数学建模基础教程
- 格式:doc
- 大小:480.50 KB
- 文档页数:47
数学建模的基本步骤与技巧知识点总结数学建模作为一门重要的学科,旨在通过数学模型来解决实际问题。
在进行数学建模时,遵循一定的基本步骤和技巧是非常关键的。
本文将对数学建模的基本步骤和技巧进行总结,并给出相关示例。
一、问题理解与分析在数学建模的过程中,首先需要对问题进行深入的理解与分析。
这包括确定问题的背景、目标和约束条件,梳理问题的各个要素和关系,并进行充分的背景调查和文献研究。
只有对问题有全面的了解,才能制定出合适的数学模型。
例如,假设我们要研究某城市的交通流量问题。
首先,我们需要了解该城市的道路网络、车辆分布、交通规则等基本情况。
其次,我们要分析问题的具体目标,比如最大程度减少交通拥堵。
最后,要考虑到这个问题的各种约束条件,如交通信号灯、车辆的最大速度限制等。
二、建立数学模型在问题理解与分析的基础上,需要根据问题的特点和要求,建立合适的数学模型。
数学模型是对实际问题进行抽象和数学描述的工具,可以是符号模型、几何模型、图论模型等。
例如,对于交通流量问题,我们可以采用网络流模型来描述道路网络、车辆和交通流量之间的关系。
我们可以用节点表示路口或车站,用边表示道路或线路,用变量表示车辆数量或交通流量。
三、模型求解在建立数学模型之后,需要选择和应用合适的数学方法来求解模型。
根据具体问题的特点,可以采用数值计算、优化算法、随机模拟等方法。
例如,为了解决交通流量问题,我们可以借助图论的最短路径算法来确定最佳路线,或者使用线性规划方法来优化交通信号灯的配时方案。
四、模型验证与分析在模型求解之后,需要对模型的结果进行验证和分析。
这包括评估模型的有效性和可靠性,分析结果的合理性和可行性,并对敏感性进行检验。
为了验证交通流量模型的有效性,我们可以通过实际的交通数据来验证模型的预测结果,并与现有的交通规划方案进行比较。
如果模型的预测结果与实际情况基本一致,则说明模型是有效的。
五、结果呈现与报告撰写最后,在完成数学建模的过程后,需要将结果进行呈现和报告撰写。
数学建模软件的基本操作教程第一章:数学建模软件概述数学建模软件是一种专业的工具,用于解决实际问题中的数学建模。
它通过模拟、仿真、优化等方法,将实际问题转化为数学模型,并使用数值计算方法进行求解。
本章将介绍数学建模软件的基本概念和功能。
1.1 数学建模软件的定义数学建模软件是一种为数学建模而设计的软件工具,它提供了数学建模所需的各种功能和工具,如模型构建、模拟仿真、数据处理、结果分析等。
1.2 数学建模软件的特点数学建模软件具有以下几个特点:(1)集成性:数学建模软件提供了一系列的工具和功能,使得用户可以在同一个平台上完成从模型构建到结果分析的全部过程。
(2)可视化:数学建模软件通常支持图形化界面,通过图形化展示模型和结果,方便用户理解和分析。
(3)灵活性:数学建模软件不仅提供了一些常用的建模方法和模型库,还支持用户自定义模型和算法,以适应不同问题的需求。
第二章:数学建模软件的安装和设置本章将介绍数学建模软件的安装和设置过程,以保证软件可以正常运行。
2.1 软件的安装(1)下载软件安装包:从官方网站或其他可靠来源下载数学建模软件的安装包。
(2)运行安装包:双击安装包文件,按照提示完成软件的安装过程。
(3)选择安装路径:根据个人需求选择软件的安装路径,最好选择一个空闲的硬盘分区。
2.2 软件的设置(1)语言设置:根据个人使用习惯选择软件的语言版本。
(2)字体设置:根据屏幕分辨率和个人习惯选择适合的字体和字号。
(3)常用配置:根据个人需求设置一些常用的配置,如默认保存路径、单位制等。
第三章:数学建模模型的构建本章将介绍数学建模模型的构建方法和技巧。
3.1 参考现有模型在构建数学建模模型时,可以先参考相关领域的现有模型,了解其基本思路和结构,并根据实际问题的特点进行适当修改和扩展。
3.2 数据采集和处理在构建模型之前,需要进行数据的采集和处理,包括数据的获取、清洗、筛选等工作。
可以利用软件提供的数据处理功能,对数据进行预处理和分析。
