ,所以⎩⎨⎧<>-0ln 024:x x 或⎩⎨⎧><-0ln 024x x ,解得.121<<x 综上可知()x f :递增区间为()+∞⎪⎭⎫ ⎝⎛,1,21.0,递减区间为⎪⎭⎫ ⎝⎛1,21,(Ⅱ)若()+∞∈,0x 时,()02>+x x f 恒成立,则()0ln 22>-+x x x ax 恒成立, 因为0>x ,所以()0ln 12>-+x x a 恒成立, 即()x x a ln 12:-->恒成立,令()()x x x g ln 12--=,则()max x g a >, 因为()xx x x x x g 22ln 21ln 2+--=⎪⎭⎫ ⎝⎛-+-=', 所以()x g '在()+∞,0上是减函数, 且()01='g ,所以()x g 在()1,0上为增函数,在()+∞,1上是减函数,1=∴x 时,()0max =x g ,0>∴a ,又因为Z a ∈,所以.1min =a21.(Ⅰ)抛物线x y 42=的焦点为()0,13512=+=p x PF 32=∴p x 632=∴p y ⎪⎭⎫ ⎝⎛∴632,32P 又()0,12F ()0,11-∴F4353721=+=+∴PF PF 2=∴a 又1=c 3222=-=∴c a b∴椭圆方程是134:22=+y x . (Ⅱ)设直线MN 的方程为() ,1-=x k y 以TN TM ,为邻边得四边形是菱形,TN TM =∴,设()()2211,,y x N y x M ,则134,13422222121=+=+y x y x ,⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-=∴413,41322222121x y x y , ()()()()⎪⎭⎫ ⎝⎛-+-=⎪⎭⎫ ⎝⎛-+-+-=+-∴222221212222212141134113,x t x x t x y t x y t x ,()()0241212221=---∴x x t x x 直线MN 与x 轴不垂直,21x x ≠∴,()()212181,241x x t t x x +=∴=+∴, 把()1-=x k y 代入椭圆方程并整理可得()01248432222=-+-+k x k x k ,2221438k k x x +=+∴,2243kk t +=∴, 当0≠k 时,()43181221+=+=k x x t , ,410,02<<∴>t k所以t 的取值范围是⎪⎭⎫ ⎝⎛41.0.。
2017年全国卷高三文科数学模拟考试卷含解析一.选择题(本小题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设A={x∈Z||x|≤2},B={y|y=x2+1,x∈A},则B的元素个数是()A.5 B.4 C.3 D.22.若复数z=sinθ﹣+(cosθ﹣)i是纯虚数,则tanθ的值为()A.B.﹣C.D.﹣3.阅读程序框图,如果输出的函数值在区间[1,3]上,则输入的实数x的取值范围是()A.{x∈R|0≤x≤log23} B.{x∈R|﹣2≤x≤2}C.{x∈R|0≤x≤log23,或x=2} D.{x∈R|﹣2≤x≤log23,或x=2}4.某几何体的三视图如图所示,则它的体积是()A.B.C.D.5.某地铁站每隔10分钟有一趟地铁通过,乘客到达地铁站的任一时刻是等可能的,乘客候车不超过2分钟的概率()A.B.C.D.6.函数y=x2+ln|x|的图象大致为()A.B.C.D.7.《九章算术》有这样一个问题:今有女子善织,日增等尺,七日织二十一尺,第二日、第五日、第八日所织之和为十五尺,问第十日所织尺数为()A.6 B.9 C.12 D.158.如图,正方形ABCD中,E为DC的中点,若=λ+μ,则λ+μ的值为()A.B.C.1 D.﹣19.双曲线C:﹣=1(a>0,b>0)的离心率e=,则它的渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x 10.