大数定律与中心极限定理及其应用
- 格式:doc
- 大小:731.00 KB
- 文档页数:20
中心极限定理与大数定律介绍中心极限定理(Central Limit Theorem)和大数定律(Law of Large Numbers)是概率论中两个重要而基础的定理。
它们在统计学和各个领域的实际应用中起着至关重要的作用。
本文将深入探讨这两个定理的概念、应用和相关证明。
中心极限定理定义中心极限定理是概率论中的一个重要定理,它说明了在特定条件下,一组随机变量的均值的分布会趋近于正态分布。
具体来说,对于任意独立同分布的随机变量的和,当样本容量足够大时,其均值的分布将会接近于正态分布。
证明中心极限定理的证明可以通过多种方法进行推导,其中最为经典的方法是使用特征函数的技巧。
通过对特征函数的逐步展开和极限取证,可以得出中心极限定理的结论。
应用中心极限定理在实际应用中有着广泛的应用。
以下是中心极限定理的几个重要应用:1.抽样分布的近似计算:通过中心极限定理,可以对抽样分布进行近似计算,从而推断总体参数。
2.假设检验:在统计学中,中心极限定理广泛应用于假设检验问题中。
通过对样本均值进行正态分布近似,可以进行对总体均值的假设检验。
3.建立置信区间:中心极限定理可用于建立置信区间。
通过计算样本均值的区间估计,确定总体均值的信心水平。
大数定律定义大数定律是概率论中的另一个重要定理,它说明了当独立同分布的随机变量重复进行实验时,其平均值会收敛于数学期望。
换句话说,随着实验次数的增加,样本均值会趋近于总体均值。
证明大数定律的证明有多种方法,其中最为著名的是切比雪夫不等式和辛钦大数定律。
不同的证明方法都有其特点和适用范围,但最终都能得出大数定律的结论。
应用大数定律在实际应用中也有着广泛的应用。
以下是大数定律的几个重要应用:1.统计估计:大数定律可用于建立统计估计方法,如最大似然估计和矩估计。
2.贝叶斯推断:大数定律在贝叶斯推断中起着重要的作用。
通过重复实验,可以逐渐更新对参数的先验分布,得到后验分布。
3.经济学和金融学:大数定律在经济学和金融学中有广泛的应用。
中心极限定理和大数定律中心极限定理和大数定律是统计学中非常重要的两个概念。
它们在统计学中被广泛应用,对于理解随机事件的规律性和分析数据具有重要意义。
本文将对中心极限定理和大数定律进行详细的阐述。
一、中心极限定理1. 定义中心极限定理是指当样本量足够大时,样本均值的分布近似于正态分布。
也就是说,如果我们从总体中抽取足够多的样本,并计算每个样本的平均值,那么这些平均值将近似于正态分布。
2. 原理中心极限定理的原理可以用数学公式表示为:当n趋向于无穷大时,样本均值(Xbar)服从正态分布N(μ,σ^2/n)。
其中,μ代表总体均值,σ代表总体标准差。
3. 应用中心极限定理在实际应用中非常广泛。
例如,在质量控制过程中,我们可以通过抽取一小部分产品进行检测,并根据检测结果推断整个批次产品的质量状况。
而根据中心极限定理,我们可以通过抽取足够多的样本并计算样本均值,来推断总体均值和标准差,从而判断整个批次产品的质量是否符合要求。
二、大数定律1. 定义大数定律是指当样本量足够大时,样本平均值趋近于总体平均值。
也就是说,如果我们从总体中抽取足够多的样本,并计算每个样本的平均值,那么这些平均值将趋近于总体的平均值。
2. 原理大数定律的原理可以用数学公式表示为:当n趋向于无穷大时,样本均值(Xbar)趋近于总体均值(μ)。
3. 应用大数定律在实际应用中也非常广泛。
例如,在股票市场中,我们可以通过抽取一小部分股票进行分析,并根据分析结果预测整个市场的走势。
而根据大数定律,我们可以通过抽取足够多的股票并计算它们的收益率,来推断整个市场的平均收益率和风险水平。
三、中心极限定理和大数定律之间的关系1. 相似性中心极限定理和大数定律都是关于样本均值的定理,它们都是基于样本量足够大的前提条件下成立的。
2. 区别中心极限定理和大数定律的主要区别在于它们所描述的内容不同。
中心极限定理描述了样本均值的分布情况,而大数定律描述了样本均值与总体均值之间的关系。
大数定律与中心极限定理大数定律(Law of Large Numbers)和中心极限定理(Central Limit Theorem)是统计学中两个基本的概念和定理,它们在概率论和统计学的研究中起着重要的作用。
本文将介绍大数定律与中心极限定理的概念和原理,并探讨它们在现实生活中的应用。
一、大数定律大数定律是指随着样本容量的增加,样本平均值的稳定性会逐渐增强,逼近总体均值。
以样本平均值为例,大数定律表明当样本容量无限大时,样本平均值将趋近于总体均值。
这一定律在概率论和统计学中有着广泛的应用。
大数定律可以分为弱大数定律和强大数定律两类。
弱大数定律指的是当样本容量足够大时,样本平均值以较高的概率接近总体均值;而强大数定律则是指样本平均值几乎总是接近于总体均值,不管样本容量大小。
大数定律在现实生活中有着广泛的应用。
例如,在投资领域,投资者通过分析历史数据来估计未来的收益率。
大数定律告诉我们,当样本容量足够大时,通过历史数据得出的均值可以较好地代表未来的收益率。
另外,在统计调查中,通过对样本进行抽样调查可以估计总体的参数。
大数定律告诉我们,样本容量越大,样本估计总体参数的准确性就越高。
二、中心极限定理中心极限定理是指在一定条件下,独立同分布的随机变量之和的分布趋近于正态分布。
中心极限定理是统计学中最重要的定理之一,它揭示了总体均值的抽样分布的特性。
中心极限定理有三种常见的形式:李雅普诺夫中心极限定理、棣莫弗-拉普拉斯中心极限定理和林德伯格-列维中心极限定理。
这三种形式的中心极限定理分别对应不同的分布情况。
中心极限定理的应用非常广泛。
在现实生活中,我们经常遇到需要对一组随机变量求和的情况。
例如,抽样调查中,我们需要对多个样本进行求和,来估计总体参数。
中心极限定理告诉我们,当样本容量足够大时,样本求和的分布将逼近于正态分布。
这为我们在实际问题中提供了便利,使得我们能够利用正态分布的性质进行统计推断和分析。
总结:大数定律和中心极限定理是统计学中两个基本的概念和定理。
概率与统计中的大数定律与中心极限定理的应用概率与统计是数学中的一个重要分支,它研究随机现象的规律性,并通过数学模型来描述和分析这些现象。
在概率与统计的理论中,大数定律和中心极限定理是两个基本定理,在实际应用中具有广泛的意义和重要性。
一、大数定律的应用大数定律是概率论中的一个重要定理,它描述了大样本下随机现象的平均值趋于期望值的稳定性。
具体而言,大数定律可以分为弱大数定律和强大数定律两种形式。
在实际应用中,大数定律被广泛运用于统计学、经济学、生物学等领域。
以统计学为例,当我们对一个总体进行抽样调查时,根据大数定律可以知道,样本的平均值会趋于总体的平均值。
通过对样本数据的分析,可以推断和预测总体的特征。
另外,大数定律还可以用于对概率分布进行估计。
例如,在投掷硬币的实验中,我们可以统计投掷n次后正面朝上的频率,根据大数定律可以得到正面出现的概率接近0.5。
二、中心极限定理的应用中心极限定理是概率论中的另一个经典定理,它描述了独立随机变量和的和的分布在一定条件下逼近正态分布。
中心极限定理不仅在理论中有重要意义,而且在实际应用中也有着广泛的应用。
在实际应用中,中心极限定理可以用来估计总体的分布以及参数。
例如,在企业的市场调研中,我们可以通过对一定数量的样本进行调查,根据中心极限定理对总体的特征进行估计。
这对于制定营销策略、定价和产品开发等具有重要意义。
此外,中心极限定理还被广泛应用于信号处理、通信工程、金融学等领域。
以信号处理为例,当我们对信号进行采样和处理时,根据中心极限定理可以知道,经过处理后的信号近似服从正态分布,这对于信号的分析和处理具有指导意义。
总结起来,概率与统计中的大数定律和中心极限定理是两个基本定理,在实际应用中具有重要的意义和价值。
大数定律揭示了大样本下随机现象的规律性,可以用于参数估计和预测;中心极限定理描述了独立随机变量和的和的分布的特性,在总体分布的估计和分析中具有重要作用。
对于从事概率与统计相关工作的人员来说,熟练掌握大数定律和中心极限定理的应用,能够更好地理解和解决实际问题。
大数定理与中心极限定理的关系及应用汇总大数定理和中心极限定理都是概率论中非常重要的定理,它们在概率论和统计学中有着广泛的应用。
下面我们来详细介绍它们的关系及应用。
大数定理(Law of Large Numbers)是概率论中的一个重要定理,它描述的是随机变量序列的平均值收敛于期望的情况。
大数定理主要分为弱大数定律和强大数定律。
弱大数定律指的是当样本容量趋于无穷大时,随机变量的平均值收敛于期望的概率为1;强大数定律则指的是在一些条件下,随机变量的平均值几乎处处收敛于期望,即概率为1中心极限定理(Central Limit Theorem)是概率论中另一个重要的定理,它描述的是随机变量序列的和随着样本容量的增大逼近于正态分布的现象。
中心极限定理分为三种形式:林德伯格-列维定理、德莫佛拉-拉普拉斯定理和契比雪夫不等式。
其中,林德伯格-列维定理是最早提出的版本,它陈述了独立随机变量和的分布函数在适当的标准化下会趋近于标准正态分布。
大数定理和中心极限定理的关系:大数定理和中心极限定理在一定程度上是互补的。
大数定理关注的是样本容量趋于无穷大时随机变量的平均值的收敛情况,中心极限定理则关注的是样本容量增加时和的分布趋近于正态分布的情况。
可以说,中心极限定理是大数定理的一种具体形式。
应用汇总:大数定理和中心极限定理在实际应用中有着广泛的应用。
下面我们来汇总一些常见的应用领域:1.投资与金融:大数定理可以应用在股票市场分析中,通过分析历史数据计算出平均回报率,从而预测未来的回报率。
而中心极限定理则可以用于计算股票收益率的置信区间,帮助投资者进行风险管理。
2.生物统计学:大数定理和中心极限定理在生物统计学中有着广泛的应用。
例如,通过大数定理可以估计人口中患其中一种疾病的比例,从而指导公共卫生政策制定。
而中心极限定理则可以用于计算样本均值的置信区间,帮助比较两个群体的差异性。
3.教育评估:在教育评估中,大数定理和中心极限定理可以用于计算学生的平均成绩以及学校的平均分数的置信区间。
大数定律与中心极限定理大数定律和中心极限定理是统计学中两个重要的概念,它们被广泛应用于概率论、数理统计以及各种实际问题的分析与推导中。
本文将详细介绍大数定律与中心极限定理的概念、原理及应用,以期帮助读者更好地理解和应用这两个定律。
一、大数定律大数定律是指在随机试验中,当试验次数趋于无穷时,样本均值趋近于总体均值的概率趋于1的现象。
简言之,大数定律说明了在重复独立试验的过程中,随着试验次数增加,样本均值与总体均值之间的差距将会逐渐减小。
大数定律有多种形式,其中最为著名的是弱大数定律和强大数定律。
弱大数定律也称为大数定律的辛钦特例,它是在满足一定条件下,样本均值趋近于总体均值的概率收敛于1。
而强大数定律则对样本均值的收敛速度和稳定性做出了更严格的要求。
在实际应用中,大数定律可以用来解释和预测各种现象。
例如,当进行大规模的舆情调查时,可以通过随机抽样的方式来获取一部分样本,然后利用大数定律来推断出总体的舆情倾向。
此外,在生产过程中对产品质量的控制和检验中,也可以使用大数定律来判断产品的批量质量是否合格。
二、中心极限定理中心极限定理是概率论中的一个重要定理,它说明了在某些条件下,当样本容量足够大时,样本均值的分布将近似服从于正态分布。
也就是说,无论总体分布是否服从正态分布,在大样本条件下,样本均值的分布都将趋于正态分布。
中心极限定理的重要性在于它提供了许多统计推断和参数估计的基础。
例如,在对总体均值进行估计时,可以利用样本均值的分布接近于正态分布来构建置信区间,从而对总体均值进行区间估计。
此外,中心极限定理还为假设检验提供了支持。
假设检验是统计推断的一种常用方法,通过对样本数据进行假设检验,可以判断总体参数是否与假设相符。
而中心极限定理则为假设检验提供了理论基础,使得假设检验的结果更加可靠和准确。
综上所述,大数定律和中心极限定理是统计学中两个重要的理论基础。
大数定律说明了随机试验中样本均值与总体均值的关系,而中心极限定理则揭示了样本均值的分布特征。
大数定律和中心极限定理在保险业中的重要
应用
大数定律和中心极限定理是概率论和数理统计学中重要的理论,它们在保险业中应用广泛。
大数定律认为,当独立随机事件的数量越来越多时,它们的平均值趋近于期望值。
在保险业中,大数定律可用来推断一个保险产品的风险水平,即根据历史数据预测未来的风险。
例如,如果某个保险公司已有数千起汽车事故的记录,那么他们可以利用大数定律来计算未来的理赔率,以便更好地制定保险政策。
中心极限定理则认为,当随机变量的数量越来越多时,它们的和会趋近于正态分布。
在保险业中,中心极限定理可用来计算整体的风险水平。
例如,如果一个保险公司提供数百种不同类型的保险,那么他们可以利用中心极限定理来计算整个保险组合的风险水平,以便更好地评估整体的风险。