数学建模入门1. 简介数学建模是通过数学方法解决实际问题的过程。
它是现代科学和工程领域的重要工具之一。
在数学建模中,研究者根据问题的特点,选择合适的数学模型,并使用数学方法进行求解和分析。
本文将介绍数学建模的基本概念,步骤和常用方法,以帮助初学者入门。
2. 数学建模的步骤数学建模通常包括以下步骤:2.1. 理解问题在开始建模之前,我们首先需要完全理解问题。
这包括确定问题的背景,目标,以及所需要的输入和输出。
2.2. 建立数学模型建立数学模型是数学建模的核心步骤。
在这一步骤中,我们需要根据问题的特点选择适当的数学模型。
常用的数学模型包括线性模型,非线性模型,优化模型等。
2.3. 求解模型一旦模型建立完成,我们就可以使用数学方法来求解模型。
这包括使用数值方法,解析方法和模拟方法等。
2.4. 模型验证和分析在模型求解完成后,我们需要进行验证和分析。
这包括对模型的精度,稳定性和可行性进行评估。
2.5. 结果解释和应用最后,我们需要将模型的结果进行解释和应用。
这可以帮助我们理解问题,制定相应的决策,并进一步优化模型。
3. 常用的数学建模方法在数学建模中,有许多常用的数学方法可以帮助我们解决实际问题。
以下是其中几种常用的方法:3.1. 插值法插值法是通过已知数据点之间的曲线拟合来估计未知数据点的值。
常用的插值方法包括线性插值,拉格朗日插值和样条插值等。
3.2. 最小二乘法最小二乘法是一种基于最小化误差平方和的优化方法。
它可以用来拟合曲线,解决过拟合和欠拟合等问题。
3.3. 线性规划线性规划是一种通过线性目标函数和线性约束条件来进行优化的方法。
它在管理学,经济学和工程学等领域有着广泛的应用。
3.4. 离散事件模拟离散事件模拟是一种用来模拟离散事件和系统行为的方法。
它常用于研究生产过程,供应链管理和交通流动等问题。
4. 数学建模的应用领域数学建模在许多领域中都有着广泛的应用。
以下是其中几个常见的应用领域:4.1. 物理学在物理学中,数学建模被用来研究天体运动,量子力学,流体力学等问题。
数学建模的基本步骤及方法数学建模是一种应用数学的方法,通过数学模型来描述、解释和预测现实世界中的问题。
它在科学研究、工程技术、经济管理等领域有着广泛的应用。
本文将介绍数学建模的基本步骤及方法,以帮助读者更好地理解和应用数学建模。
一、问题定义数学建模的第一步是明确问题,并对问题进行定义、限定和分析。
要做到具体明确,确保问题的可行性和实际性。
同时,在问题定义阶段,需要理解问题所处的背景和条件,收集所需的数据和信息。
二、建立数学模型在问题定义的基础上,需要选择合适的数学工具和方法,建立数学模型。
数学模型是通过数学符号和方程来描述问题的规律和关系。
常见的数学模型包括线性模型、非线性模型、动态模型等。
根据实际情况,选择适合的模型形式,并进行相关的假设和简化。
三、模型求解通过数学方法,对建立的数学模型进行求解。
求解的过程中,可以运用数值计算、优化算法、数值逼近等方法。
根据问题的具体要求,选择合适的求解方法,并编写相应的程序进行计算。
四、模型验证模型求解完成后,需要对求解结果进行验证。
验证的目的是检验模型的有效性和准确性。
可以通过与实际数据的对比,对模型的预测能力进行评估。
如果模型与实际结果相符合,说明模型具有较好的预测能力。
五、结果分析与应用在模型验证的基础上,对求解结果进行分析和解释。
通过对结果的分析,可以得到对于问题本质的深刻理解。
同时,根据分析结果,可以制定相应的决策和策略,在实际问题中得到应用和推广。
六、模型优化和调整数学建模是一个循环迭代的过程,在实际应用中,可能会遇到新的情况和问题。
为了提高模型的稳定性和预测能力,需要对模型进行优化和调整。
可以通过改变模型的参数、调整模型的结构、增加新的变量等方式来优化模型。
七、模型评价对建立的数学模型进行评价是数学建模的重要环节。
评价的指标包括模型的准确性、稳定性、可靠性等。
通过评价,可以发现模型的不足和改进的空间,并为进一步应用提供指导和参考。
