矩阵分析试题2008
- 格式:pdf
- 大小:111.41 KB
- 文档页数:3
北京交通大学2002008-20098-2009学年第一学期硕士研究生学年第一学期硕士研究生矩阵分析矩阵分析矩阵分析考试试卷考试试卷考试试卷(A)(A)专业班级学号姓名题号一二三四五六七总分得分一、(8分)设线性映射A :]4R x ⎡→⎣]3R x ⎡⎣且T (())()d f x f x dx=,对任意∈)(x f ]4R x ⎡⎣.求线性映射T 在基2323,,,x x x 及基22,3,x x 下的矩阵表示.其中,]210121{|}n n i nR x a a x a x a x a R −−⎡=++++∈⎣⋯.二(共14分,问题(1)4分,问题(2)10分)(1)叙述矩阵范数的定义(2)设3201i A i −⎛⎞=⎜⎟⎝⎠,求矩阵范数1A ,∞A ,2A ,F A .(这里12−=i );三求解题(共18分)(1)(6分)求矩阵的满秩分解。
(2)(4分)设三阶矩阵的特征多项式与最小多项式分别是:证明:13214261073931114128510A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦A 322()5()5f m λλλλλλ=−=−与4125A A=(3)(8分)求矩阵1010111A i i −⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠的正交三角分解UR A =,其中U 是酉矩阵,R 是正线上三角矩阵.四证明题(共16分,每小题各8分):1设n 阶矩阵002,()k A A k ≠=≥.证明:A 不能与对角矩阵相似.2设,A B 是n 阶正规矩阵,试证:A 与B 相似的充要条件是A 与B 酉相似.五(14分)设01010i A i i i −⎛⎞⎜⎟=⎜⎟⎜⎟−⎝⎠,验证A 是Hermite 矩阵并求酉阵U 使得1U AU −是对角矩阵.六(共30分,每小题6分)设308316205A ⎛⎞⎜⎟=−⎜⎟⎜⎟−−⎝⎠,(1)求A E −λ的Smith 标准形(写出主要步骤);其中E 为3阶单位阵。
(2)写出A 的初等因子和A 的最小多项式;(3)求相似变换矩阵P 和A 的Jordan 标准形J ,使得J AP P =−1;(4)求2008J 和矩阵函数)(A f ;(5)求2ln()A E +计算行列式2sin()A π.。
浙02198# 线性代数试题 第 1 页(共 4 页)全国2008年4月高等教育自学考试线性代数试题课程代码:02198说明:在本卷中,A T 表示矩阵A 的转置矩阵,A *表示矩阵A 的伴随矩阵,E 是单位矩阵,|A |表示方阵A 的行列式.一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设A 为m×n 矩阵,B 为n×m 矩阵,m ≠n, 则下列矩阵中为n 阶矩阵的是( )A.B T A TB.A T B TC.ABAD.BAB 2.设行列式D =333231232221131211a a a a a a a a a =3,D 1=333231312322212113121111252525a a a a a a a a a a a a +++,则D 1的值为( ) A.-15B.-6C.6D.153.设A 为n 阶方阵,n ≥2,则|-5A |=( )A.(-5)n |A |B.-5|A |C.5|A |D.5n |A |4.设A =⎪⎪⎭⎫ ⎝⎛4321,则|A *|=( ) A.-4B.-2C.2D.45.向量组α1,α2…,αS (s>2)线性无关的充分必要条件是( )A. α1,α2,…,αS 均不为零向量B. α1,α2,…,αS 中任意两个向量不成比例C. α1,α2,…,αS 中任意s-1个向量线性无关D. α1,α2,…,αS 中任意一个向量均不能由其余s-1个向量线性表示浙02198# 线性代数试题 第 2 页(共 4 页) 6.设3元线性方程组Ax =b ,A 的秩为2,η1,η2,η3为方程组的解,η1+η2=(2,0,4)T ,η1+η3=(1,-2,1)T ,则对任意常数k ,方程组Ax =b 的通解为( )A.(1,0,2)T +k (1,-2,1)TB.(1,-2,1)T +k (2,0,4)TC.