定义域为R的可导函数y=f(x)的导函数f′(x),满足f(x)>f′(x),且f(0)=2,则不等式f(x)<2e x的解集为()A.(﹣∞,0)B.(﹣∞,2)C.(0,+∞)D.(2,+∞)11.已知x>0,y>0且x+y=4,若不等式+≥m恒成立,则m的取值范围是()A.{m|m>} B.{m|m≥} C.{m|m<} D.{m|m≤} 12.定义在R上的奇函数f(x),当x≥0时,f(x)=,则关于x的函数F(x)=f(x)﹣a(0<a<1)的所有零点之和为()A.1﹣2a B.2a﹣1 C.1﹣2﹣a D.2﹣a﹣1二.填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.若“∀x∈[﹣,],m≤tanx+1”为真命题,则实数m的最大值为.14.设椭圆的两个焦点为F 1,F2,M是椭圆上任一动点,则的取值范围为.15.已知三棱柱ABC﹣A1B1C1的侧棱垂直于底面,各顶点都在同一球面上,若该棱柱的体积为,AB=2,AC=1,∠BAC=60°,则此球的表面积等于.16.在△ABC中,角A、B、C的对边分别为a、b、c,若c•cosB=a+b,△ABC的面积S=c,则边c的最小值为.三.解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.等差数列{a n}中,a2=8,S6=66(1)求数列{a n}的通项公式a n;(2)设b n=,T n=b1+b2+b3+…+b n,求T n.18.某中学高三年级有400名学生参加月考,用简单随机抽样的方法抽取了一个容量为50的样本,得到数学成绩的频率分布直方图如图所示.(1)求第四个小矩形的高;(2)估计本校在这次统测中数学成绩不低于120分的人数;(3)已知样本中,成绩在[140,150]内的有两名女生,现从成绩在这个分数段的学生中随机选取2人做学习交流,求恰好男生女生各有一名的概率.19.如图,在三棱柱ABC﹣A1B1C1中,CC1⊥平面ABC,A1B1⊥BC,BC=1,AA1=AC=2,E、F分别为A1C1、BC的中点.(Ⅰ)求证:C1F∥平面EAB;(Ⅱ)求三棱锥A﹣BCE的体积.20.已知椭圆的离心率为,两焦点之间的距离为4.(Ⅰ)求椭圆的标准方程;(Ⅱ)过椭圆的右顶点作直线交抛物线y2=4x于A,B两点,求证:OA⊥OB(O为坐标原点).21.已知函数f(x)=x3+ax2﹣a2x﹣1,a>0.(1)当a=2时,求函数f(x)的单调区间;(2)若关于x的不等式f(x)≤0在[1,+∞)上有解,求实数a的取值范围.请考生在第22-23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.已知曲线C的极坐标方程是ρ=4cosθ.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直l的参数方程是(t 是参数)(1)将曲线C的极坐标方程化为直角坐标方程;(2)若直线l与曲线C相交于A、B两点,且|AB|=,求直线的倾斜角α的值.23.已知函数f(x)=|2x+1|+|2x﹣3|.(I)若∃x0∈R,使得不等式f(x0)≤m成立,求实数m的最小值M (Ⅱ)在(I)的条件下,若正数a,b满足3a+b=M,证明:+≥3.参考答案及解析一.选择题(共12小题)故选:B.3.阅读程序框图,如果输出的函数值在区间[1,3]上,则输入的实数x的取值范围是()A.{x∈R|0≤x≤log23} B.{x∈R|﹣2≤x≤2}C.{x∈R|0≤x≤log23,或x=2} D.{x∈R|﹣2≤x≤log23,或x=2}解:根据题意,得当x∈(﹣2,2)时,f(x)=2x,∴1≤2x≤3,∴0≤x≤log23;当x∉(﹣2,2)时,f(x)=x+1,∴1≤x+1≤3,∴0≤x≤2,即x=2;∴x的取值范围是{x∈R|0≤x≤log23,或x=2}.故选:C.4.