综上所述,大数定律和中心极限定理在保险业中的应用是非常重要的,它们可以帮助保险公司更好地估计风险、制定保险策略和评估整体风险水平,从而更好地为客户提供服务。
大数定律和中心极限定理的证明及应用大数定律和中心极限定理是概率论中的两个重要定理,它们在实际应用中具有重要的作用。
随着21世纪的到来,计算机科学的发展和人工智能技术的不断突破,这些定理在数据分析、机器学习等领域中的应用也越来越广泛。
大数定律是概率论中的一条非常重要的定理,它描述了重复实验的结果会越来越接近于总体的平均值。
具体而言,如果我们对某个随机事件进行了N次实验,并对N个数据点求平均值,那么这个平均值在N变得越来越大时,会趋近于总体的期望值。
在实际中,大数定律可以用于各种数字数据的分析。
例如,我们可以在股市交易中使用大数定律,以预测股市的长期结果。
我们可以通过对每天的股票价格进行记录并验证大数定律是否成立,从而得到预测指数。
另外,在物理学中,大数定律也有重要的应用。
例如,我们可以使用大数定律来确定大量粒子的平均位置。
这种方法可以在许多物理领域中找到应用,如计算电磁场的平均值。
大数定律的证明比较复杂。
一种常用的证明方法是通过上极限和下极限来证明。
上极限和下极限分别代表了随着实验次数增加,平均值逐渐趋向于总体期望值的上限和下限。
根据大数定律的规定,这两个极限应该相等。
证明的核心是要建立一个独立的同分布序列,通过样本与总体一致性的性质,尽可能接近于总体。
中心极限定理是另一个与大数定律相关联的概率论定理。
它描述了当N次独立实验的结果之和趋近于一个标准正态分布时,经过N次标准化后的分布会趋向于一个正态分布。
中心极限定理在实际中的应用非常广泛。
例如,在医学研究中,我们可以使用中心极限定理来估计医疗样本的均值和标准偏差。
我们还可以使用该定理来评估航空公司的航班订购量。
通过使用中心极限定理来计算航班预订量的分布,我们就可以确定需要多少飞机来完成航班任务。
与大数定律的证明相比,中心极限定理的证明相对简单。
它使用了矩母函数和生成函数等概率论方法,通过对傅里叶变换的应用,将一些信息从时域转移到了频域,实现了由多个随机事件的组合到高斯分布的转化。
中心极限定理大数定律
中心极限定理和大数定律是概率论中非常重要的两个定理,它们在统计学、经济学、物理学等领域都有广泛的应用。
本文将从理论和实际应用两个方面来介绍这两个定理。
中心极限定理是指在一定条件下,大量独立同分布的随机变量的和或平均值的分布趋近于正态分布。
这个定理的意义在于,当我们面对大量的数据时,可以通过对数据进行求和或求平均值来得到一个近似于正态分布的结果。
这个定理的应用非常广泛,例如在统计学中,我们可以通过对样本数据进行求和或求平均值来估计总体的参数;在经济学中,我们可以通过对市场数据进行求和或求平均值来预测未来的趋势。
大数定律是指在一定条件下,随着样本数量的增加,样本的平均值趋近于总体的期望值。
这个定理的意义在于,当我们面对大量的数据时,可以通过对数据进行求平均值来得到一个近似于总体期望值的结果。
这个定理的应用也非常广泛,例如在物理学中,我们可以通过对实验数据进行求平均值来得到一个近似于真实值的结果;在金融学中,我们可以通过对市场数据进行求平均值来评估投资的风险和收益。
总的来说,中心极限定理和大数定律是概率论中非常重要的两个定理,它们在统计学、经济学、物理学等领域都有广泛的应用。
在实际应用中,我们可以通过对数据进行求和或求平均值来得到一个近
似于正态分布或总体期望值的结果,从而进行预测、估计或评估。
但是需要注意的是,这两个定理的应用条件是非常严格的,需要满足一定的前提条件才能得到正确的结果。
因此,在实际应用中,我们需要仔细分析数据的性质和应用条件,才能得到准确的结果。
大数定律与中心极限定理的介绍与应用大数定律和中心极限定理是概率论与数理统计中两个重要的理论。
它们被广泛地应用于各个领域,如自然科学、社会科学、工程技术等。
本文将介绍这两个定理的基本概念、原理以及应用。
一、大数定律的介绍与应用大数定律,又称为大数法则,指的是在独立重复的随机试验中,随着试验次数的增加,样本均值将趋近于总体均值的概率性结果。
大数定律分为弱大数定律和强大数定律两种。
1. 弱大数定律弱大数定律是指在一定条件下,随机变量的平均值会接近于其数学期望。
这一定律为我们提供了在实际问题中进行概率估计的理论依据。
例如,在投资领域中,通过对股票市场的历史数据进行分析,可以利用弱大数定律估计未来的收益率。
2. 强大数定律强大数定律是指随机变量的平均值几乎肯定收敛于其数学期望。
这个定律在实际问题中具有更强的适用性。
在制造业中,通过对生产过程中的采样数据进行分析,可以利用强大数定律对产品的质量进行评估和控制。
二、中心极限定理的介绍与应用中心极限定理是指在一定条件下,大量独立随机变量的和的分布趋近于正态分布。
中心极限定理具有广泛的适用性和重要的理论意义。
1. 林德贝格-莱维中心极限定理林德贝格-莱维中心极限定理是最早被发现的中心极限定理之一。
它表明,当样本容量很大时,随机变量的和的分布近似于正态分布。
这一定理在统计学中被广泛应用,能够帮助我们进行统计推断和参数估计。
2. 中心极限定理在抽样调查中的应用在市场调研和民意调查中,通常会通过抽样调查的方式来获取数据。
根据中心极限定理,当样本容量足够大时,样本均值的分布将近似于正态分布。
因此,我们可以通过样本均值的分布来进行推断总体均值的区间估计和假设检验。
三、大数定律与中心极限定理的联系与差异大数定律和中心极限定理都涉及随机变量的分布性质,但它们的应用场景和概念有所不同。
1. 联系大数定律和中心极限定理都属于概率论与数理统计的基本理论,都是描述随机变量的分布性质的定理。
大数定理与中心极限定理的应用大数定理和中心极限定理是概率论中最基本也是最重要的两个定理。
它们是求解随机事件的概率分布和预测随机现象的变化趋势的基础。
本文将介绍大数定理和中心极限定理的定义、证明以及应用。
一、大数定理大数定理是概率论中的一个重要原理,描述了随机变量序列平均数的性质。
大数定理表明,随着样本数量逐渐增加,随机变量序列平均数越来越接近随机变量的期望值。
具体来说,如果 $X1,X2, ..., Xn$ 是独立同分布的随机变量,其期望为 $E(X)$,则样本平均数的极限为 $E(X)$,即:$$\lim_{n\to\infty} \frac{X_1+X_2+...+X_n}{n} = E(X)$$大数定理的证明比较复杂,这里不再深入探讨。
但需要注意的是,大数定理只是对随机变量序列平均数的渐近表现进行的描述。
在实际应用中,仍然需要考虑样本数量、样本大小、采样方法等因素带来的误差。
大数定理的应用十分广泛,常见的例子包括赌场游戏、信用评级等。
以赌场游戏为例,假设一家赌场每次赌客可以下注 $1$ 美元,赢得的概率为 $p$。
根据赌场规则,获胜的赌客可以得到$2$ 美元的回报,输掉的赌客则失去所下的 $1$ 美元。
赌场的利润取决于获胜和失败的比例。
利润越高,赌场的经营者就越富有。
而大数定理在此处的应用则在于,当赌客的数量越来越多时,赌场的经营者能够准确预测赌客赢得和输掉的比例,从而达到通过调整赔率保证赌场利润最大的目的。
二、中心极限定理中心极限定理是概率论中的另一个重要概念。
它表明当样本数量增加时样本平均数的分布越来越接近正态分布。
正态分布是概率分布中最常见也最重要的一种分布。
由于中心极限定理具有一定的普适性,因此它在实际应用中十分重要。
中心极限定理的数学表达式为:$$\lim_{n\to\infty} P(\frac{X_1+X_2+...+X_n}{n} \leq x) =\frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-t^2/2}dt$$其中 $X_1,X_2,...,X_n$ 是独立同分布的随机变量,并且有$E(X_1^2)<\infty$,$\mu=E(X_1),\sigma^2=Var(X_1)$,则样本平均数满足:$$\frac{\frac{X_1+X_2+...+X_n}{n} - \mu}{\sigma/\sqrt{n}} \sim N(0,1)$$其中 $N(0,1)$ 表示标准正态分布。
探讨大数定理和中心极限定理在统计学中,大数定理和中心极限定理是两个非常基础也非常重要的概念。
它们被广泛地应用于各个领域,从自然科学到社会科学,均有广泛的应用。
本文将探讨大数定理和中心极限定理的原理和应用。
一、大数定理大数定理是指在一系列独立重复随机试验中,随着试验次数的增加,样本平均值的稳定值越来越接近于总体期望。
即在试验次数无限大的情况下,样本平均值趋近于总体期望。
大数定理是描述众多随机变量平均值随机波动在样本容量不断增大的情况下,其平均值逐渐趋于一个确定的常数的数学原理。
大数定理的重要性在于它解释了样本平均值与总体平均值之间的关系。
随机试验中的抽样调查往往就是指对一个总体进行一定规模的随机抽样,从而得到一个代表样本,这时样本平均值通过大数定理,可算得总体平均数的近似值。
大数定理是数学上成立的,但是证明这个定理需要数学推导和分析。
不同的大数定理有不同复杂程度的证明过程,从简单的Bernoulli大数定理(伯努利大数定律)到更为复杂的Khintchine 大数定理。
这些定理在不同情况下有着不同的适用范围。
二、中心极限定理中心极限定理(Central Limit Theorem)是概率论中的一个重要定理,指的是若随机变量的和服从一定的分布,则当变量的个数趋近于无限大时,其标准化后的和的分布趋向于正态分布。
也就是说,样本容量越大,样本均值的分布就会越接近正态分布。
中心极限定理的作用是刻画了随机变量和与正态分布之间的关系,即多个独立随机变量密度函数之和趋近于正态分布。
中心极限定理的证明可使用数学推导和图示法来完成。
图示法通常展示为随机变量和的密度函数曲线,以及随着样本容量的增大,近似正态分布曲线的逐渐出现。
这种图示法将把一个随机变量的分布逐渐转变为一种另外的分布,称为极限分布。
在中心极限定理的情况下,这个极限分布是正态分布。
三、应用和意义大数定理和中心极限定理对于现代科学和理论探索意义重大。
它们能够帮助我们预测未来的结果、分析已知结果、探索性质变化和最小量规模,以及帮助我们理解统计分布和抽样分布分析等。
大数定律和中心极限定理是概率论中重要的概念,他们在不同的科学和技术领域都有重要的应用。
大数定理是一个很重要的概念,它指的是在某些概率分布中,如果模拟变量的数量足够大,那么这些模拟变量的平均值将接近于实际的分布的期望值。
换句话说,它的意思是,当抽样次数足够多时,样本的平均数会收敛于总体的期望值。
大数定理在估计总体参数和模拟实验中都有广泛的应用。
中心极限定理是另一个重要的概念,它主要用于描述一种情况,即当样本容量足够大时,与任何特定分布无关时,每个样本平均数将服从正态分布。
因此,中心极限定理提供了一种方法,用以估计样本数据(表现为比较稳定的平均值)来确定总体数据分布情况。
中心极限定理在统计建模中也有重要的作用,它可以用于模拟实验和优化算法,并用于验证统计模型的拟合程度。
大数定理和中心极限定理在概率论中都有着重要的作用,它们可以帮助我们更好地理解分布情况,从而更好地进行估计和模拟。
它们的应用非常广泛,包括统计建模,模拟实验和优化方法等。
完全理解这些概念和他们的应用,将有助于我们实现更精确的结果。