综上所述,数学建模是一个系统而复杂的过程,需要综合运用数学、计算机、统计学、优化算法等多个学科的知识和方法。
高中数学数学建模的基本步骤和应用在高中数学学习中,数学建模是一项重要的技能,它将已学知识应用于实际问题的解决过程中。
本文将介绍高中数学数学建模的基本步骤和应用。
一、基本步骤1. 问题理解与分析:首先,我们需要理解和分析给定的问题。
明确问题的背景、条件和目标,确保对问题有全面的理解,并能提炼出关键信息。
2. 建立数学模型:在理解问题基础上,我们需要建立数学模型来描述问题。
数学模型是对实际问题的抽象与简化,通常由数学方程、函数或图形表示。
选择合适的模型是解决问题的关键。
3. 模型求解:一旦建立了数学模型,我们就需要求解模型以得到问题的解。
根据具体情况,可以采用解析方法、数值方法或计算机模拟等方式进行求解。
4. 模型验证与优化:完成模型求解后,我们应该对模型进行验证和优化。
验证是指根据问题的实际情况,对模型的可靠性和实用性进行检验。
优化是指对模型进行修改和改进,以得到更准确和可行的结果。
5. 模型分析与应用:最后,我们需要对求解结果进行分析和应用。
分析是指对结果进行解释和说明,找出问题的规律和特点。
应用是指利用结果解决实际问题,为决策提供科学依据。
二、应用案例1. 食品配送问题:假设一家餐厅需要将食品从仓库送到不同的客户处,每个客户对食品的需求量不同,仓库到客户的距离也不同。
我们可以建立数学模型,将餐厅、仓库和客户看作点,建立起点、路径和终点间的数学关系。
通过模型求解,确定最佳配送路径,以提高配送效率和降低成本。
2. 疫情传播模型:在疫情爆发时,我们可以利用数学建模来研究疫情的传播规律和控制策略。
例如,可以建立传染病传播的差分方程模型,通过调整模型中的参数,预测疫情的传播趋势,评估防控措施的效果,为疫情防控提供科学依据。
3. 人口增长模型:人口增长是一个复杂而重要的问题。
通过建立人口增长的微分方程模型,我们可以研究人口数量的变化趋势和影响因素,了解人口增长与资源分配、环境保护等问题之间的关系,以制定科学的人口政策。
数学建模基本步骤数学建模是指将实际问题转化为数学问题,并通过数学方法进行求解和分析的过程。
它是数学与实际问题相结合的一个重要领域。
下面将介绍数学建模的基本步骤。
一、问题分析与理解数学建模的第一步是对问题进行全面的分析和理解。
研究人员需要仔细阅读问题描述,明确问题的目标和约束条件,并了解问题所涉及的背景知识和相关数据。
只有充分理解问题,才能制定合理的数学模型。
二、建立数学模型在问题分析和理解的基础上,需要建立数学模型,将实际问题转化为数学问题。
数学模型是对问题的抽象和简化,通过变量、函数和方程等数学概念来描述问题的特征和规律。
常用的数学模型包括线性模型、非线性模型、离散模型等。
三、模型求解建立数学模型后,需要进行模型求解。
模型求解是指利用数学方法和计算工具,寻找数学模型的解或近似解的过程。
求解方法可以包括解析求解、数值求解和优化求解等。
根据实际情况选择合适的求解方法,并进行计算和分析。
四、模型验证与评估在模型求解之后,需要对模型进行验证和评估。
验证是指通过数学分析、实验对比等方法,检验模型的有效性和准确性。
评估是指对模型的优劣进行评价,包括模型的适用性、鲁棒性、稳定性等方面的考虑。
只有经过验证和评估的模型才能真正反映实际问题。
五、结果解释与应用模型验证和评估后,需要对求解结果进行解释和应用。
结果解释是指将数学结果转化为实际问题可理解的语言和图表,向决策者和相关人员进行解释和汇报。
结果应用是指将数学模型的结果应用于实际决策和问题解决中,提供科学依据和决策支持。
六、模型改进与拓展数学建模是一个逐步深入的过程,建立的模型可能存在不足和局限性。
因此,模型改进与拓展是数学建模中持续进行的工作。
根据实际需求和新的问题,对模型进行改进和调整,使其更加符合实际情况,并拓展模型的适用范围。
总结数学建模是将实际问题转化为数学问题,并通过数学方法进行求解和分析的过程。
数学建模的基本步骤包括问题分析与理解、建立数学模型、模型求解、模型验证与评估、结果解释与应用,以及模型改进与拓展。