某几何体的三视图如图所示,则它的体积是()A. B.C. D.解:由题意知,根据三视图可知,几何体是组合体,下面是正方体,棱长为2,体积为8;上面是斜高为2,底面边长为2的正四棱锥,所以底面积为4,高为=,故体积为.∴几何体的体积为8+.故选A.6.函数y=x2+ln|x|的图象大致为()A.B.C.D.解:∵f(﹣x)=x2+ln|x|=f(x),∴y=f(x)为偶函数,∴y=f(x)的图象关于y轴对称,故排除B,C,当x→0时,y→﹣∞,故排除D,或者根据,当x>0时,y=x2+lnx为增函数,故排除D,故选:A8.如图,正方形ABCD中,E为DC的中点,若=λ+μ,则λ+μ的值为()A.B.C.1 D.﹣1解:由题意正方形ABCD中,E为DC的中点,可知:=.则λ+μ的值为:.故选:A.9.双曲线C:﹣=1(a>0,b>0)的离心率e=,则它的渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x解:双曲线C:﹣=1(a>0,b>0)的离心率e=,可得,∴,可得,双曲线的渐近线方程为:y=±.故选:A.10.定义域为R的可导函数y=f(x)的导函数f′(x),满足f(x)>f′(x),且f(0)=2,则不等式f(x)<2e x的解集为()A.(﹣∞,0) B.(﹣∞,2) C.(0,+∞)D.(2,+∞)设g(x)=,则g'(x)=,∵f(x)>f′(x),∴g'(x)<0,即函数g(x)单调递减.∵f(0)=2,∴g(0)=f(0)=2,则不等式等价于g(x)<g(0),∵函数g(x)单调递减.∴x>0,∴不等式的解集为(0,+∞),故选:C.11.已知x>0,y>0且x+y=4,若不等式+≥m恒成立,则m的取值范围是()A.{m|m>} B.{m|m≥} C.{m|m<} D.{m|m≤}解:x>0,y>0且x+y=4,则:,那么(+)()=+1≥=,当且仅当2x=y=时取等号.∴+的最小值为.要使不等式+≥m恒成立,∴m.故选D.12.定义在R上的奇函数f(x),当x≥0时,f(x)=,则关于x的函数F(x)=f(x)﹣a(0<a<1)的所有零点之和为()A.1﹣2a B.2a﹣1 C.1﹣2﹣a D.2﹣a﹣1解:∵当x≥0时,f(x)=;即x∈[0,1)时,f(x)=(x+1)∈(﹣1,0];x∈[1,3]时,f(x)=x﹣2∈[﹣1,1];x∈(3,+∞)时,f(x)=4﹣x∈(﹣∞,﹣1);画出x≥0时f(x)的图象,再利用奇函数的对称性,画出x<0时f(x)的图象,如图所示;则直线y=a,与y=f(x)的图象有5个交点,则方程f(x)﹣a=0共有五个实根,最左边两根之和为﹣6,最右边两根之和为6,∵x∈(﹣1,0)时,﹣x∈(0,1),∴f(﹣x)=(﹣x+1),又f(﹣x)=﹣f(x),∴f(x)=﹣(﹣x+1)=(1﹣x)﹣1=log 2(1﹣x),∴中间的一个根满足log2(1﹣x)=a,即1﹣x=2a,解得x=1﹣2a,∴所有根的和为1﹣2a.故选:A.二.填空题(共4小题)13.若“∀x∈[﹣,],m≤tanx+1”为真命题,则实数m的最大值为0 .解:“∀x∈[﹣,],m≤tanx+1”为真命题,可得﹣1≤tanx≤1,∴0≤tanx+1≤2,实数m的最大值为:0故答案为:0.14.设椭圆的两个焦点为F 1,F2,M是椭圆上任一动点,则的取值范围为[﹣2,1] .解:如下图所示,在直角坐标系中作出椭圆:由椭圆,a=2,b=1,c=,则焦点坐标为F 1(﹣,0),F2(,0),设点M坐标为M(x,y),由,可得y2=1﹣;=(﹣﹣x,﹣y),﹣=(﹣x,﹣y);=(﹣﹣x,﹣y)•(﹣x,﹣y)=x2﹣3+1﹣=﹣2,由题意可知:x∈[﹣2,2],则x2∈[0,4],∴的取值范围为[﹣2,1].故答案为:[﹣2,1].15.已知三棱柱ABC﹣A1B1C1的侧棱垂直于底面,各顶点都在同一球面上,若该棱柱的体积为,AB=2,AC=1,∠BAC=60°,则此球的表面积等于8π.