(2,0,4)T +k (1,-2,1)TD.(1,0,2)T +k (1,2,3)T7.设3阶方阵A 的特征值为1,-1,2,则下列矩阵中为可逆矩阵的是() A.E-A B.-E-AC.2E-AD.-2E-A8.设λ=2是可逆矩阵A 的一个特征值,则矩阵(A 2)-1必有一个特征值等于() A.41B.21C.2D.49.设3阶方阵A 的秩为2,则与A 等价的矩阵为( )A.⎪⎪⎪⎭⎫⎝⎛000000111 B. ⎪⎪⎪⎭⎫⎝⎛000110111C. ⎪⎪⎪⎭⎫ ⎝⎛000222111D. ⎪⎪⎪⎭⎫⎝⎛33322211110.二次型f (x 1,x 2,x 3,x 4,)=43242322212x x x x x x ++++的秩为( )A.1B.2C.3D.4二、填空题(本大题共10小题,每空2分,共20分)请在每小题的空格中填上正确答案。
考研数一08真题2008年考研数学一真题中,试题主要分为两个部分:选择题和填空题。
选择题部分包括20道选择题,填空题部分包括10道填空题。
本文将以试题题号为标记逐一解析各道题目。
选择题部分解析:题目1:设A是n阶方阵,且满足A^2 = A,则下列结论正确的是()A. A = 0B. A = E(单位矩阵)C. A是对称方阵D. A的秩为1这道题目考察了对方阵幂运算的理解。
根据A^2 = A,我们可以发现A作为方阵必然有两种可能:A是零矩阵或者A是单位矩阵。
因此,选项B“A = E”为正确答案。
题目2:设f(x) = x^3 - 3x,则f'(x)的零点的个数是()A. 0B. 1C. 2D. 3这道题目考察了对函数的导数与零点的关系的理解。
f'(x)是f(x)的导函数,即f'(x) = 3x^2 - 3。
根据函数导数存在零点的性质,当f'(x) = 0时,f(x)存在极值点或转折点。
解方程3x^2 - 3 = 0,得到x = ±1。
因此,f'(x)的零点有2个,选项C“2”为正确答案。
填空题部分解析:题目1:若a是方程x^4 - x^3 - x + 1 = 0的一个实根,则a^3 - a^2 -a + 1的值等于________。
这道题目考察了对方程实根的运算。
首先,我们可以将方程x^4 -x^3 - x + 1 = 0进行变形,得到x(x^3 - x^2 - 1) + 1 = 0。
因为a是方程的一个实根,所以该式等于0,即a(a^3 - a^2 - 1) = -1。
因此,a^3 - a^2 -a + 1 = (-1)/a,即填空的值为-1/a。
题目2:设f(x) = (cosx + sinx)^2,g(x) = (cosx - sinx)^2,则f(x) -g(x)的最小值是________。
这道题目考察了对函数最小值的求解。
我们先展开f(x)与g(x):f(x) = cos^2 x + 2sinx cosx + sin^2 xg(x) = cos^2 x - 2sinx cosx + sin^2 x再计算f(x) - g(x):f(x) - g(x) = 4sinx cosx则f(x) - g(x)的值不为负数,且取最小值0,因此填空的答案为0。
2007《矩阵分析》试题(A 卷)一、 计算题 (每题10分,共40分)1. 设函数矩阵⎪⎪⎪⎭⎫⎝⎛=001t e -sint t e cost A(t)t2t 试求 )t A(t d d ; )t A(lim 0t →.2. 设矩阵⎪⎪⎭⎫ ⎝⎛=441-0A 试求 Ae . 3. 将下面矩阵作QR 分解:⎪⎪⎪⎭⎫⎝⎛110011-111.4. 求下面矩阵的若当(Jordan)标准形⎪⎪⎪⎭⎫⎝⎛1-1-2-020021。
二、证明题(每题10分,共30分)1. 设321,,ααα是三维V 线性空间V 的一组基, 试求由向量2133212321183232-ααβαααβαααβ+=++=+=. 生成的子空间),,(U 321βββ=的一个基.2. 设V 1 , V 2 是内积空间V 的两个子空间, 证明: ()⊥⊥⊥+=⋂2121V V V V .3. 设T 是线性空间V 的线性变换, V ∈α, 且)(T ,),(T ),T(,1-k 2αααα 均为不为零的向量, 而0)(T k=α, 证明)(T ,),(T ),T(,1-k 2αααα 线性无关.三、简单论述题(每题15分, 共30分)1. 