论文题目:大数定律与中心极限定理的关系及其应用摘要:本文通过对概率论的经典定理——大数定律与中心极限定理在独立同分布和不同分布两种情况下的结论作了比较系统的阐述,揭示了随机现象最根本的性质——平均结果的稳定性.经过对中心极限定理的讨论,给出了独立随机变量之和的分布可以用正态分布来表示理论依据.关于大数定律方面,较全面地分析和叙述了几种最常用的大数定律.同样中心极限定理的内容也从独立同分布与独立不同分布两个角度来进行讨论;另外,叙述了各种大数定律以及中心极限定理各自之间,大数定律与中心极限定理之间的关系.同时通过举出很多相关的反例说明二者的关系.最后给出了一些简便的大数定律与中心极限定理在数理统计、误差、彩票学、近似计算、保险业及数学分析等几个方面的应用,来进一步地阐明了大数定律与中心极限定理在各分支学科中的重要作用和应用价值.关键词:随机变量序列;大数定律;中心极限定理;应用ITitle:Law of large numbers and the relationship between the centrallimit theorem and its applicationAbstract: Based on the probability of a classic theorem : the law of large numbers central limit theorem in the independent distribution ; with the different distribution of both cases, it made more systematic exposition, and revealed the phenomenon of the random nature of the most fundamental an average of the results of the Stability . Trough the central limit theorem discussion it will give out the random variables and the distribution of the normal distribution .About the law of large numbers, there are more comprehensive analysis and described several of the most commonly used on it. The content of the same central limit theorem also discussed the independent distribution and independent distribution of the two different perspectives. Also, it will discussed the relationship between the variety of narrative and the law of large numbers between their respective central limit theorem, and that of the law of large numbers and the central limit theorem. At the same time, it demonstrated the relationship between the two aspects through lots of anti-related examples. Finally ,it gave out several aspects of application of a number of simple law of large numbers and the central limit theorem in mathematical statistics, error, lottery school, the approximate calculation, and the insurance industry and mathematical analysis, to further clarify the law of large numbers and the central limit theorem in all branches of the important role and value.Keywords: Random variables ; Law of large numbers; Central limit theorem; ApplicationII目录摘要 (I)Abstract (II)第1章引言 (1)第2章大数定律及其证明 (2)2.1 几个相关定义 (2)2.2 大数定律及其证明 (4)第3章中心极限定理 (8)3.1 中心极限定理的提法 (8)第4章大数定律与中心极限定理的关系 (11)4.1 服从大数定律, 但不服从中心极限定理 (11)4.2 服从中心极限定理, 但不服从大数定律 (12)4.3 大数定律与中心极限定理都不服从 (13)4.4 大数定律、中心极限定理都服从 (13)第5章应用 (14)5.1“概率”及“数学期望”的确切定义 (14)5.2 解释测量(随机) 误差 (14)5.3 在数学分析中的应用 (15)5.4 在计算精确的近似概率方面的应用 (16)5.5 在彩票和保险业的应用 (17)结语 (20)参考文献 (21)致谢 (22)附录 (23)IIIIV第1章引言概率论与数理统计是研究随机现象的统计规律的科学,而随机现象的统计规律性只有在相同条件下进行大量重复试验或观察才呈现出来. 从概率的统计定义中可以看出:一个事件发生的频率具有稳定性,即随着试验次数的增多,事件的频率逐渐稳定在某个常数附近. 人们在实践中观察其他一些随机现象时,也常常会发现大量随机个体的平均效果的稳定性. 这就是说,无论个别随机个体以及它们在试验进行过程中的个别特征如何,大量随机个体的平均效果与每一个体的特征无关,且不再是随机的. 深入考虑后,人们会提出这样的问题:稳定性的确切含义是什么? 在什么条件下具有稳定性? 这就是大数定律要研究的问题.众所周知,中心极限定理是概率论中最重要、最基本的一个定理.中心极限定理揭示了离散型随机变量与连续型随机变量之间的内在联系, 为用连续型随机变量的分布,特别是标准正态分布对离散型随机变量进行概率计算提供了理论基础.基于中心极限定理的概率统计方法在生活中的应用,本文利用中心极限定理,分析了保险业和近似计算中的应用.第 1 页共27页第 2 页 共 27 页第2章 大数定律及其证明2.1 几个相关定义定义1[1] 设n (1,2,)n ξ= 为概率空间(,,)F P Ω上定义的随机变量序列(简称随机序列),若存在随机变数ξ,使对任意0ε>,恒有:l i m {}0nn p ξξε→∞-≥=或lim {}1n n p ξξε→∞-≤=, 则称随机序列{}n ξ概率收敛于随机变量ξ(ξ也可以是一个常数),并用下面的符号表示:lim ()n n p ξξ→∞=或pn ξξ−−→.定义 2[2][6][8] 设{}n ξ为随机变量序列, 数学期望n E ξ存在()1n ≥,如果对任意的0ε>.恒有:1111lim (())1nniin i i p E nnξξε→∞==-<=∑∑, 则称随机变量序列{}n ξ服从大数定律.定义 3 设{}n ξ为随机变量序列, 如果存在常数序列{}n a .对任意的0ε>.恒有:11lim ()1nin n i p a nξε→∞=-<=∑, 则称随机变量序列{}n ξ服从大数定律.注:定义2和定义3两种大数定律定义的讨论所谓大数定律, 它是揭示大量随机现象的平均结果稳定于平均值的极限理论.而大量随机现象即{}n ξ的平均结果是11nii n ξ=∑(n 充分大),其平均值是11()nii E nξ=∑.因此, 从这一角度来考虑,定义2是恰当的.定义3与定义2的不同点在于它并不要求随机变量n ξ的期望n E ξ存在(1n ≥),只要存在常数序列{}n a ,使对任意的0ε>.恒有11l i m ()1ni n n i pa nξε→∞=-<=∑即可.为了弄清这两种定义的异同,我们必须讨论数列{}n a 与数列{11()nii E nξ=∑}之间的关系.首先,当n E ξ(1n ≥)存在时,我们不难证明:0δ∀>,11lim (())0nn in i p a E nξδ→∞=-≥=∑这个结果表明在n E ξ(1n ≥)异存在时,只需取11()nn ii a E nξ==∑,(1n ≥).此时, 定义2 与定义第 3 页 共 27页3 是等价的.其次,当n E ξ(1n ≥)不存在时, 由定义2知{}n ξ不服从大数定律, 而此时, 存在常数列{}n a 使定义3仍然成立.综合上述定义2与定义3不是等价的.定义3不仅在形式上而且在内涵上比定义2更广泛.定义 4[3] 设{()}n F x 是分布函数序列,若存在一个非将函数()F x ,对于它的每一连续点x ,都有li m ()()n n F x F x →∞=,()()w n F x F x −−→,则称分布函数序列{()}n F x 弱收敛于()F x .定义5 设n ()(1,2,)F x n = , ()F x 分别是随机变量(1,2,)n n ξ= 及ξ的分布函数,若()()wn F x F x −−→,则称{}n ξ依分布收敛于ξ,亦记为Ln ξξ−−→,且有: (1)若p n ξξ−−→,则Ln ξξ−−→; (2)设c 为常数,则p n c ξ−−→的充要条件是Ln c ξ−−→. 逆极限定理:设特征函数列{()}n f x 收敛于某一函数()f t ,且()f t 在0t =时连续,则相应的分布函数列{()}n F x 弱收敛于某一分布函数()F x ,而且()f t 是()F x 的特征函数.车比雪夫不等式[4]:设ξ是一个随机变量,它的数学期望为a ,方差为2σ,则对任意的正常数ε恒有:22{},p a σξεε-≥≤(2-1)或有22{}1p a σξεε-<≥- (2-2)称(2-1)式或(2-2)式为车比雪夫不等式.以下就连续型随机变量来证明这个不等式.证 设的密度函数为()f x ,则有222()()()()()x EX x EX DX x EX f x dx x EX f x dx f x dx εεε+∞-∞-≥-≥=-≥-≥⎰⎰⎰{}22()x EX f x dx P x E X εεεε-≥==-≥⎰,第 4 页 共 27 页于是 {}2D XP x E X εε-≥≤这个不等式可解释为:对任意给定的正常数ε,可以作为两个区间(,)a ε-∞-和(,)a ε++∞.(1)式表示,在一次试验中,随机变量ξ的取值落在(,)(,)a a εε-∞-⋃++∞的概率小于等于22σε.不等式说明D X 越小,则X 的取值越集中在E X 附近.这进一步说明了方差是反映随机变量取值的离散程度的.2.2 大数定律及其证明大数定律形式有很多,我们仅介绍几种最常用的大数定律. 定理1[5][6] (车比雪夫大数定律)设随机变量12n ,,,,ξξξ 相互独立,它们的数学期望依次为12n ,,,,a a a ,方差依次为22212,,,,n σσσ 而且存在正常数k ,使得对一切1,2,i = 有2i k σ<,则对任意给定的正常数ε,恒有1111lim {}1nniin i i p annξε→∞==-<=∑∑证 设11nii nξξ==∑,则ξ的数学期望和方差分别为: 111111nnni ii i i i E E E a nn nξξξ===⎛⎫===⎪⎝⎭∑∑∑,222111111n nni iii i i D D D n n nξξξσ===⎛⎫===⎪⎝⎭∑∑∑由车比雪夫不等式,对任意给定的正数ε,有11111{}nni i i i p a nnξε==≥-<∑∑=22221222{}1111ni i D p E nk n k n n σξξξεεεεε=-<≥-=->-=-∑即 211111{}1nniii i p a k n nnξεε==≥-<=-∑∑.对不等式取极限,则得1111lim {}1nniin i i p a nnξε→∞==-<=∑∑车比雪夫大数定律表明,在一定条件下,当n 充分大时,n 个随机变量的算术平均值11nii nξ=∑偏离其数学期望的可能性很小.这也正是用一系列测量值的平均值来近似代替真值的做法的原则.第 5 页 共 27页推论 1 设随机变量12n ,,,,ξξξ 相互独立,且它们具有相同的分布及有限的数学期望和方差:E a ξ=,2(1,2,)D i ξσ== ,则对任意给定的正数ε,有11lim {}1nin i p a nξε→∞=-<=∑.此推论证明:n 个相互独立的具有相同数学期望和方差的随机变量,当n 很大时,它们的算术平均值几乎是一个常数,这个常数就是它们的数学期望.定理 2[7](辛钦大数定律)设12n ,,,,ξξξ 是相互独立的随机变量,而且有相同是的分布,具有有限的数学期望k ,(1,2,)E a k ξ== ,则对任意给定的0ε>,有11lim {}1nkn k p a nξε→∞=-<=∑.注:定理2中条件比定理1中的条件要宽,在定理1中要求方差有限,而定理2不需要这个条件.辛钦大数定律说明独立同分布的随机变量的算术平均值依概率收敛于它的数学期望值,它为在实际应用中用算术平均值估计数学期望提供了理论依据.证 因为12n ,,,,ξξξ 是具有相同分布的随机变量序列,故它们有相同的特征函数.设它们的特征函数为()f t ,由于k E ξ存在,故()f t 有展开式:'()(0)(0)()1()f t f f t ti a t οο=++=++,其中()t ο表示关于t 的高阶无穷小量. 再由独立性知,11nk k n ξ=∑的特征函数为:1nnt t t f ia n n n ο⎡⎤⎡⎤⎛⎫⎛⎫=++ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦.对任意取定的数t ,有lim lim 1n niat n n t t t f ia e n n n ο→∞→∞⎡⎤⎡⎤⎛⎫⎛⎫=++= ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦.而iat e 是连续函数,且是单点分布的特征函数,由逆极限定理知:11nk k nξ=∑的分布函数弱收敛于()F x .其中,1,(),0,x a F x x a>⎧=⎨=⎩因此,11,nLkk a nξ=−−→∑由(2)式知:11nPkk anξ=−−→∑.