解:∵三棱柱ABC﹣A 1B1C1的侧棱垂直于底面,棱柱的体积为,AB=2,AC=1,∠BAC=60°,∴=∴AA1=2∵BC 2=AB2+AC2﹣2AB•ACcos60°=4+1﹣2,∴BC=设△ABC外接圆的半径为R,则,∴R=1∴外接球的半径为=∴球的表面积等于4π×=8π故答案为:8π16.在△ABC中,角A、B、C的对边分别为a、b、c,若c•cosB=a+b,△ABC的面积S=c,则边c的最小值为 1 .解:在△ABC中,由条件里用正弦定理可得sinCcosB=sinA+sinB=sin(B+C)+sinB,即2sinCcosB=2sinBcosC+2sinCcosB+sinB,∴2sinBcosC+sinB=0,∴cosC=﹣,C=.由于△ABC的面积为S=ab•sinC=ab=c,∴c=3ab.再由余弦定理可得c2=a2+b2﹣2ab•cosC,整理可得:9a2b2=a2+b2+ab≥3ab,当且仅当a=b时,取等号,∴ab≥,可得:c=3ab≥1,即边c的最小值为1.故答案为:1.三.解答题(共7小题)17.等差数列{a n}中,a2=8,S6=66(1)求数列{a n}的通项公式a n;(2)设b n=,T n=b1+b2+b3+…+b n,求T n.解:(1)设等差数列{a n}的公差为d,则有…(2分)解得:a1=6,d=2,…(4分)∴a n=a1+d(n﹣1)=6+2(n﹣1)=2n+4 …(6分)(2)b n===﹣…(9分)∴T n=b1+b2+b3+…+b n=﹣+﹣+…+﹣=﹣=…(12分)18.某中学高三年级有400名学生参加月考,用简单随机抽样的方法抽取了一个容量为50的样本,得到数学成绩的频率分布直方图如图所示.(1)求第四个小矩形的高;(2)估计本校在这次统测中数学成绩不低于120分的人数;(3)已知样本中,成绩在[140,150]内的有两名女生,现从成绩在这个分数段的学生中随机选取2人做学习交流,求恰好男生女生各有一名的概率.(本小题满分12分)解:(Ⅰ)由频率分布直方图,第四个矩形的高是[1﹣(0.010+0.012+0.020+0.030)×10]÷10=0.028.…(4分)(Ⅱ)成绩不低于1(20分)的频率是1﹣(0.010+0.020)×10=0.7,可估计高三年级不低于1(20分)的人数为400×0.7=280人.…(7分)(Ⅲ)由直方图知,成绩在[140,150]的人数是0.012×10×50=6,记女生为A,B,男生为c,d,e,f,这6人中抽取2人的情况有AB,Ac,Ad,Ae,Af,Bc,Bd,Be,Bf,cd,ce,cf,de,df,ef,共15种.…(9分)其中男生女生各一名的有8种,概率为=.…(12分)19.如图,在三棱柱ABC﹣A1B1C1中,CC1⊥平面ABC,A1B1⊥BC,BC=1,AA1=AC=2,E、F分别为A1C1、BC的中点.(Ⅰ)求证:C1F∥平面EAB;(Ⅱ)求三棱锥A﹣BCE的体积.解:(Ⅰ)法一:取AB中点G,连结EG,FG,…(1分)∵E,F分别是A1C1,BC的中点,∴FG∥AC,且FG=AC;又∵AC∥A1C1,且AC=A1C1,∴FG∥EC1,且FG=EC1,∴四边形FGEC1为平行四边形,…(4分)∴C1F∥EG;又∵EG⊂平面ABE,C1F⊄平面ABE,∴C1F∥平面ABE;…(6分)法二:取AC中点H,连结C1H,FH,…(1分)则C1E∥AH,且C1E=AH,∴四边形C1EAH为平行四边形,∴C1H∥EA;又∵EA⊂平面ABE,C1H⊄平面ABE,∴C1H∥平面ABE,…(3分)∵H、F分别为AC、BC的中点,∴HF∥AB;又∵AB⊂平面ABE,FH⊄平面ABE,∴FH∥平面ABE;…(4分)又∵C1H∩FH=H,C1H⊂平面C1HF,FH⊂平面C1HF,∴平面C1HF∥平面ABE;…(5分)又∵C1F⊂平面C1HF,∴C1F∥平面ABE;…(6分)(Ⅱ)∵AA1=AC=2,BC=1,AB⊥BC,∴AB==;…(8分)∴三棱锥A﹣BCE的体积为V A﹣BCE=V E﹣ABC…(10分)=S△ABC•AA1=×××1×2=.