试述: 将一个矩阵简化(化为对角矩阵或若当矩阵)的方法有几种? 那种方法一定可以将一个矩阵化为对角矩阵? 那些方法一定可以将一个什么样的矩阵化为对角矩阵? 此外,将一个矩阵简化的数学理论基础是什么? 实现这种矩阵简化的具体方式是怎么作的?2. 实空间的角度是如何引入的? 复空间中的角度又是怎样定义的? 试给出主要的过程.2007《矩阵分析》试题(B 卷)一、 计算题 (每题10分,共40分)5. 设函数矩阵⎪⎪⎪⎭⎝=003t 02e eA(t)t 2t-试求 t d )t A(1⎰.6. 设矩阵⎪⎪⎭⎫⎝⎛=12-10A 试求 Ae . 7. 将下面矩阵作QR 分解:⎪⎪⎪⎭⎫⎝⎛011-1-3241-1.8. 求下面矩阵的若当(Jordan)标准形⎪⎪⎪⎪⎪⎭⎫⎝⎛1213214321.二、证明题(每题10分,共30分)4. 设321,,ααα是三维V 线性空间V 的一组基, 试求由向量2133212321113423232-ααβαααβαααβ+=++=+=. 生成的子空间),,(U 321βββ=的一个基.5. 设V 1 , V 2 是内积空间V 的两个子空间, 证明: ()⊥⊥⊥⋂=+2121V V V V .6. 设T 是线性空间V 的线性变换, V ∈α, 且)(T ,),(T ),T(,1-k 2αααα 均为不为零的向量, 而0)(T k=α, 证明)(T ,),(T ),T(,1-k 2αααα 线性无关.三、简单论述题(每题15分, 共30分)3. 试述: 将一个矩阵简化(化为对角矩阵或若当矩阵)的方法有几种? 那种方法一定可以将一个矩阵化为对角矩阵? 那些方法一定可以将一个什么样的矩阵化为对角矩阵? 此外,将一个矩阵简化的数学理论基础是什么? 实现这种矩阵简化的具体方式是怎么作的?4. 实空间的角度是如何引入的? 复空间中的角度又是怎样定义的? 给出主要的过程.2008硕士研究生《矩阵分析》试题(A 卷)一、 计算题 (每题10分,共40分)9. 设函数矩阵⎪⎪⎪⎭⎝=001t e -sint A(t)t试求 t )d t A(1⎰; )t A(lim 0t →.10. 设矩阵⎪⎪⎭⎫⎝⎛=441-0A 试求 sinA . 11. 将下面矩阵作QR 分解:⎪⎪⎪⎭⎫⎝⎛11002-1-011.12. 求下面矩阵的若当(Jordan)标准形⎪⎪⎪⎭⎫⎝⎛1-1-2-010012。
五邑大学 试 卷课程:矩阵分析在3R 中,定义),,2(),,(132321321x x x x x x x x x +--=ℜ,则ℜ是否是3R 上的线性变换?如果是求出ℜ在某一基下的矩阵,并求ℜ的核与值域。
(16分)解:1)3123123(,,),(,,),x x x y y y R k R αβ∀==∈∈,则有()()(),()()k k αβαβααℜ+=ℜ+ℜℜ=ℜ,所以ℜ是3R 上的线性变换。
2)取3R 的一组基123(1,0,0),(0,1,0),(0,0,1)ααα===,则123()(2,0,1),()(1,1,0),()(1,1,0)αααℜ=ℜ=-ℜ=-,所以123123211(,,)(,,)011100αααααα--⎛⎫⎪ℜ= ⎪ ⎪⎝⎭,故ℜ在该基下的矩阵为A ,211011100A --⎛⎫ ⎪= ⎪ ⎪⎝⎭。
3)ℜ的值域为向量12()(2,0,1),()(1,1,0)ααℜ=ℜ=-生成的子空间。
4)ℜ的核=3{|()0}R αα∈ℜ==3{|0}TR A αα∈=,线性方程组0T A α=的基础解系为11,η⎛⎫⎪= ⎪⎪故ℜ的核是{|}T k k R η∀∈。
二、(12分)设η是欧氏空间V 中一单位向量,定义ηαηαα),(2)(-=ℜ,证明ℜ是正交变换。
解:,,V k R αβ∀∈∈,有()()2(,)2(,)2(,)αβαβηαβηαηαηβηβηℜ+=+-+=-+-; ()2(,)2(,)(2(,))()k k k k k k k ααηαηαηαηαηαηαℜ=-=-=-=ℜ; ((),())(2(,),2(,))(,)2(,)(,)2(,)(,)4(,)(,)(,)(,)2(,)(,)2(,)(,)4(,)(,)(,)αβαηαηβηβηαβηαηβηβαηηαηβηηαβηαηβηβαηηαηβαβℜℜ=--=--+=--+=三、证明对任意的n n ⨯矩阵n n ij a A ⨯=)(,若定义∑∑===ni nj ijaA 11||||||,则|| ∙||是一种矩阵范数,但不是算子范数(从属于向量范数的矩阵范数)。