定理 3[8](贝努利大数定律)设n μ是n 次独立试验中事件A 发生的次数, p 是事件A 在每次试验中发生的概率,则对任意给定的正数ε,有lim {}1nn p p nμε→∞-<= 或 lim {}0nn p p nμε→∞-≥=第 6 页 共 27 页证 令 0,1,2,1n k A Y k k A ⎧==⎨⎩ 第试验不发生,,第试验发生.显然12n n Y Y Y μ=+++ ,由于各次试验是独立的,从而12,,,,n Y Y Y 相互独立,又k Y 服从参数为P 的两点分布,所以(),()(1),(1,2,k k E Y P D Y P Pk ==-= . 由定理1有 lim {}1nn p p nμε→∞-<=.此定理表明:当n 很大时, n 重贝努利试验中事件A 发生的频率几乎等于事件A 在每次试验中发生的概率,这个定理以严格的数学形式刻画了频率的稳定性,因此,在实际应用中,当试验次数很大时,便可以用事件发生的频率来代替事件的概率.证 作一次观察时n μ是定值, 作多次观察时n μ是随机变量,而且(,),n B n p μ 因此:n E np μ=,n D npq μ=,()n E n pμ=,()n D n pq n μ=.在车比雪夫不等式中,取 n n ξμ=,则a p =,2pq n σ=,于是对任意给定的正数ε,有21{}11()npq p p n nn μεε≥-<≥-→→∞,因而lim {}1nn p p nμε→∞-<=.定理 4 (泊松大数定律)设12n ,,,,ξξξ 是相互独立的随机变量, P{1}n n P ξ==, P{0}n n q ξ== (其中n P 1n q =-) ,则{}n ξ服从大数定律.证 由定理所设可得:11E()nn ini P P nξ===∑,2221111111()()24nnnn n n iiii i i P q D D P qnnnn ξξ===+⎛⎫==≤= ⎪⎝⎭∑∑∑. 由车比雪夫不等式得,对任意0ε>,有22()10{}4n n n D P P n ξξεεε≤-≥≤≤.两边取极限,得lim {}0n n n P P ξε→∞-≥=.泊松大数定律是贝努利大数定律的推广, 贝努利大数定律证明了事件在完全相同条件下重复进行的随机试验中频率的稳定性;而泊松定理表明,当独立进行的随机试验的条件变化时, 频率仍然具有稳定性:随着n 的无限增大,在n 次独立试验中,事件 A 的频率趋于稳定在各次试验中事件A 出现概率的算术平均值附近.定理5[9][10] 马尔可夫(Marrkov) 大数定律)设{}k ξ是随机变量序列,若211lim()0nk n k D nξ→∞==∑,则对任意>0ε,均有1111lim {}1nnkkn k k p E nnξξε→∞==-<=∑∑,即{}k ξ服从大数定律.证 车比雪夫不等式得212111()111{}1nk nnk kkk k D np E nnξξξεε===≥-<≥-∑∑∑,取极限得:1111lim {}1nnkkn k k p E nnξξε→∞==-<=∑∑注:车比雪夫大数定律可又马尔可夫大数定律推出,更重要的是马尔可夫大数定律已经没有任何关于独立性的规定.第3章 中心极限定理直观上,如果一随机变量决定于大量(乃至无穷多个)随机.因素的总合,其中每个随机因素的单独作用微不足道,而且各因素的作用相对均匀,那么它就服从(或近似地服从)正态分布,下面我们将按严格的数学形式来表述这一直观.3.1 中心极限定理的提法定理 6[3][11](林德贝格——列维定理(Lindeberg-Levy)中心极限定理)设随机变量12,,ξξ 是一列独立同分布的随机变量,并且具有数学期望k E a ξ=和方差22(0),1,2,k D k ξσσ=>= ,则对任意实数x ,有22lim ()t nkx n na P x edt x ξ--∞→∞⎛⎫-⎪⎪<==Φ ⎪ ⎪⎝⎭∑ (3-1)证 设k a ξ-的特征函数为()t ϕ,1nknk na ξ=-=∑∑的特征函数为nϕ⎡⎤⎢⎥⎣⎦又因为()()20,k k E a D a ξξσ-=-=,所以'''2(0)0,(0)ϕϕσ==- 于是特征函数()t ϕ有展开式:2'''22221()()(0)(0)()1()22tt t t t t t ϕϕϕϕοσο=+++=-+,从而对任意固定的t ,有22221(),2nntt t t e n n n ϕο-⎡⎤⎡⎤=-+→→∞⎢⎥⎢⎥⎣⎦⎣⎦ 而22te-是()0,1N 分布的特征函数,因此由特征函数的连续性定理即知(3-1)成立,定理得证.定理6又称独立同分布的中心极限定理,它表达了正态分布在概率论中的特殊地位,尽管k ξ的分布是任意的,但只要n 充分大,nkna ξ-∑近似服从标准正态分布(0,1)N .或者说,当n 很大时,独立同分布的随机变量kξ的和1nk k ξ=∑ 近似地服从正态分布2(,)N n n μσ.这就是那些(可以看作有许多微小的、独立的随机因素作用的总结果,而每一个因素的影响却都很小)随机变量,一般都可以近似地服从正态分布的理论依据,因而正态分布在理论上和应用上都具有极大的重要性.若(,)B n p ξ ,则当n 很大时,有()P a b ξ⎛⎫⎛⎫≤≤≈Φ-Φ⎝定理 7 (棣莫弗—拉普拉斯(De Moivre-Laplace)中心极限定理) 设随机变量n η服从二项分布(,)B n p ,则对于任意区间[,]a b ,恒有22lim t nkb an na P a b dt ξ-→∞⎛⎫- ⎪ ⎪≤<=⎪ ⎪⎝⎭∑⎰二项分布的极限分布是正态分布 即如果(,)X B n p ,则221()()t nk b anaP a b dt b a ξ-⎛⎫- ⎪ ⎪≤<≈=Φ-Φ ⎪ ⎪⎝⎭∑⎰一般地,如果(,)X B n p ,则()P a X b P ⎛⎫≤<=≤<⎝b np a np --≈Φ-Φ说明:这个公式给出了n 较大时二项分布的概率计算方法.引理 设12,,ξξ 是独立随机变量序列,又k k E a ξ=,2(1,2,)k k D k ξσ== ,221nnkk B σ==∑,这时:(1) 若{}k ξ是连续型随机变量,密度函数为{}()n P x ,如果对任意0τ>,有2211lim()()0k nnk k x a B n k n x a P x dx Bτ->→∞=-=∑⎰(2) 若{}k ξ是离散型随机变量,k ξ的分布列为(),1,2,n nj nj P x P j ξ=== ,如果对任意0τ>,有()2211lim0nj k nnnjk kj n k x a B nxa P B τ→∞=->-=∑∑则称{}k ξ满足林德贝尔格条件.定理 8 (林德贝格定理) 设独立随机变量序列12,,ξξ 满足林德贝尔格条件,则当时,对任意的,有()2211lim y nx k k n k nP a x edy B ξ--∞→∞=⎛⎫-<=⎪⎝⎭∑这个定理证明了由大量微小而且独立的随机因素引起并积累而成的变量,必将是一个正态随机变量,由林德贝尔格条件可看到定理并不要求各个加项“同分布”,因而它比前述的林德贝尔格——勒维定理更强,事实上林德贝尔格——勒维定理可以由它推出.定理 9 (李雅普诺夫定理) 设12,,ξξ 是独立随机变量序列,又k kE a ξ=,2(1,2,)k k D k ξσ== ,记221nnkk B σ==∑,若存在0δ>,使有22110,nk kk nE a n B δδξ++=-→→∞∑,则对任意的实数x ,有()2211lim y nx k k n k n P a x edy B ξ--∞→∞=⎛⎫-<= ⎪⎝⎭∑定理9又称独立非同分布的中心极限定理,李雅普诺夫定理可以解释如下:假定被研究的随机变量可以表示为大量独立随机变量的总和,且总和中的每个单独的随机变量对于总和又不起主要作用,那么可以认为这个随机变量近似地服从正态分布.讨论了独立随机变量和的分布的极限问题,在一定条件下,这些分布弱收敛于退化分布,这就是大数定律.凡是在一定条件下断定随机变量之和的极限分布是正态分布的定理,在概率论中统称为中心极限定理.具体一点说,中心极限定理回答的是(独立或弱相依)随机变量之和的极限分布在什么条件下是正态的.中心极限定理是揭示产生正态分布的源泉,是应用正态分布来解决各种实际问题的理论基础.第4章 大数定律与中心极限定理的关系概率论中关于独立随机变量序列的极限理论, 已相当完整, 各种问题已有了令人满意的回答,但由于一般教材中, 特别是工科教材, 只介绍一、二个最简单的基本定理,若弱大数定律只介绍切比契夫定理的特殊情况, 中心极限定理只介绍同分布的林德贝格——列维定理(Lindeberg-Levy)的特殊情况——德莫弗—拉普拉斯(De Moivre-Laplace)定理.仅少数教材提及林德贝格条件. 这几个定理的条件又都是充分条件, 我们容易产生这样的问题: 大数定律与中心极限定理之间究竟有什么关系? 服从大数定律的是否服从中心极限定理? 反之又如何? 是否有两者都服从或都不服从的随机序列?因教材知识所限, 这些问题不太好回答, 现拟补充几个定理, 以简单的例子加以说明.定理10[12](格涅坚克定理) 设有相互独立的随机变量序列{}k ξ, 则对0ε∀>,11lim {()}1nkk n k p E nξξε→∞=-<=∑的充要条件是2221()lim[]0()nk k n k k k E E nE ξξξξ→∞=-=+-∑.定理11 (马尔科夫定理) 随机变量序列{}k ξ, 若211()0nk k D nξ=→∑,则对0ε∀>, 有11lim {()}1nkk n k p E nξξε→∞=-<=∑.定理12 (费勒定理) 对相互独立随机变量序列{}k ξ, 若∃常数n M ,使1max k n k nM ξ≤≤≤,且limn n nM B →∞=, 则{}k ξ服从中心极限定理.设{}k ξ为相互独立的随机变量序列, 以下在,,()k k j k j P P ξα==中, 令,,,k j k j P α取不同的值, 以说明不同的情形.4.1[12][13] 服从大数定律, 但不服从中心极限定理令(),1,1210,121k k P k α==-+,(),2,221,21k k k P k α==+,(),3,321,21k k k P k α==+,1,2,3,k = ,即()21(0)11k P k ξ==-+,()21()()21k k P k P k k ξξ===-=+可知0,k E ξ=()2221k k kD E k ξξ==+,()222111nnnk k k kB D k ξ====+∑∑因222110,n B n n nn<⋅→→∞, 由马尔科夫定理知, 大数定律成立, 但中心极限定理不成立. 这是因为12111(0)(0,0,,0)(0)(0)nnk n kkk k k P P P P ξξξξξξ∞==========≥=∑∏∏()2111(1)021nk k ==-=>+∏若服从中心极限定理,则取120,0x x <>,有22211211()t nx kx k nP x x edt B ξ-=<<=∑, 当12,x x 充分靠近 0 时,222112t x x e dt -<. 这就出现了矛盾. 所以中心极限定理不成立.4.2 服从中心极限定理, 但不服从大数定律取,,()k k j k j P P ξα==,为1()2k P k ξ==,1()2k P k ξ=-=,1,2,,k = 可知0,k E ξ=2k D kξ=,221nn k B k ==∑, 又 3333322221(1)(1)lim limlim3(1)n n n nn nnn n n n BB B n →∞→∞→∞++-+-===-+,即 313223limlim13n n nnnn B B -→∞→∞==,()12133lim1n nnB -→∞=又 1ax k k nM n ξ≤≤≤,()1213limlim03n n nn nB n→∞→∞-==则由费勒定理知中心极限定理成立, 但不服从大数定律, 这是因为2()x x R n x∈+, 为凸函数, 由琴生不等式222222222()kkkkE kE n n E n kξξξξ≥=+++,而 222222111111,244nnn k k k kkn k n n knnnn===+≥==→→∞++∑∑∑由格涅坚克定理知, {}k ξ不服从大数定律.4.3 大数定律与中心极限定理都不服从取,,()k k j k j P P ξα==,为1(2)2k k P ξ==,1(2)2k k P ξ=-=,可知0,k E ξ=4k k D ξ=,21144(41)3nnknnk k k B D ξ=====-∑∑, 当 n充分大时24n n B >,即2n n B >21112222(21)2n nn n n kk k k ξξ+==≤≤+++=-<∑∑,112nkk nB ξ=<∑故11lim (2)1(2)(2)1nkn k nP B ξ→∞=<=≠Φ-Φ-<∑可知不服从中心极限定理, 又22222222111144()44kknnnnkkknk k k k kkE E nn E n n ξξξξ====≥=>++++∑∑∑∑22111444(41),4433nknnnk n n n ===⋅-→→∞++∑,由格涅坚克定理知不服从大数定律.4.4 大数定律、中心极限定理都服从若{}k ξ为同分布且有有限期望及大于零的方差, 则由教材中定理易知两者都服从. 