…(12分)20.已知椭圆的离心率为,两焦点之间的距离为4.(Ⅰ)求椭圆的标准方程;(Ⅱ)过椭圆的右顶点作直线交抛物线y2=4x于A,B两点,求证:OA⊥OB (O为坐标原点).解:(Ⅰ)解:椭圆焦点在x轴上,由题意可得2c=4,.则a=4,c=2.由b2=a2﹣c2=12,∴椭圆标准方程为:.…(5分)(Ⅱ)证明:由(Ⅰ)可得椭圆的右顶点为(4,0),由题意得,可设过(4,0)的直线方程为:x=my+4.…(7分)由,消去x得:y2﹣4my﹣16=0.设A(x1,y1),B(x2,y2),则.…(10分)∴,则•=0,则⊥故OA⊥OB.…(12分)21.已知函数f(x)=x3+ax2﹣a2x﹣1,a>0.(1)当a=2时,求函数f(x)的单调区间;(2)若关于x的不等式f(x)≤0在[1,+∞)上有解,求实数a的取值范围.解:(1)当a=2时,函数f(x)=x3+2x2﹣4x﹣1,求导:f′(x)=3x2+4x2﹣4=(3x﹣2)(x+2),令f′(x)=0,解得:x=,x=﹣2,由f′(x)>0,解得:x>或x<﹣2,由f′(x)<0,解得:﹣2<x<,∴函数f(x)的单调递减区间为(﹣2,),单调递增区间(﹣∞,﹣2),(,+∞);(2)要使f(x)≤0在[1,+∞)上有解,只要f(x)在区间[1,+∞)上的最小值小于等于0,由f′(x)=3x2+2ax2﹣22=(3x﹣a)(x+a),令f′(x)=0,解得:x1=>0,x2=﹣a<0,①当≤1,即a≤3时,f(x)在区间[1,+∞)上单调递增,∴f(x)在[1,+∞)上的最小值为f(1),由f(1)≤0,即1+a﹣a2﹣1≤0,整理得:a2﹣a≥0,解得:a≥1或a≤0,∴1≤a≤3.②当>1,即a>3时,f(x)在区间[1,]上单调递减,在[,+∞)上单调递增,∴f(x)在[1,+∞)上最小值为f(),由f()=+﹣﹣1≤0,解得:a≥,∴a>3.综上可知,实数a的取值范围是[1,+∞).22.已知曲线C的极坐标方程是ρ=4cosθ.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直l的参数方程是(t 是参数)(1)将曲线C的极坐标方程化为直角坐标方程;(2)若直线l与曲线C相交于A、B两点,且|AB|=,求直线的倾斜角α的值.解:(1)∵ρcosθ=x,ρsinθ=y,ρ2=x2+y2,∴曲线C的极坐标方程是ρ=4cosθ可化为:ρ2=4ρcosθ,∴x2+y2=4x,∴(x﹣2)2+y2=4.(2)将代入圆的方程(x﹣2)2+y2=4得:(tcosα﹣1)2+(tsinα)2=4,化简得t2﹣2tcosα﹣3=0.设A、B两点对应的参数分别为t1、t2,则,∴|AB|=|t 1﹣t2|==,∵|AB|=,∴=.∴cos.∵α∈[0,π),∴或.∴直线的倾斜角或.23.已知函数f(x)=|2x+1|+|2x﹣3|.(I)若∃x0∈R,使得不等式f(x0)≤m成立,求实数m的最小值M (Ⅱ)在(I)的条件下,若正数a,b满足3a+b=M,证明:+≥3.解:(I)函数f(x)=|2x+1|+|2x﹣3|,可得|2x+1|+|2x﹣3|≥|(2x+1)﹣(2x﹣3)|=4,当(2x+1)(2x﹣3)≤0,即﹣≤x≤时,f(x)取得最小值4.由题意可得m≥4,即实数m的最小值M=4;(Ⅱ)证明:正数a,b满足3a+b=4,即1=(3a+b),+=(+)(3a+b)=(3+3++)≥×(6+2)=×(6+2×3)=3,当且仅当b=3a=2时,取得等号.则+≥3.。
1. (包头十校联考文科数学第11题) 在正方体1111ABCD A BC D -中,点
P 在线段1AD 上运动,则异面直线CP 与1BA 所成角θ的取值范围是( )
A .02
π
θ<< B .02
π
θ<≤
C .03
π
θ<≤
解:D.