数学建模教程数学建模是一种将数学方法和技巧应用于现实问题求解的方法。
它可以帮助我们理解和解决各种实际问题,包括科学、工程、经济、社会等方面。
下面将介绍数学建模的基本步骤和常用方法。
1. 模型建立数学建模的第一步是建立数学模型。
模型是对实际问题的抽象和简化,以数学符号和方程来描述和表示。
在建立模型时,需要确定问题的目标和约束条件,选择适当的数学工具和方法。
2. 数据收集与处理为了建立模型,需要收集和整理实际问题中的相关数据。
数据可以来源于实验观测、统计调查、文献研究等。
在收集到数据后,需要进行数据的预处理和分析,包括数据清洗、统计描述、数据转换等。
3. 假设与推理在建立模型时,常常需要进行一些假设和推理。
假设是对问题和系统的简化和限制,它能够帮助我们建立更简洁和可行的数学模型。
推理是通过逻辑和数学推理来分析和推导模型中的结论和解。
4. 模型求解与分析建立好模型后,需要进行模型的求解和分析。
求解是利用数学方法和计算工具来求得模型的解。
常用的求解方法包括数值方法、优化方法、统计方法等。
分析是对模型解进行验证和评价,检验模型的合理性和可靠性。
5. 结果展示与应用最后,需要将模型的结果进行展示和应用。
可以通过图表、报告、演示等形式来展示模型的结果和分析。
同时,还可以将模型应用于实际问题中,为决策和规划提供科学依据和支持。
总之,数学建模是一个系统而复杂的过程,需要综合运用数学、统计、计算机等多学科知识和技能。
通过合理和有效地建立数学模型,可以帮助我们深入理解和解决实际问题,推动科学研究和社会发展。
高中数学数学建模入门数学建模是一门将数学方法应用于实际问题求解的学科,其在科学研究、工程技术和社会经济等领域具有重要的应用价值。
作为高中学生,我们应该初步了解数学建模的基本知识和方法,以便于今后更深入地学习和应用。
本文将介绍高中数学数学建模的入门内容,包括问题分析、模型建立和结果分析等。
1. 问题分析数学建模的第一步是对问题进行充分的分析。
我们需要明确问题的背景和要求,以及问题中涉及到的各种因素和变量。
通过细致入微的观察和思考,我们可以找到问题的关键点,从而确定建模的方向和目标。
例如,假设我们要解决一个关于交通流量的问题,我们需要了解交通网络的结构、车辆的数量和速度、路况的变化等等。
通过对这些因素进行分析,我们可以将问题具体化并明确解决的目标。
2. 模型建立模型是数学建模的核心部分,它能够将实际问题抽象为数学形式,从而可以用数学方法进行分析和求解。
在建立模型时,我们需要根据问题的特点选择适合的模型类型,并确定模型的变量和参数。
常见的数学建模模型包括线性模型、非线性模型、概率模型等等。
线性模型适用于变量之间呈现线性关系的问题,非线性模型适用于变量之间呈现非线性关系的问题,而概率模型适用于研究随机事件和概率分布的问题。
3. 模型求解模型建立后,我们需要利用数学方法对模型进行求解。
具体的求解方法取决于模型的类型和复杂程度。
对于简单的模型,我们可以利用代数运算和几何分析来求解;对于复杂的模型,我们可能需要借助计算机编程和数值方法进行求解。
在模型求解过程中,我们需要注意选择合适的方法和技巧,以保证结果的准确性和可靠性。
同时,我们还需要对求解结果进行分析,以便于进一步理解问题和优化模型。
4. 结果分析模型求解完成后,我们需要对结果进行分析和解释。
我们可以通过数据的描述、图表的绘制和统计指标的计算等方式来对结果进行可视化和直观的呈现,以便于更好地理解和表达结果。
同时,我们还需要对结果进行评价和验证。
我们可以比较模型的预测结果和实际观测数据,以检验模型的准确性和适用性。
数学建模新手“必读教程”第一部分基本知识:一、数学模型的定义现在数学模型还没有一个统一的准确的定义,因为站在不同的角度可以有不同的定义。
不过我们可以给出如下定义:“数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。