这时有11lim (())1nkk n k P E nξξε→∞=-<=∑.但括号中的事件概率, 究竞有多大? 大数定律未能回答. 而根据中心极限定理有22111(())()x nnkk kk k k P E P E edx nεξξεξξσ-==≤-<=-<≈∑其中2k D σξ=, 这样看来在所假定的条件下, 中心极限定理比大数定律更精确.第5章 应用大数定律以严格的数学形式表达了随机现象最根本的性质——平均结果的稳定性,它是随机现象统计规律性的具体表现. 因此,大数定律在理论和实际中都有广泛的应用.5.1[3] “概率”及“数学期望”的确切定义在给出二者定义时,都采用“稳定”一词,这是一种不确切的描述.依据大数定律可给出更确切的表达,即:概率——独立重复实验中,事件A 出现的频率11nPii Pnξ=−−→∑,则该常数P 即为概率.数学期望——对于任一0ε>,有11lim ()1nin i p nξμε→∞=-<=∑,则()k E μξ=称为数学期望.5.2 解释测量(随机) 误差根据大数定律,对于随机误差12,,,n δδδ ,应有11nPii nδ=−−→∑.这说明当测量次数较多时, 实测数据的平均值11nii a nδ=+∑和预测真值a 的差值能以很大概率趋于0,因此,用求样本数据平均值的方法来进行测量是可行的.例1[14] 某种仪器测量已知量A 时,设n 次独立得到的测量数据为12,,,n x x x ,如果仪器无系统误差,问:当n 充分大时, 是否可取作为仪器测量误差的方差的近似值?解 把(1,2,,)i x i n = 视作n 个独立同分布的随机变量的观察值,则()i E x μ=,2(),(1,2,,)i D x i n σ== .仪器第i 次测量的误差i x A -的数学期望()i E x A A μ-=-,方差2()i D x A σ-=.设2(),1,2,,i i Y x A i n =-= ,则i Y 也相互独立服从同一分布.在仪器无系统误差时()0i E x A -=,即有A μ=,222()()()()(1,2,,)i i i i i E Y E x A E x Ex D x i n σ⎡⎤⎡⎤=-=-===⎣⎦⎣⎦由车比雪夫定律,可得: 211lim {}1nin i p Ynσε→∞=-<=∑即 ()2211lim {}1nin i p x A nσε→∞=--<=∑从而确定,当n →∞时,随机变量()211ni i x A n=-∑依概率收敛于2σ,即当n 充分大时可以取()211nii x A n=-∑作为仪器测量误差的方差.5.3 在数学分析中的应用例2[1] 假设()22212121,,,:,0,,12n n n n nG x x x x x x x x ⎧⎫=+++≤≤≤⎨⎬⎩⎭,求其极限. 解 假设随机变量(1,2,)n n ξ= 在[]0,1上有均匀分布,而且相互独立,有112D ξ=,2112E ξ=,易见(){}22111,,2nn n n n Gn dx dx P G P ξξξξ⎧⎫=∈=++≤⎨⎬⎩⎭⎰⎰ ()()222222211111111111266nn n ii P P E P E n n nξξξξξξξ=⎧⎫⎧⎫⎧⎫=++≤=++-≤≥-≤⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭∑ 由1,,n ξξ 独立同分布,可见221,,,n ξξ 独立同分布.根据辛钦大数定律知:2111lim ()16ni i n i p E nξξ→∞=-≤=∑从而1lim1nn G n dx dx →∞=⎰⎰ .例3 用概率方法证明维尔斯特拉斯[w eierstrass ]定理.假定()f x 在闭区间[],a b 上是连续的,那么,存在一列多项式12(),(),B x B x ,一致收敛于函数()f x ,[],x a b ∈.证 不妨设0,1a b ==.假设()f x ,[]0,1x ∈是连续函数,那么()f x 在[]0,1上一致连续并且有界.对于任意[]120,0,0,1x x ε>≤∈存在0δ>,使12()()2f x f x ε-<,只要12x x ε-<.此外,对于一切01x ≤≤,有()f x k ≤(常数).现在,建立一多项式:()(1)nm m n m n n n m m B x Ef f C x x n n ξ-=⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭∑,其中n ξ服从二项分布, 参数为1n ≥, 而[]0,1x ∈, 显然(0)(0)n B f =,(1)(1)n B f =.由贝努利大数定律知()limnn x P nξ→∞=,[]0,1x ∈现在证明()n n B x f n ξ⎛⎫= ⎪⎝⎭一致收敛于()f x ,[]0,1x ∈.由于0(1)1nm m n m n m C x x -=-=∑,可见()()0()(1)nmmn mn n m m B x f x f f x C x x n -=⎡⎤⎛⎫-=-- ⎪⎢⎥⎝⎭⎣⎦∑,由此可得:()()0()(1)nm m n m n n m m B x f x f f x C x x n -=⎛⎫-≤-- ⎪⎝⎭∑()()(1)(1)m m n m m m n mn n mm x x nnm m f f x C x x f f x C x x n n δδ---<-≥⎛⎫⎛⎫=--+-- ⎪ ⎪⎝⎭⎝⎭∑∑2(1)222m m n mn n mx nkC x x kP x n δεεξδ--<⎧⎫<+-=+-≥⎨⎬⎩⎭∑. 由于对任意[]0,1x ∈,Pnxnξ−−→可见存在N ,使当时n N ≥,4nP x n kξεδ⎧⎫-≥≤⎨⎬⎩⎭ 从而,当n N ≥时,对于一切[]0,1x ∈,有:()()22422n B x f x k kεεεεε-<+=+= .即()n B x 关于[]0,1x ∈一致收敛于()f x .5.4 在计算精确的近似概率方面的应用例4[15] 现有一大批种子,其中良种占1/6 ,今在其中任选6000 粒,试分别用切比雪夫不等式估计和用中心极限定理计算在这些种子中良种所占的比例与1/6之差小于1%的概率是多少?解 设取出的种子中的良种粒数为X ,则1(6000,)6X B 于是1600010006E X n p ==⨯= 155(1)60001000666D X np p =-=⨯⨯=⨯(1) 要估计的规律为{}1110006060006100XP P X ⎧⎫-<=-<⎨⎬⎩⎭相当于在切比雪夫不等式中取60ε=,于是{}21110006016000610060X D X P P X ⎧⎫-<=-<≥-⎨⎬⎩⎭ 由题意得 25111100010.23150.76856063600D X-=-⨯⨯=-= 即用切比雪夫不等式估计此概率不小于0.7685.(2) 由拉普拉斯中心极限定理,对于二项分布1(6000,)6B ,可用正态分布5(1000,1000)6N ⨯近似, 于是所求概率为{}11940106060006100X P P X ⎧⎫-<=<<⎨⎬⎩⎭ 2(2.0785)10.9625≈Φ-Φ≈Φ-≈从本例看出:用切比雪夫不等式只能得出来要求的概率不小于0.7685,而用中心极限定理可得出要求的概率近似等于0.9625.从而知道由切比雪夫不等式得到的下界是十分粗糙的.但由于它的要求比较低,只要知道X 的期望和方差,因而在理论上有许多运用.当i X 独立同分布(可以是任何分布),计算1()n P a X X b <++≤ 的概率时,利用中心极限定理往往能得到相当精确的近似概率,在实际问题上广泛运用.5.5[16][17] 在彩票和保险业的应用大数定律和中心极限定理是概率论中两类具有极大意义的重要定理. 大数定律证明了在大样本条件下,样本平均值可以看作是总体平均值(数学期望) ,它是“算术平均值法则”的理论基础;中心极限定理比大数定律更为详细具体,它以严格的数学形式阐明了在大样本条件下,不论总体的分布如何,样本均值总是近似的服从正态分布. 正是这个结论使得正态分布在数理统计和误差分析中占有特殊的地位,是正态分布得以广泛应用的理论基础. 本文通过对彩票学和保险业等几个具体事例的引用展现了大数定律和中心极限定理的实际应用.大数定理在实际生活中应用十分广泛,我们现在以生活中最平常的但都很感兴趣的事情——彩票为例来详细阐述一下大数定理在彩票学中的应用.我们知道概率论是研究现实世界随机现象的科学,是近代数学的重要组成部分. 它在自然科学以及经济工作中都有着广泛的应用,同时也是数理统计的基础. 彩票投注的中奖概率分布完全符合它的原理. 彩票的投注方法是一个玩数字游戏. 彩票号码的摇出是随机事件,也可以说是一随机现象,属概率论的一个基本概念. 首先我们应该先清楚什么是随机现象? 我们说随机现象的特点是:事先不能预言其结果,具有偶然性;另一方面,在相同条件进行大量的重复试验,会呈现出某种规律性(特别是随机开奖次数的不断增多).例如:在相同条件下,多次抛掷质量均匀的同一枚硬币,则出现正面向上的次数约占总抛次数的一半,而且随着抛掷次数的增加,正面向上次数是总抛次数的12.这就是概率论的统计结果.(请看下面5次抛币的试验结果)有人曾经做过抛掷硬币的试验,试验结果记录如下:投掷次数N,正面向上次数M.M0.5181=2048N=1061N M==4040M0.5069N=2048N M=M0.5016N=6019=12000N M=M0.5005=24000N=12012N M==30000M0.4996N=14984N M=M0.5011N=36124=72088N M=由上述情况可以看出投掷次数很大时,其频率稳定于0.5彩票每期摇出的中奖号码(基本号码和特别号码)是一个随机事件,既然是随机事件,必有其分布规律.1. 2001010期至2001023期“上海风采”电脑福利彩票开奖计14期共摇出14*8112=个球.2. 每个球平均出现3.6次3. 奇数出现59次;偶数出现53次4. 小于或等于15的数47次;大于或等于16的数出现65次由此,我们引入彩票的一对常用语“冷门号码”及“热门号码”.有了“冷门号码”及“热门号码”,我们只要扑捉到这种机会,将会提高中奖纪律.概率分布的四条法则:1. 奇数.偶数出现的次数应占总数的12(由于不确定因素除外).2. 大数.小数出现的次数应占总数的12(由于不确定因素除外).3. 1-10区段,11-20区段,21-31区段,三区段出现的数个占总数的13(由于不确定因素除外).4. 各数出现的次数,随着实验(开奖)次数的增加不断靠近平均值(由于不确定因素除外).综上所述,随机的摇球事件随着实验(开奖)次数的增加都会显示出它的某些规律性,而这种规律性可以借助概率论的知识,利用小概率统计法,分析判断号码.通过数字统计,运用概率论原理来判断冷热号码出现的周期. 分析号码可能出现的区段. 缩小精选号码范围. 为新一期选择号码提供参考依据,从而达到提高中奖得率.实际上,对于彩票而言,也不是完全没有规律可循,只要经过大量的观察,根据大数定律就可以进行统计预测,提高中奖的几率. 概率论是一门系统学科,一般人了解的概率,不是从理论上认识,仅仅限于经验. 时间的表层认识. 与其硬着头皮去盲目猜测,不如运用简单的概率学统计分析方法更简单,更容易掌握. 把每期中奖号码出现的次数累加起来,一一进行统计,累计到一定量后,就能发现奖项及其相关指标的概率波动特性. 彩民再根据这些进行选号投注,就可以大大提高中奖几率.中心极限定理指出:如果一个随机变量有众多的随机因素所引起,每个因素在总的变化里起着不大作用,就可以推断描述这个随机现象的随机变量近似的服从正态分布,所以要求随机变量之和落在某个区间上的概率,只要把它标准化,用正态分布作近似计算即可. 中心极限定理还及时了离散型随机变量与连续型随机变量的内在联系,即离散型随机变量的极限分布是正态分布.中心极限定理对保险业更是具有指导性的意义,一个保险公司的亏盈,是否破产,我们通过学习中心极限定理的知识都可以做到估算和预测. 大数定律是近代保险业赖以建立的基础. 根据大数定律中心极限定理,我们知道承保的危险单位越多,损失概率的偏差越小,反之,承保的危险单位越少,损失概率的偏差越大. 因此,保险人运用大数法则就可以比较精确的预测危险,合理的拟定保险费率. 下面我们以一道具体的有关保险业的实例来阐述一下大数定律和中心极限定理在保险业中的重要作用和具体应用.例 5已知在某人寿保险公司里有10000个同一年龄段的人参加保险,在同一年里这些人死亡率为0.1% ,参加保险的人在一年的头一天交付保险费10元,死亡是家属可以从保险公司领取2000元的抚恤金. 求保险公司一年中获利不少于40000 元的概率;保险公司亏本的概率是多少?解设一年中死亡的人数为x人. 死亡概率为0.001P= ,把考虑10000人在一年里是否死亡看成10000重贝努里试验,保险公司每年收入为10000*10100000=元,付出2000x元.(1) P(保险公司获利不少于40000 元){}=->=(1000002000)40000P x。