2. (数学(文)卷·2017届广西钦州市高新区高三上学期期末考试第9题) 已知AB AC ⊥,
1AB t =,AC t =,若P 点是ABC ∆ 所在平面内一点,且AB AC
AP AB AC
=+
,当t 变化时,PB PC ⋅ 的最大值等于( )A .-2 B .0 C .2 D .4
解:B.
3. (江西省师大附中、临川一中2017届高三1月联考数学(文)试卷第12题) 已知函数
kx x f =)( )1
(2e x e
≤≤,
与函数2)1()(x
e x g =,若)(x
f 与)(x
g 的图象上分别存在点N M ,, 使得MN 关于直线x y =对称,则实数k 的取值范围是( ) A. ],1
[e e - B. ]2,2[e e - C. )2,2(e e - D. ]3,3
[e e
- 解:B.
4. (江西省重点中学协作体2017届高三下学期第一次联考数学(文)试卷第8题) 设当θ=x 时,函数x x y cos sin 3-=取得最大值,则θsin = ( )
A .10
10
-
B .10
10
C .10
103-
D .10
10
3 解:D.
5. (数学(文)卷·2017届河北省涞水波峰中学2017届高三下学期周考第11题)四棱锥P ABCD -的三视图如下图所示,四棱锥P ABCD -的五个顶点都在一个球面上,E 、F 分别
是棱AB 、CD 的中点,直线EF 被球面所截得的线段长为 )
A .12π
B .24π C.36π D .48π 解:A.
6. (数学(文)卷·2017届山西省实验中学高三上学期第四次月考第11题) 气象意义上的春季进入夏季的标志为:“连续五天每天日平均温度不低于22℃”,现在甲、乙、丙三地连续五天的日平均
温度的记录数据(记录数据都是正整数,单位℃): 甲地:五个数据的中位数是24,众数为22;
乙地:五个数据的中位数是27,平均数为24;丙地:五个数据中有一个数据是30,平均数是24,方差为10.则肯定进入夏季的地区有( )
A .0个
B .1个
C .2个
D .3个 解:B.
7. (数学文卷·2017届北京市丰台区高三上学期期末考试第7题) 学校计划在周一至周四的艺术节上展演《雷雨》、《茶馆》、《天籁》和《马蹄声碎》四部话剧,每天一部.受多种因素影响,话剧《雷雨》不能在周一和周四上演;《茶馆》不能在周一和周三上演;《天籁》不能在周三和周四上演;《马蹄声碎》不能在周一和周四上演.那么下列说法正确的是( )
A .《雷雨》只能在周二上演
B . 《茶馆》可能在周二或周四上演
C . 周三可能上演《雷雨》或《马蹄声碎》
D . 四部话剧都有可能在周二上演 解:C.
8. (数学文卷·2017届甘肃省河西五市部分普通高中高三第一次联合考试第9题) 已知函数()f x 的定义域为[1,4]-,部分对应值如下表,
()f x 的导函数'()y f x =的图象如右图所示. 当12a <<时,函数()y f x a =-的零点
个数为( )A .2 B .3 C .4 D .5 解:C.