”具体来说,数学模型就是为了某种目的,用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图象、框图等描述客观事物的特征及其内在联系的数学结构表达式。
一般来说数学建模过程可用如下框图来表明:数学是在实际应用的需求中产生的,要解决实际问题就必需建立数学模型,从此意义上讲数学建模和数学一样有古老历史。
例如,欧几里德几何就是一个古老的数学模型,牛顿万有引力定律也是数学建模的一个光辉典范。
今天,数学以空前的广度和深度向其它科学技术领域渗透,过去很少应用数学的领域现在迅速走向定量化,数量化,需建立大量的数学模型。
特别是新技术、新工艺蓬勃兴起,计算机的普及和广泛应用,数学在许多高新技术上起着十分关键的作用。
因此数学建模被时代赋予更为重要的意义。
二、建立数学模型的方法和步骤1. 模型准备要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。
2. 模型假设根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。
如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。
3. 模型构成根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。
这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。
不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。
MATLAB软件基础§1MATLAB 概述MATLAB 是MATrix LABoratory(“矩阵实验室”)的缩写,是由美国MathWorks 公司开发的集数值计算、符号计算和图形可视化三大基本功能于一体的,功能强大、操作简单的语言。
是国际公认的优秀数学应用软件之一。
20世纪80年代初期,Cleve Moler与John Little等利用C语言开发了新一代的MATLAB语言,此时的MATLAB语言已同时具备了数值计算功能和简单的图形处理功能。
1984年,Cleve Moler与John Little等正式成立了Mathworks公司,把MA TLAB 语言推向市场,并开始了对MA TLAB工具箱等的开发设计。
1993年,Mathworks公司推出了基于个人计算机的MATLAB 4.0版本,到了1997年又推出了MA TLAB 5.X版本(Release 11),并在2000年又推出了最新的MA TLAB 6版本(Release 12)。
现在,MATLAB已经发展成为适合多学科的大型软件,在世界各高校,MA TLAB 已经成为线性代数、数值分析、数理统计、优化方法、自动控制、数字信号处理、动态系统仿真等高级课程的基本教学工具。
特别是最近几年,MATLAB在我国大学生数学建模竞赛中的应用,为参赛者在有限的时间内准确、有效的解决问题提供了有力的保证。
§2 MATLAB的安装与启动2.1 MATLAB的安装要用MATLAB 6,首先必须在计算机上安装MATLAB 6应用软件,随着软件功能的不断完善,MA TLAB对计算机系统配置的要求越来越高。
下面给出安装和运行MATLAB 6 所需要的计算机系统配置。
◆MA TLAB 6对硬件的要求CPU要求:Pentium II、Pentium III、AMD Athlon或者更高;光驱:8倍速以上;内存:至少64MB,但推荐128MB以上;硬盘:视安装方式不同要求不统一,但至少留1GB用于安装(安装后未必有1GB);显卡:8位;◆MA TLAB 6对软件的要求Windows95 、Window98、Windows NT或Windows2000;Word97或word2000等,用于使用MATLAB Notebook;Adobe Acrobat Reader 用于阅读MATLAB的PDF的帮助信息。
MATLAB 6的安装和其它应用软件类似,可按照安装向导进行安装,这里不再赘述。