2008年线性代数考研试题[数一]1.设A 为n 阶非零矩阵,E 为n 阶单位矩阵.若,则[ C ]O =3A (A )E-A 不可逆,E+A 不可逆 (B )E-A 不可逆,E+A 可逆(C )E-A 可逆,E+A 可逆 (D )E-A 可逆,E+A 不可逆【考点】 矩阵的可逆性2.设A 为二阶矩阵,21αα,为线性无关的二维列向量,21212A 0A αααα+==,,则A 的非零特征值为 1【考点】 矩阵的特征值3.设βα,为三维列向量,矩阵,其中的转置,的转置.T T A ββαα+=αα为T ββ为T (1) 证明 (2)若2 (A)≤r βα,线性相关,则2 (A)<r【考点】 矩阵的秩【祥解】 (1)βα,为三维列向量,则 1)()(,1)()(T ≤≤≤≤βββαααr r r r T 211)()()(r(A)T T =+≤+≤+=T T r r r ββααββαα,即2 (A)≤r .(2) 已知βα,线性相关,不妨设αβk =,则,21)())1(()))((()(r(A)2T T <≤=+=+=+=T T T T r k r k k r r ααααααααββαα即有.2 (A)<r 4.设n 元线性方程组,其中 b Ax = , ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=2a a 012a a 012a A 22%%%T T n b x )0,...0,1(,),...,(x x 1==(1) 证明行列式na n )1(A +=(2) a 为何值,方程组有唯一解?求x 1(3) a 为何值,方程组有无穷多解?求通解.【考点】 线性方程组解的结构和通解【祥解】 (1)利用行列式的性质可证n a n )1(A +=.(2) 若使方程组有唯一解,则00)1(A ≠≠+=a a n n ,即.则由克莱姆法则得an n x )1(1+=. (3) 若使方程组有无穷多解,则00)1(A ==+=a a n n ,即.把代入矩阵A 中,显然有0=a 1)()(−==n A r B A r #,方程组有一个基础解向量.取自由未知量x 1=1,得到它的基础解系为;代入后方程组化为,特解取为,则方程组的通解为为任意常数)k k T ()0,0,0,1("0=a ⎩⎨⎧====01432n x x x x "T )0,...0,0,1,0( . 为任意常数)k k T T ()0,...0,1,0()0,...0,0,1(+。
第三章1、 已知()ij A a =是n 阶正定Hermite 矩阵,在n 维线性空间n C 中向量1212(,,,),(,,,)n n x x x y y y αβ== 定义内积为(,)H A αβαβ=(1) 证明在上述定义下,n C 是酉空间; (2) 写出n C 中的Canchy-Schwarz 不等式。
2、 已知2111311101A --⎡⎤=⎢⎥-⎣⎦,求()N A 的标准正交基。
提示:即求方程0AX =的基础解系再正交化单位化。
3、 已知308126(1)316,(2)103205114A A --⎡⎤⎡⎤⎢⎥⎢⎥=-=-⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦试求酉矩阵U ,使得HU AU 是上三角矩阵。
提示:参见教材上的例子4、 试证:在nC 上的任何一个正交投影矩阵P 是半正定的Hermite 矩阵。
5、 验证下列矩阵是正规矩阵,并求酉矩阵U ,使HU AU 为对角矩阵,已知131(1)612A ⎡⎢⎢⎢=⎢⎢⎢⎥⎢⎥⎣⎦01(2)10000i A i -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,434621(3)44326962260ii i A i i i i i +--⎡⎤⎢⎥=----⎢⎥⎢⎥+--⎣⎦11(4)11A -⎡⎤=⎢⎥⎣⎦6、 试求正交矩阵Q ,使TQ AQ 为对角矩阵,已知220(1)212020A -⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦,11011110(2)01111011A -⎡⎤⎢⎥-⎢⎥=⎢⎥-⎢⎥-⎣⎦7、 试求矩阵P ,使H P AP E =(或T P AP E =),已知11(1)01112i i A i i +⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦,222(2)254245A -⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦8、 设n 阶酉矩阵U 的特征根不等于1-,试证:矩阵E U +满秩,且1()()H i E U E U -=-+是Hermite 矩阵。
反之,若H 是Hermite 矩阵,则E iH +满秩,且1()()U E iH E iH -=+-是酉矩阵。
第1章 线性空间和线性变换(详解)1-1 证:用ii E 表示n 阶矩阵中除第i 行,第i 列的元素为1外,其余元素全为0的矩阵.用ij E (,1,2,,1)i j i n <=-表示n 阶矩阵中除第i 行,第j 列元素与第j 行第i 列元素为1外,其余元素全为0的矩阵.显然,ii E ,ij E 都是对称矩阵,ii E 有(1)2n n -个.不难证明ii E ,ij E 是线性无关的,且任何一个对称矩阵都可用这n+(1)2n n -=(1)2n n +个矩阵线性表示,此即对称矩阵组成(1)2n n +维线性空间. 同样可证所有n 阶反对称矩阵组成的线性空间的维数为(1)2n n -.评注:欲证一个集合在加法与数乘两种运算下是一个(1)2n n +维线性空间,只需找出(1)2n n +个向量线性无关,并且集合中任何一个向量都可以用这(1)2n n +个向量线性表示即可.1-2解: 11223344x x x x ααααα=+++令 解出1234,,,x x x x 即可.1-3 解:方法一 设11223344x x x x =+++A E E E E即123412111111100311100000x x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=+++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦故 12341231211203x x x x x x x x x x +++++⎡⎤⎡⎤=⎢⎥⎢⎥+⎣⎦⎣⎦于是12341231,2x x x x x x x +++=++=1210,3x x x +==解之得12343,3,2,1x x x x ==-==-即A 在1234,,,E E E E 下的坐标为(3,3,2,1)T--.方法二 应用同构的概念,22R ⨯是一个四维空间,并且可将矩阵A 看做(1,2,0,3)T,1234,,,E E E E 可看做(1,1,1,1),(1,1,1,0),(1,1,0,0),(1,0,0,0)T T T T .于是有1111110003111020100311000001021000300011⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥→⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦因此A 在1234,,,E E E E 下的坐标为(3,3,2,1)T--.1-4 解:证:设112233440k k k k αααα+++=即1234123412313412411111110110110110k k k k k k k k k k k k k k k k k ⎡⎤⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦+++++⎡⎤==⎢⎥++++⎣⎦于是12341230,0k k k k k k k +++=++= 1341240,0k k k k k k ++=++=解之得12340k k k k ====故1234,,,αααα线性无关. 