概率论中的大数定律与中心极限定理的应用概率论是一门研究随机事件发生规律的学问,其定理与应用广泛应用于统计学、金融学、生产管理、人工智能等领域。
在概率论中,大数定律和中心极限定理是最为基础和重要的定理之一,它们有着广泛的应用和深远的影响。
一、大数定律大数定律是指在某一条件下,重复试验的结果越多,这些结果统计平均后越趋近于一个确定的值。
大数定律可以帮助我们理解并预测某些随机事件的出现概率,从而制定更好的决策。
例如,翻硬币的结果是正面朝上还是反面朝上,这是一个具有随机性的试验。
用大数定律来解释,如果连续翻硬币1000次,正面朝上的次数大约为500次。
但是,如果连续翻硬币10000次,正面朝上的次数就会非常接近5000次。
这是因为随着试验次数的增加,正反两面朝上的出现概率逐渐趋近于50%,从而平均值逐渐稳定。
大数定律还可以应用于金融和经济领域。
在股票市场中,如果一个股票在长期内表现良好,那么其价值也会随着时间的增加而逐步稳定。
这就可以用大数定律来解释:由于牛市和熊市等因素的干扰,每日的股票价格可能会有波动,但随着时间的增加,这些波动相互抵消,从而使得该股票的总体价格与预期价值趋向于一致。
二、中心极限定理中心极限定理是指,如果连续进行多次随机试验,独立的结果会呈现出一种特殊的分布规律——正态分布。
正态分布有着明确的数学规律,可以通过概率计算和模型预测来描述和解释随机事件的统计特征。
例如,某一工厂每天生产的零件数量是不确定的,但是我们可以假设每种零件的生产概率分布相同,并应用中心极限定理来描述其总体分布规律。
在经过大量试验之后,我们可以发现,当零件数量充分大时,每天的生产总量的分布大致呈现出正态分布的特征,其中大部分零件的生产数量集中在平均值周围。
我们可以用这种分布规律来制定生产管理策略,从而提高生产效率和质量。
中心极限定理还可以应用于汇率和金融市场的预测。
在汇率市场中,每日的汇率涨跌幅度往往是不确定的,但是我们可以通过历史交易数据来计算总体波动率,并利用中心极限定理来预测未来一段时间内的汇率波动规律。
统计学中的中心极限定理和大数定律统计学作为一门重要的应用数学学科,研究了如何收集、分类、整理、分析和解释数据。
在统计学的基础理论中,中心极限定理和大数定律是两个重要的概念。
本文将介绍这两个定理的概念、原理和应用,并探讨它们在统计学研究中的重要性。
一、中心极限定理的概念与原理中心极限定理是统计学中一项重要的定理。
它描述了在一定条件下,独立随机变量的和或平均值的分布会趋近于正态分布。
换句话说,无论原始数据的分布形态如何,当样本容量足够大时,样本的均值的分布将近似于正态分布。
中心极限定理的原理可以简要概括为以下几点:1. 每个样本之间必须是相互独立的。
2. 样本容量越大,近似于正态分布的程度越高。
3. 样本所代表的总体应服从一定的分布。
中心极限定理的应用非常广泛。
例如,在某地的人均收入调查中,收集了大量的数据样本进行分析。
利用中心极限定理,可以通过样本数据得到总体的分布情况,从而评估人群整体的收入水平。
二、大数定律的概念与原理大数定律是另一个统计学中的重要定理。
它描述了在重复进行随机试验或抽样的过程中,样本的平均值逐渐趋近于总体的平均值。
换句话说,当重复进行足够多次的试验或抽样时,样本平均值将会接近总体平均值。
大数定律的原理可以简要概括为以下几点:1. 重复进行的试验或抽样必须是相互独立的。
2. 样本的容量越大,样本均值越接近总体均值。
3. 样本所代表的总体应服从一定的分布。
大数定律在统计学中具有重要意义。
例如,在货物抽检中,为了评估生产线上的产品质量,需要进行多次的抽样检验。
利用大数定律,可以通过样本检验结果来推断整个生产批次的质量情况。
三、中心极限定理和大数定律的应用场景中心极限定理和大数定律在不同的统计学研究中有着广泛的应用。
以下是一些常见的应用场景:1. 抽样调查:在进行社会调查、市场调研等抽样调查时,通过使用中心极限定理和大数定律,可以利用样本数据对总体进行推断和预测。
2. 假设检验:在统计学中,假设检验用于推断总体参数是否符合某个假设。
重庆三峡学院毕业设计(论文)大数定律与中心极限定理及其应用分院数学与统计学院专业数学与应用数学(师范)班级 10数本1班学号************姓名张永东指导教师陈飞翔 (讲师) 2014年5月10日目录摘要 (I)ABSTRACT. (II)1大数定律的应用 (3)1.1引言 (3)1.2预备知识 (3)1.2.1相关定义 (3)1.2.2切比雪夫不等式及其应用 (4)1.3几类重要的大数定律的应用 (4)1.3.1切比雪夫大数定律及其在测绘方面的应用 (4)1.3.2伯努利大数定律及其在重复事件方面的应用 (6)1.3.3辛钦大数定律及其在数学分析方面的应用 (6)1.4大数定律的意义 (8)2 中心极限定理的应用 (8)2.1前言 (8)2.2几类重要的中心极限定理的应用 (9)2.2.1林德伯格定理及其在保险方面的应用 (9)2.2.2列维定理及其在极限求解方面的应用 (10)2.2.3棣莫弗-拉普拉斯定理及其在实际生活方面的应用 (11)2.2.4 李雅普诺夫中心极限定理及其在具体分布方面的应用 (14)3 大数定律和中心极限定理的比较应用 (15)3.1大数定律和中心极限定理的比较应用 (15)结论 (16)致谢 (17)参考文献 (18)大数定律与中心极限定理及其应用张永东(重庆三峡学院数学与统计学院数学与应用数学专业 2010级一班重庆万州 404000)摘要:大数定律和中心极限定理是概率论中很重要的定理,也是概率论与数理统计联系的关键所在,更是生活中不可缺少的一部分.较多文献给出了不同条件下存在的大数定律和中心极限定理,并利用大数定律和中心极限定理得到较多模型的收敛性.但对于它们的适用范围及在实际生活中的应用涉及较少.本文介绍了几种较为常见的大数定律和中心极限定理,并列举了它们在经济生活、数学分析、信息论等各个不同领域的应用.将理论具体化、将可行的结论用于具体的数学模型中,以使得枯燥的数学理论与实际相结合,使大家对大数定律与中心极限定理在实际生活中的应用价值有了更深的认识.关键词:大数定律;中心极限定理;期望;方差;应用Application of the law of large numbers and the centrallimit theoremZHANG yong-dong(Grade 2010, Mathematics and Applied Mathematics, School of Mathematics and Statistics ,Chongqing Three Gorges University, Wanzhou, Chongqing 404000 )Abstract:The law of large numbers and central limit theorem is very important in probability theory theorem,and it is not only the contact key of Probability theory and mathematical statistics,but also an indispensable part of life. Many literatures have given the dissimilar conditions of the law of large numbers and central limit theorem.Many literatures have given the dissimilar conditions of the law of large numbers,and have obtained the astringent using the law of large numbers and central limiting theorems.But here has no many results in practical life and applicable scope.Here I introduce several kinds of laws of large numbers and central limit theorems,then this paper enumerates some different applicants in economic life,mathematics and information theory and so on.It makes theory concretely,and considers some concrete mathematical model,and so makes mathematical theory reality,thus we can have deeper understanding on the law of large numbers and the central limiting theorem.Key words: The law of large numbers,Central limit theorem,Expectation, Variance, Application2014届数学与应用数学专业毕业设计(论文)1 大数定律的应用1.1 引言生产、生活及科学实验中的风险事故都具有不确定性,或者称为随机性.但是,任何事情的发生、发展都具有一定的客观规律.如果各种条件都能预知,则事物发生的结果也能予以正确地测定,此时虽然风险事故仍然存在,损失仍然会发生,但是,随机性将因此消失.如果有大量的事例可供考察研究,则这些未知的、不确定的力量将有趋于平衡的自然倾向,那些在个别事例中存在的随机风险将在大数中消失,这种结论就是概率论中的大数定律.它的结论也可叙述为:大量的随机现象由于偶然性相互抵消而呈现出某种必然的数量规律.1.2 预备知识1.2.1 相关定义在介绍大数定律之前,先介绍几个相关定义:定义1 设),2,1( =n n ζ为概率空间),,(P F Ω上定义的随机变量序列(简称随即序列),若存在随即变数ξ使对任意0>ε,恒有:{}0lim =≥-∞→εζζn n p 或{}1lim =≤-∞→εζζn n p ,则称随即序列{n ξ}依概率收敛于随机变量ξ(ξ也可以是一个常数),并用下面的符号表示:)(lim p n n ζζ=∞→或ζζ−→−p n 定义2 设{}n ζ为一随即序列,数学期望)(n E ζ存在,令∑==ni i n n 11ζζ,若 [])()(lim P o E n n n =-∞→ζζ, 则称随机序列{}n ζ服从大数定律,或者说大数法则成立.定义 3 设{})(x F n 是分布函数序列,若存在一个非降函数)(x F ,对于它的每一连续点x ,都有)()(lim x F x F n n =∞→,)()(x F x F wn −→−,则称分布函数序列{})(x F n 弱收敛于)(x F . 定义4 设),2,1)(( =n x F n ,)(x F 分别是随机变量),2,1( =n n ζ及ξ的分布函数,若)()(x F x F w n −→−,则称{}n ζ依分布收敛于ξ亦记为ζζ−→−L n 且有:(1)若ζζ−→−p n 则ζζ−→−Ln ; (2)设c 为常数,则c p n −→−ζ的充要条件是c L n −→−ζ.张永东:大数定律和中心极限定理的应用1.2.2 切比雪夫不等式及其应用切比雪夫不等式:设随机变量X 具有有限数学期望μ和方差2σ,则对于任意正数ε,如下不等式成立,{}22εσεμ≤≥-X P 或有{}221εσεμ-≥≤-X P 这个不等式可解释为:对任意给定的正常数ε,可以作出两个区间),(εμ--∞和),(+∞+εμ,不等式表示,在一次试验中,随机变量ξ的取值落在),(εμ--∞ ),(+∞+εμ的 概率小于等于22εσ. 切比雪夫(Chebyshev )不等式的应用:(1)已知期望和方差,我们就可以利用切比雪夫不等式估计在期望的ε邻域的概率.(2)已知期望和方差,对确定的概率,利用切比雪夫不等式求出ε,从而得到所需估计区间的长度.(3)对n 重伯努利试验,利用切比雪夫不等式可以确定试验次数.(4)它是推导大数定律和其他定理的依据.例1:已知正常男性成人血液中,每毫升白细胞数的平均值是7300,均方差是700,利用切比雪夫不等式估计每毫升血液含白细胞数在5200~9400之间的概率.