2.2 MATLAB的启动和退出与常规的应用软件相同,MATLAB的启动也有多种方式,首先常用的方法就是双击桌面的MA TLAB图标,也可以在开始菜单的程序选项中选择MATLAB组件中的快捷方式,当然也可以在MATLAB的安装路径的子目录中选择可执行文件“MA TLAB.exe”。
启动MA TLAB后,将打开一个MATLAB的欢迎界面,随后打开MATLAB的桌面系统(Desktop)如图2-1所示。
图2-1 MA TLAB的桌面系统§3 MATLAB的开发环境MATLAB的开发环境就是在使用MA TLAB的过程中可激活的,并且为用户使用提供支持的集成系统。
这里介绍几个比较重要的如:桌面平台系统、帮助系统和数据交换系统。
3.1 MATLAB桌面平台桌面平台是各桌面组件的展示平台,默认设置情况下的桌面平台包括6个窗口,具体如下:3.1.1 MATLAB主窗口MATLAB6比早期版本增加了一个主窗口。
该窗口不能进行任何计算任务的操作,只用来进行一些整体的环境参数的设置。
3.1.2 命令窗口(Command Window)命令窗口是对MA TLAB进行操作的主要载体,默认的情况下,启动MATLAB时就会打开命令窗口,显示形式如图1-1所示。
一般来说,MA TLAB的所有函数和命令都可以在命令窗口中执行。
在MA TLAB命令窗口中,命令的实现不仅可以由菜单操作来实现,也可以由命令行操作来执行,下面就详细介绍MALTAB命令行操作。
实际上,掌握MALAB命令行操作是走入MA TLAB世界的第一步,命令行操作实现了对程序设计而言简单而又重要的人机交互,通过对命令行操作,避免了编程序的麻烦,体现了MATLAB所特有的灵活性。
1. 命令窗口的作用命令窗口用于输入命令和显示计算结果。
2. 命令行的输入规则一个命令行输入一条命令,命令行以回车结束。
一个命令行也可以输入若干条命令,各命令之间以逗号分隔,若前一命令后带有分号,则逗号可以省略。
如果一个命令行很长,要加续行符(三个小黑点…)。
3. 命令行的编辑4. 常用操作系统命令例如:%在命令窗口中输入sin(pi/5),然后单击回车键,则会得到该表达式的值sin(pi/5)ans=0.5878由例可以看出,为求得表达式的值,只需按照MALAB语言规则将表达式输入即可,结果会自动返回,而不必像其他的程序设计语言那样,编制冗长的程序来执行。
当需要处理相当繁琐的计算时,可能在一行之内无法写完表达式,可以换行表示,此时需要使用续行符“…”否则MATLAB将只计算一行的值,而不理会该行是否已输入完毕。
例如:sin(1/9*pi)+sin(2/9*pi)+sin(3/9*pi)+…sin(4/9*pi)+sin(5/9*pi)+sin(6/9*pi)+…sin(7/9*pi)+sin(8/9*pi)+sin(9/9*pi)+…ans=5.6713使用续行符之后MA TLAB会自动将前一行保留而不加以计算,并与下一行衔接,等待完整输入后再计算整个输入的结果。
在MA TLAB命令行操作中,有一些键盘按键可以提供特殊而方便的编辑操作。
比如:“↑”可用于调出前一个命令行,“↓”可调出后一个命令行,避免了重新输入的麻烦。
当然下面即将讲到的历史窗口也具有此功能。
3.1.3 历史窗口(Command History)历史命令窗口是MATLAB6新增添的一个用户界面窗口,默认设置下历史命令窗口会保留自安装时起所有命令的历史记录,并标明使用时间,以方便使用者的查询。
而且双击某一行命令,即在命令窗口中执行该命令。
3.1.4 发行说明书窗口(Launch Pad)发行说明书窗口是MA TLAB6所特有的,用来说明用户所拥有的Mathworks公司产品的工具包、演示以及帮助信息。
当选中该窗口中的某个组件之后,可以打开相应的窗口工具包。
3.1.5 当前目录窗口(Current Directory )在当前目录窗口中可显示或改变当前目录,还可以显示当前目录下的文件,包括文件名、文件类型、最后修改时间以及该文件的说明信息等并提供搜索功能。
3.1.6 工作空间管理窗口(Workspace)工作空间管理窗口是MA TLAB的重要组成部分。