9. (数学文卷·2017届广东省普宁市华侨中学高三下学期摸底考试第12题) 定义在R 上的可导函数
()f x 满足()11=f ,且()12>'x f ,当3,22x ππ⎡⎤
∈-⎢⎥⎣⎦
时,不等式()23
2c o s 2s i n 22x f x >
-的
解集为( )A .4,33ππ⎛⎫ ⎪⎝⎭ B .4,33
ππ
⎛⎫
- ⎪⎝⎭
C .0,3π⎛⎫
⎪⎝⎭
D .⎪⎭⎫ ⎝⎛-3,3ππ
解:D.
10. (数学文卷·2017届湖南省衡阳市八中高三第六次月考第11题) 数列{}n a 满足1a =与
11
[]{}
n n n a a a +=+
([]n a 与{}n a 分别表示n a 的整数部分与小数部分,如
,1)
,则2017a =( )A .3024.3024
C .3022.3022
解:A.
11. (武昌区2017届高三元月调考数学文数第9题)一名法官在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下,甲说:“罪犯在乙、丙、丁三人之中”;乙说:“我没有作案,是丙偷的”;丙说:“甲、乙两人中有一人是小偷”;丁说:“乙说的是事实”.经过调查核实,四人中有两人说的是真话,另外两人说的是假话,且这四人中只有一人是罪犯,
由此可判断罪犯是( )
A. 甲
B. 乙
C.丙
D.丁 解:B.
12. (三省十校联考文科数学第16题) 函数262
sin 4)(x x x x f --=π
所有零点的和等于
__________. 解:18
13. (数学(文)卷·2017届广西钦州市高新区高三上学期期末考试第15题) 用()g n 表示自然数n 的所有因数中最大的那个奇数,例如:9的因数有1,3,9,则(9)9g =;10的因数有1,2,5, 10,(10)5g =;那么2016(1)(2)(3)(21)g g g g +++
+-= .
解:
201641
3- 14. (数学(文)卷·2017届河北省涞水波峰中学2017届高三下学期周考第16题) 已知函数()()x x a
f x e a R e
=+
∈在区间[]0 1,上单调递增,则实数a 的取值范围是 . 解:[
]
1 1-,
15. (数学文卷·2017届甘肃省河西五市部分普通高中高三第一次联合考试第16题)函数
()y f x =满足对任意x R ∈都有(2)()f x f x +=-成立,且函数(1)y f x =-的图像关于点
(1,0)对称,(1)4f =,则(2016)(2017)(2018)f f f ++的值为 .
解:4
16. (数学文卷·2017届河南省新乡一中、鹤壁高中、开封高中、安阳一中高三1月尖子生联
赛第15题) 设函数31,1()2,1
x x x f x x -<⎧=⎨≥⎩,则满足()
(())2f a f f a =的a 的取值范围
是 . 解:2+3⎡⎫∞⎪⎢⎣
⎭, 17. (数学文卷·2017届湖北省荆、荆、襄、宜四地七校考试联盟高三2月联考第16题) 若
函数32()(0)f x ax bx cx d a =+++≠图象的对称中心为00(,())M x f x ,记函数()f x 的导函
数为
)
(x g ,则有
)(0='x g .若函数
32
()3f x x x =-,则
12(
)()20172017
f f +40324033
(
)()20172017
f f +++=________. 解:8066-
18. (数学文卷·2017届湖北省荆州市高三上学期期末考试第16题) 对于实数x ,将满“01y ≤
<且x y -为整数”的实数y 称为实数x 的小数部分,用符号x 〈〉表示.对于实数
a ,无穷数列{}n a 满足如下条件:①1a a =〈〉; ②11
(0)0(0)
n n
n n a a a a +⎧〈〉
≠⎪=⎨⎪=⎩
.
(Ⅰ)若a =时,数列{}n a 通项公式为 ;
(Ⅱ)当2
1>a 时,对任意*
n N ∈都有n a
a =,则a 的值为 ; 解:1n a =
2
1
5-。