解:设X 表示每毫升血液中含白细胞个数,则7300=EX ,700)(=X σ则{}{}{}2100730012100730094005200≥--=≤-=≤≤X P X P X P而{}9121007002100730022=≤≥-X P 所以{}9894005200≥≤≤X P 1.3 几类重要的大数定律的应用1.3.1 切比雪夫大数定律及其在测绘方面的应用 切比雪夫大数定律:设独立随机变量序列 ,,,,21n X X X 的数学期望),(),(21X E X E),(,n X E 与方差 ),(,),(),(21n X D X D X D 都存在,并且方差是一致有上界的,即存在某一常数K ,使得 ,,,2,1,)(n i K X D i =<,则对于任意的正数ε,有2014届数学与应用数学专业毕业设计(论文)1))(11(lim 11=-∑∑==∞→ε<ni i n i i n X E n X n P . 推论1:设随机变量 ,,,,21n X X X 相互独立,且它们具有相同的分布及有限的数学期望和方差:),2,1(,2 ===i Dx a EX i i σ,则对任意给定的正数ε,有1)1(lim =-∑∞→ε<a X nP i n .【1】 此推论表明:n 个相互独立的具有相同数学期望和方差的随机变量,当n 很大时,它们的算术平均值几乎是一常数,这个常数就是它们的数学期望.例2:使用某仪器测量已知量a ,设n 次独立得到的测量值为 ,,,,21n X X X .如果仪器无系统误差,问n 充分大时,是否可以用∑=-=n i na X n S 122)(1作为仪器误差的方差近似值? 分析:用2σ表示仪器误差的方差真值.如果0>ε∀,恒有1)(lim 22=-∞→εσ<n n S P ,则n 充分大时2n S 就可以看作是2σ的近似值. 解:依题意,可以将观察结果 ,,,,21n X X X 看作是相互独立具有相同分布的随机变量.则),2,1()(,)(2n i X D X E i i ===σμ,仪器第i 次测量误差i X a -的数学期望2)(,)(σμ=-=-i i X D a a X E设2)(a X Y i i -=亦是相互独立的具有相同分布随机变量,在仪器无系统误差时有a X E i =)(,即a =μ[][]n i X D X E a X E Y E i i i i ,,2,1,)()()()(222 ===-=-=σμ由切比雪夫大数定律,0ε∀>,有 1)1(lim 21=-∑=∞→εσ<ni i n Y n P , 即0>ε∀,有1))(1(lim 212=--∑=∞→εσ<ni i n a X n P 从而确定当∞→n 时,随机变量∑=-n i i a X n 12)(1依概率收敛于2σ,即当n 充分大时, 可以用∑=-=n i i na X n S 122)(1作为仪器误差的方差近似值.张永东:大数定律和中心极限定理的应用1.3.2 伯努利大数定律及其在重复事件方面的应用伯努利大数定律(频率的稳定性):设n μ是n 次独立试验中事件A 发生的次数,p 是事件A 在每次试验中发生的概率,则对于任意正数ε,恒有0lim =⎭⎬⎫⎩⎨⎧≥-∞→εμp n n n 或1lim =⎭⎬⎫⎩⎨⎧≤-∞→εμp n n n 【2】 表明:随着n 的增大,事件A 发生的频率n nμ与其概率p 的偏差p n n-μ大于预先给定的精度ε的可能性愈来愈小,小到可以忽略不计.这就是频率稳定于概率的含义,或者说频率依概率收敛于概率.这个定理以严格的数学形式刻画了频率的稳定性,因此,在实际应用中,当试验次数很大时,便可以用时间发生的频率来代替事件的概率.伯努利大数定律提供了用频率来确定概率的理论依据.我们可通过多次重复一个试验,确定事件A 在每次试验中出现的概率为)(n A P P n=≈μ.譬如,抛一枚硬币出现正面的概率p=0.5.若把这枚硬币连抛10次,则因为n 较小,发生大偏差的可能性有时会大一些,有时会小一些.若把这枚硬币连抛n 次,当n 很大时,由切比雪夫不等式知:证明出现的概率与0.5的偏差大于预先给定的精度ε(若取精度ε=0.01)的可能性n P n 410n0.010.50.501.05.042=⨯≤⎭⎬⎫⎩⎨⎧->μμ. 当n=105时,大偏差放松的可能性小于%5.2401=.当n=106时,大偏差发生的可能性小于%25.04001=.可见试验次数愈多,偏差发生的可能性愈小.1.3.3 辛钦大数定律及其在数学分析方面的应用我们已经知道,一个随机变量的方差存在,则其数学期望必定存在;但反之不成立,即一个随机变量的数学期望存在,则其方差不一定存在.以上几个大数定律均假设随机变量序列{}n X 的方差存在,以下的辛钦大数定律去掉了这一假设,仅设每个i X 的数学期望存在,但同时要求{}n X 为独立同分布的随机变量序列.伯努利大数定律仍然是辛钦大数定律的特例. 辛钦大数定律 :设{}i X 为一独立同分布的随机变量序列,若i X 的数学期望存在,则{}i X 服从大数定律,即对任意的0>ε,有1))(11(lim 11=-∑∑==∞→ε<ni i n i i n X E n X n P 成立.辛钦大数定律提供了求随机变量数学期望)(X E 的近似值的方法.设想对随机变量X 独立2014届数学与应用数学专业毕业设计(论文)重复地观察n 次,第k 次观察值为k X ,则n X X X ,,,21 应该是相互独立的,且它们的分布应该与X 的分布相同.所以,在)(X E 存在的条件下,按照辛钦大数定律,当n 足够大时,可以把平均观察值∑=ni i X n 11作为)(X E 的近似值.这样做法的一个优点是我们可以不必去管X 的分布究竟是怎样的,我们的目的只是寻找数学期望.事实上,用观察值的平均去作为随机变量的均值在实际生活中是常用的方法.譬如,用观察到的某地区5000个人的平均寿命作为该地区的人均寿命的近似值是合适的,这样做法的依据就是辛钦大数定律.概率论借助于数学分析,可以较好地描述、处理、解决随即现象的有关理论和应用问题.反之,用概率方法来解决数学分析中的一些问题,也是概率论的重要研究方向之一[3].数学分析中的有些问题,用数学分析的方法很难解决,但如果巧用概率论的方法,则变得比较容易处理了.再比如,许多极限的运算运数学分析的方法会很麻烦,但是运用概率论中相关的知识或许会达到事半功倍的效果.例3:假设⎭⎬⎫⎩⎨⎧≤≤≤++=1,,0,2:),,,(212222121n n n n x x x n x x x x x x G ,求其极限⎰⎰n G n dx dx 1.解 :假设随机变量),2,1( =i i ξ在[0,1]上有均匀分布,而且相互独立,有31,212==i i E D ζζ 易见{}⎭⎬⎫⎩⎨⎧≤++=∈=⎰⎰2),,,(22221211n P G P dx dx n n n G n n ζζζζζζ ⎭⎬⎫⎩⎨⎧≤-++=⎭⎬⎫⎩⎨⎧≤++=61)(121)(122222122221i n n E nP n P ζζζζζζζ ⎭⎬⎫⎩⎨⎧≤-=∑=611212i n i i E n P ζζ 由n ζζζ,,,21 独立同分布,可见22221,,,n ζζζ 独立同分布.根据辛钦大数定律知张永东:大数定律和中心极限定理的应用1)611(lim 212=-∑=∞→<i n i i n E n P ζζ 从而1lim 1=⎰⎰∞→n G n n dx dx1.4 大数定律的意义概率论与数理统计是研究随即现象的统计规律的科学,而随机现象的统计规律性只有在相同条件下进行大量重复试验或观察才呈现出来.大数定律是概率论中的重要内容,其目的是考察随机序列的稳定性.从概率的统计定义中可以看出:一个事件发生的概率具有稳定性,即随着试验次数的增多,事件的频率逐渐稳定在某个常数附近.人们在实践中观察其他一些随机现象时,也常常会发现大量随机个体的平均效果的稳定性.这就是说,无论个别随机个体以及它们在随机试验过程中的个别特征如何,大量随机个体的平均效果与每一个体的特征无关,且不再是随机的.深入考虑后,大数定律就是要研究在什么条件下具有稳定性的问题,同时大数定律是保险财政稳定性重要的理论基础,大数定律在概率论的所有部分中都有着应用.除此之外,许多学者利用概率论思想研究了大数定律在其他相关领域的应用.例如统计方面的应用,在信息论中的应用,在分析,数论等方面的应用.2 中心极限定理的应用2.1 前言 大数定律讨论的是多个随机变量的平均∑=ni i X n 11的渐近性质,但没有涉及到随机变量的分布的问题.而概率论与数理统计中,正态分布是一种最常见而又最重要的分布.在实际应用中,有很多随机变量都服从正态分布.在实际应用中,有很多随机变量都服从正态分布,即使原来并不服从正态分布的一些独立的随机变量,它们的和分布也近似服从正态分布,自然要提出这样的问题:为什么正态分布如此广泛地存在,从而在概率论中占有如此重要的地位?应如何解释大量随机现象的这一客观规律性呢?事实上,这正是客观实际的反映,中心极限定理就是概率论中论证随机变量和的极限分布为正态分布的定理总称.概率论中有关论证独立随机变量的和的极限分布是正态分布的一系列定理称为中心极限定理.2.2 几类重要的中心极限定理的应用2.2.1 林德伯格定理及其在保险方面的应用林德伯格定理:设独立随机变量 n X X X ,,,21满足林德伯格条件,对于任意的正数ε,有∑⎰=-∞→=-ni s x i i nn ni dx x f x S 1220)()(1lim εμμ>.其中)(x f i 是随机变量i X 的概率密度,则当∞→n 时,我们有dt ez Z P zt n n ⎰∞--∞→=≤2221)(lim π即dt ez s XP zt nni i in ⎰∑∞--=∞→=≤-21221))((lim πμ其中z 是任何实数.林德伯格定理可以解释如下:假如被研究的随机变量可以表示为大量独立随机变量的和,其中每一个随机变量对于总和只起微小的作用,则可以认为这个随机变量实际上是服从正态分布的.例如,进行观测时,不可避免地有许多引起观测误差的随机因素影响着我们的观测结果,其中有些误差是由测量仪器的情况引起的,这些情况可以在温室、大气压力或其他因素的影响之下改变着;有些误差是属于观测站个人的误差,这些误差大多数是由于视觉或听觉引起的等等.这些因素中的每一个都可能使观测的结果产生很小的误差,然而由于所有这些误差共同影响着观测结果,于是我们得到的是一个“总的误差”.所以,实际观测的到的误差可以看作是一个随机变量,它是很多数值微小的独立随机变量的总和,按林德伯格定理,这个随机变量应该服从正态分布.此外,还可以举出很多类似的例子,这里具体举出一个例子[4]. 例4:某保险公司有2500个人参加保险,每人每年付1200元保险费,在一年内一个人死亡的概率为0.002,死亡时某家属可向保险公司领得20万元. 问:(1)保险公司亏本的概率多大?(2)保险公司一年的利润不少于100万元,200万元的概率各位多大? 解:(1)设X 为一年内死亡的人数,则X ~B(2500,0.002),5=np ,99.4=npqP(亏本)=)15(1)15()30020(≤-==X P X P X P >> 00007.099993.01)48.4(1)99.4515(1=-=Φ-=-Φ-=保险公司亏本的概率为0.00007,几乎为零. (2) P(利润100≥))10020300(≥-=X P98.0)99.4510()10(=-Φ≈≤=X PP(利润200≥))20020300(≥-=X P 5.0)99.4515()5(=-Φ≈≤=X P以上结果说明保险公司几乎不可能亏本,不过要记住,关键之处是对死亡率估计必须正确,如果所估计死亡率比实际低,甚至低得多,那么情况就会不同. 2.2.2 列维定理及其在极限求解方面的应用列维定理:设随机变量n X X X ,,,21 相互独立,服从同一分布,且有有限的数学期望μ和方差2σ,则随机变量σμn 1n XY ni i-=∑=的分布函数)(x F n 满足如下极限式dt ex n n XP x F xt ni in n n ⎰∑∞--=∞→∞→=≤-=21221))((lim )(lim πσμ,其中x 是任何实数.定理的应用:对于独立的随机变量序列{}n X ,不管),,2,1(n i X i =服从什么分布,只要他们是分布,且有有限的数学期望和方差,那么,当n 充分大时,这些随机变量之和∑=ni iX1近似地服从正态分布),(2σμn n N .大数定律和中心极限定理是概率论中的重要理论,是分析中的极限理论在概率论中的综合运用,同时极限定理中的一些结果也为分析中的许多极限问题提供了有力工具[5].例5:求极限nnk k n e k n -=∞→∑0!lim解 引入随机变量)(:!n P e k n X nk k -=(参数为n 的泊松分布), ,2,1=k ,且{}k X 相互独立,由泊松分布的再生性知, )(:1n P X nk k ∑=,所以P {n X nk k ≤∑=1}=nnk k e k n -=∑0!,而E (∑=n k k X 1)=D {∑=n k k X 1}=n,P {∑=nk k X 1≤n }=P {nn n nnXnk k-≤-∑=1}即:nnk k e k n -=∑0!