在工作空间管理窗口中将显示所有目前保存在内存中的MATLAB变量的变量名、数据结构、字节数以及类型,而不同的变量类型分别对应不同的变量名图标。
3.2 MATLAB帮助系统完善的帮助系统是任何应用软件必要的组成部分。
MATLAB提供了相当丰富的帮助信息,同时也提供了获得帮助的方法。
首先,可以通过桌面平台的【Help】菜单来获得帮助,也可以通过工具栏的帮助选项获得帮助。
此外,MA TLAB也提供了在命令窗口中的获得帮助的多种方法,在命令窗口中获得MATLAB帮助的命令。
3.3 MATLAB功能演示例1.1 求解线性方程组命令如下:a=[2,3,-1;8,2,3;45,3,9];b=[2;4;23];x=inv(a)*b例1.2 绘制正弦曲线和余弦曲线。
命令如下:x=[0:0.5:360]*pi/180;plot(x,sin(x),x,cos(x)) ;例1.3 输入10个学生的成绩并对成绩按升序排序。
在MA TLAB命令窗口输入:g=input('请输入学生成绩:');g=sort(g)例1.4 设有常微分方程初值问题,试求其数值解,并与精确解相比较。
(1)建立函数文件funt.m:function yp=funt(t,y)yp=(y^2-t-2)/4/(t+1);(2)求解微分方程:t0=0;tf=10;y0=2;[t,y]=ode23('funt',[t0,tf],y0);y1=sqrt(t+1)+1;t'§4MATLAB数值计算功能MATLAB强大的数值计算功能使其在诸多数学计算软件中傲视群雄,是MA TLAB 软件的基础。
本节将简要介绍MATLAB的数据类型、矩阵的建立及运算。
4.1 MATLAB 数据类型MATLAB数据类型数值数据:双精度型、单精度数、带符号整数和无符号整数。
字符数据。
结构(Structure)和单元(Cell)。
多维矩阵和稀疏矩阵(Sparse)。
4.1.1 变量与常量变量是任何程序设计语言的基本要素之一,MATLAB语言当然也不例外。
与常规的程序设计语言不同的MATLAB并不要求事先对所使用的变量进行声明,也不需要指定变量类型,MA TLAB语言会自动依据所赋予变量的值或对变量所进行的操作来识别变量的类型。
在赋值过程中如果赋值变量已存在时,MA TLAB语言将使用新值代替旧值,并以新值类型代替旧值类型。
在MATLAB语言中变量的命名应遵循如下规则:(1)变量名区分大小写。
(2)变量名长度不超31位,第31个字符之后的字符将被MATLAB语言所忽略。
(3)变量名以字母开头,可以是字母、数字、下划线组成,但不能使用标点。
MATLAB语言本身也具有一些预定义的变量,这些特殊的变量称为常量。
表4-1给出了MATLAB语言中经常使用的一些常量值。
表4-1在MA TLAB语言中,定义变量时应避免与常量名重复,以防改变这些常量的值,如果已改变了某外常量的值,可以通过“clear+常量名”命令恢复该常量的初始设定值(当然,也可通过重新启动MATLAB系统来恢复这些常量值)。
4.1.2 数字变量的运算及显示格式MALAB是以矩阵为基本运算单元的,而构成数值矩阵的基本单元是数字。
为了更好地学习和掌握矩阵的运算,首先对数字的基本知识作简单的介绍。
对于简单的数字运算,可以直接在命令窗口中以平常惯用的形式输入,如计算2和3的乘积再加1时,可以直接输入:>> 1+2*3ans=7这里“ans”是指当前的计算结果,若计算时用户没有对表达式设定变量,系统就自动赋当前结果给“ans”变量。
用户也可以输入:>> a=1+2*3a=7此时系统就把计算结果赋给指定的变量a了。
数据的输出格式MATLAB语言中数值有多种显示形式,在缺省情况下,若数据为整数,则就以整数表示;若数据为实数,则以保留小数点后4位的精度近似表示。
MA TLAB语言提供了10种数据显示格式,常用的有下述几种格式:short 小数点后4位(系统默认值)long 小数点后14位short e 5位指数形式long e 15位指数形式MATLAB语言还提供了复数的表达和运算功能。