=P {n n X nk k -∑=10≤} 令n ∞→,由中心极限定理可知:nnk k n e k n -=∞→∑0!lim =∞→n lim P {n n X nk k -∑=10≤}=)0(Φ=21 2.2.3 棣莫弗-拉普拉斯定理及其在实际生活方面的应用棣莫弗-拉普拉斯中心极限定理:设在独立试验序列中,事件A 在各次试验中发生的概 率为)10(<<p p ,随机变量n Y 表示事件A 在n 次试验中发生的次数,则有dt e z p np np Y P z tn n ⎰∞--∞→=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤--2221)1(lim π,其中z 是任何实数.棣莫弗-拉普拉斯定理是概率论历史上的第一个中心极限定理,它是专门针对二项分布的,因此称为“二项分布的正态近似”.在之前概率论的学习中有“二项分布的泊松近似”,两者相比,一般在p 较小的时候,用泊松分布近似较好,而在5>np 和5)1(>p n -时,用正态分布近似较好.二项分布的极限分布是正态分布,即如果),(~p n B X 则)()(e 21)1(22a b dt b p np np a P b atΦ-Φ=≈⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤--≤⎰-πη一般地,如果),(~p n B X ,则{}))1(())1(()1()1()1(p np np a p np np b p np np b p np np X p np np a P b X a P --Φ---Φ≈⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧--≤--≤--=≤≤说明:这个公式给出了n 较大时二项分布的概率计算方法.在给出棣莫弗-拉普拉斯定理应用之前,先说明两点:(1) 因为二项分布是离散分布,而正态分布是连续分布,所以用正态分布作为二项分布的近似计算中,作为修正可以提高精度.若21k k <均为整数,一般先作如下修正后再用正态近似)5.05.0()(121+-=≤≤k k P k k P n n <<μμ.(2) 若记)(y Φ=β,则由棣莫弗—拉普拉斯极限定理给出的近似式β=Φ≈≤*)()(y y Y P n ,可用来解决三类计算问题:(1)已知y n ,求β;(2)已知β,n 求y ;(3)已知β,y 求n .以下我们就分这三类情况给出一些具体的例子. ① 给定y n ,,求β.例6:一复杂系统由100个相互独立工作的部件组成,每个不见正常工作的概率为0.9.一直真个系统中至少有85个不见正常工作,系统工作才正常.试求系统正常工作的概率. 解:记n =100,n Y 为100个部件中正常工作的部件数,则n Y ~b(100,0.9);90)(=n Y E ;9)1()(=-=p np Y D n所求概率为966.0)83.1()35.5(1)3905.085(1)85(=Φ=-Φ-=--Φ-≈≥n Y P② 已知β,n ,求y .例7:某车间有同型号的机床200台,在一小时内每台机床有70%的时间是工作.假定各机床工作是相互独立的,工作时每台机床要消耗电能15kW.问至少要多少电能,才可以有95%的可能性保证此车间正常生产.解: 记n =200,n Y 为200台机床中同时工作的机床数,则:n Y ~b(200,0.7),42)(,140)(==n n Y D Y E .因为n Y 台机床同时工作需消耗15n Y (kW )电能,所以设供电数为y (kW),则正常生产为{}y Y n ≤15,由题设{}95.015≥≤y Y P n ,其中{}95.0421405.01515≥⎪⎪⎭⎫⎝⎛-+Φ≈≤y y Y P n查正态分布表得645.1421405.015≥-+y从中解得2252≥y (kW ),即此车间每小时至少需要2252(kW )电能,才有95%的可能性保证此车间正常生产. ③ 已知β,y ,求n .例8:某调查公司受委托,调查某电视节目在S 市的收视率p ,调查公司将所有调查对象中收看此节目的频率作为p 的估计∧p .现在要保证有90%的把握,使得调查所得收视率∧p 与真实收视率p 之间的差异不大于5%.问至少要调查多少对象?解: 设共调查n 个对象,记i X =0,当第i 个调查对象收看此电视节目; i X =1,当第i 个调查对象不看此电视节目.则i X 独立同分布,且P (i X =1)=p ,P (i X =0)=p -1,n i ,,2,1 = 又记n 个被调查对象中,收看此电视节目的人数为n Y ,则有),(~1p n b X Y ni i n ∑==由大数定律,当n 很大时,频率nY n与概率p 很接近,即用频率作为p 的估计是合适的. 根据题意有90.01))1(05.0(2)05.01(1≥--Φ≈-∑=p p n p X n P n i i <, 所以95.0))1(05.0(≥-Φp p n,查正态分布表得645.1)1(05.0≥-p p n,从中解得:n ≥p(1-p)2205.0645.1=p(1-p)×1082.41又因为25.0)1(≤-p p ,所以6.270≥n ,即至少调查271个对象. 例9:某单位有200台电话分机,每台有5%的时间要使用外线通话,假定每台分机是否使用外线是相互独立的,问该单位总机要安装多少条外线,才能以90%以上的概率保证分机用外线时不等待?解 :设有X 部分机同时使用外线,则有),(~p n B X , 其中200=n ,05.0=p ,10=np ,08.3)1(=-p np设有N 条外线.由题意有{}9.0=≤N X P 由棣莫弗-拉普拉斯定理有{}⎥⎦⎤⎢⎣⎡-Φ=⎥⎥⎦⎤⎢⎢⎣⎡--Φ≈⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧--≤--=≤08.310)1()1()1(N p np np N p np np N p np np X P N X P查表得90.0)28.1(=Φ,故N 应满足条件28.108.310≥-N .即94.13≥N ,取14=N ,即至少要安装14条外线.2.2.4 李雅普诺夫中心极限定理及其在具体分布方面的应用 设{}n X 为独立随即变量序列,若存在0>δ,满足0)(1lim122=-∑=++∞→ni IInn XE Bδδμ则对任意的x ,有dt x X B P n i i i n n ⎰∑∞=∞→=⎭⎬⎫⎩⎨⎧≤-x -2t -12e 21)(1lim πμ 其中i i X E μ=)(,2)(σ=I X D ,22221)(n i n X D B σσσ+++==例10:一份考卷由99个题目组成,并按由易到难顺序排列.某学生答对第1题的概率为0.99;答对第2题的概率为0.98;一般地,他答对第i 题的概率为1-100i , ,2,1=i .假如该学生回答各题目是相互独立的,并且要正确回答其中60个题目以上(包括60个)才算通过考试.试计算该学生通过考试的可能性多大?解:设若学生答对第i 题,则1=i X ;若学生答错第i 题,则0=i X . 于是X i 相互独立,且服从不同的二点分布:1001)1(i p X P i i -===,1001)0(i p X P i i =-==,99,,2,1 =i . 而我们要求的是⎪⎭⎫⎝⎛≥∑=60991i i X P ,为使用中心极限定理,我们可以设想从100X 开始的随机变量都与99X 同分布,且相互独立.下面我们用1=δ来验证随机变量序列{}n X 满足李雅普诺夫条件,因为+∞→-==∑∑==ni iini in p p XVar B 11)1()( )(+∞→n)1()1()1()(333i i i i i i i i p p p p p p p X E -≤-+-=-,于是0)1(1)(1211133→⎥⎦⎤⎢⎣⎡-≤-∑∑==n i i ini iI np p p X E B (n +∞→),即{}n X 满足李雅普诺夫条件,所以可以使用中心极限定理.又因为 5.49)1001()(991991991=-==∑∑∑===i i i i i ip X E ,665.16)100)(1001()(991991299=-==∑∑==i i i i i X D B 所以该学生通过考试的可能性为⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧-≥-=⎭⎬⎫⎩⎨⎧≥∑∑==665.165.4960665.165.4960991991i i i i X P X P005.0)5735.2(1=Φ-≈ 由此看出:此学生通过考试的可能性很小,大约只有千分之五.3 大数定律和中心极限定理的比较应用3.1 大数定律和中心极限定理的比较应用例11:现有一大批种子,其中良种占16,今在其中任选6000粒,试分别用切比雪夫不等式估计和用中心极限定理计算在这些种子良种所占的比例与16之差小于1%的概率是多少?解:(1)设取出的种子中的良种粒数为X ,则)61,6000(~B X 于是100061 ×6000===np EX 10006565616000)1(⨯=⨯⨯=-=p np DX要估计的规律为{}6010001001616000<<-=⎭⎬⎫⎩⎨⎧-X P X P , 相当于在切比雪夫不等式中取60=ε,于是{}26016010001001616000DXX P X P -≥-=⎭⎬⎫⎩⎨⎧-<< 由题意得7685.02315.013600110006516012=-=⨯⨯-=-DX 即用切比雪夫不等式估计此概率不小于0.7685.(2)由拉普拉斯中心极限定理,对于二项分布)61,6000(B 可用正态分布)10065,1000(⨯N 近似,于是所求概率为{})65 10001000940()65 100010001060(10609401001616000⨯-Φ-⨯-Φ≈=⎭⎬⎫⎩⎨⎧-<<<X P X P 9625.01)0785.2(2≈-Φ≈ 即用中心极限定理估计此概率不小于0.9625.从本例看出:用切比雪夫不等式只能得出来要求的概率不小于0.7685,而用中心极限定理可得出要求的概率近似等于0.9625.从而知道由切比雪夫不等式得到的下界是较低的.但由于它的要求比较低,只要知道X的期望和方差,因而在理论上有许多运用.当然,两者的比较还有在许多方面的应用,这里就不做详细的介绍了,只起到一个引导的作用.结论随着社会的飞速发展,市场竞争日趋激烈,决策者必须综合考察以往的信息及现状从而作出综合判断,决策概率分析这门学科越来越显示其重要性.利用数学方法,定量地对医学问题进行相关分析,使其结论具有可信度,更有利于促进对病人的对症施治等.本文详细介绍了大数定律和中心极限定理及其在生活各方面的应用.通过这些详细的讲述,可以看到这两个概率公式的应用是多方面的.灵活使用这两个概率公式会给我们的解题带来很大方便,而这两个概率定理的应用范围十分广泛,成为我们解决更复杂问题的有效工具.本次毕业论文的撰写,使我扩大了知识范围,锻炼了观察和思维能力,进一步提高了动手和实践能力.理论联系实际,使毕业论文中所应用的理论知识有了更可靠的依据.但由于研究周期较短,本研究还有很多不足之处,本文只是举了几个例子来说明它们的应用,事实上它们的应用远不止于此,还可以用来解决投资、保险、工程等一系列不确定的问题.另外还有什么样的问题应该用大数定律解决呢?什么样的问题应该用中心极限定理?什么样的问题要综合两个定理才能够解决?本文都没有得出明确的方法和分类,这些都是今后有待进一步深入研究的问题.总之这两大定理的正确应用有助于进一步研究多个随机过程的试验中目标事件及其条件下各诱发事件的概率,有助于把握随机事件间的相互影响关系,为生产实践提供更有价值的决策信息,成为我们解决问题的有效工具.致谢大学四年,生活其实很简单,只是一些读书、写字、考试和娱乐的周而复始.如果把这种单调的生活看作一场场的巡回演出,那么我只是一个安静的演员,无论台下有多少观众,即使是只说给自己听,在他谢幕时也总要感激一些人,是那些人帮助他走上舞台,成功或者不那么成功地“演出”.感谢我的导师,陈飞翔老师.我不是您最出色的学生,而您却是我最尊敬的老师.陈老师为人随和,治学严谨细心,在闲聊中他总是能像知心朋友一样鼓励你.陈老师工作繁忙,还要带我们组的毕业论文设计.在我写毕业论文的每个阶段,陈老师倾注了大量的心血,从选题到开题报告,从论文目录到一遍遍地指出初稿中的具体问题,陈老师在百忙之中多次审阅,对细节进行修改,并为本文的撰写提供了许多中肯而且宝贵的意见,在此我表示衷心感谢.当然也要感谢曾经教育和帮助过我的所有老师,我的点滴成就都来自你们,感谢四年来对我的栽培和教育.感谢我的室友,同窗好友,整个毕业论文的写作期间和我密切合作的同学,和曾经在各个方面给予我帮助的伙伴们,友谊情深,勿需多言.最后,我要感谢,感谢培育我的重庆三峡学院,学校浓厚的学术气氛,舒适的学习环境我将终身难忘!再次感谢我的家人、老师和那些永远也不能忘记的朋友,你们的支持与情感,是我永远的财富.。