设123412341231341241111111011011011a b x x x x c d x x x x x x x x x x x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=+++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦+++++⎡⎤=⎢⎥++++⎣⎦于是12341230,0x x x x x x x +++=++= 1341240,0x x x x x x ++=++=解之得122,x b c d a x a c =++-=-34,x a d x a b =-=-1234,,,x x x x 即为所求坐标.1-5 解:方法一 (用线性空间理论计算)32312233410()121,,,021,1,(1),(1)p x x x x x y y x x x y y ⎡⎤⎢⎥⎢⎥⎡⎤=+=⎣⎦⎢⎥⎢⎥⎣⎦⎡⎤⎢⎥⎢⎥⎡⎤=---⎣⎦⎢⎥⎢⎥⎣⎦又由于23231,1,(1),(1)111101231,,,00130001x x x x x x ⎡⎤---⎣⎦⎡⎤⎢⎥-⎢⎥⎡⎤=⎣⎦⎢⎥-⎢⎥⎣⎦于是()p x 在基231,1,(1),(1)x x x ---下的坐标为11234111113012306001306000122y y y y -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦方法二 将3()12p x x =+根据幂级数公式按1x -展开可得32323()12(1)(1)(1)(1)(1)(1)(1)2!3!36(1)6(1)2(1)p x x p p p p x x x x x x =+''''''=+-+-+-=+-+-+- 因此()p x 在基231,1,(1),(1)x x x ---下的坐标为[]3,6,6,2T.评注:按照向量坐标定义计算,第二种方法比第一种方法更简单一些.1-6 解:①设[][]12341234,,,,,,=ββββααααP将1234,,,αααα与1234,,,ββββ代入上式得20561001133611001121011010130011⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥--⎢⎥⎢⎥-⎣⎦⎣⎦P 故过渡矩阵1100120561100133601101121001110131122223514221915223112822-⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥--⎢⎥⎢⎥-⎣⎦⎣⎦⎡⎤---⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦P②设1212343410(,,,)10y y y y ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ξββββ将1234,,,ββββ坐标代入上式后整理得11234792056181336027112111310130227y y y y -⎡⎤-⎢⎥⎢⎥⎡⎤⎡⎤⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦评注:只需将,i i αβ代入过渡矩阵的定义[][]12341234,,,,,,=ββββααααP 计算出P .1-7 解:因为12121212{,}{,}{,,,}span span span +=ααββααββ由于秩1212{,,,}3span =ααββ,且121,,ααβ是向量1212,,,ααββ的一个极大线性无关组,所以和空间的维数是3,基为121,,ααβ. 方法一 设1212{,}{,}span span ∈ξααββ,于是由交空间定义可知123411212111011030117k k k k -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥+++=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦解之得1222122,4,3(k l k l l l l =-==-为任意数)于是11222[5,2,3,4]T k k l =+=-ξαα(很显然1122l l ββ=+ξ)所以交空间的维数为1,基为[5,2,3,4]T-.方法二 不难知12121212{,}{,},{,}{,}span span span span ''==ααααββββ其中2213[2,2,0,1],[,2,1,0]3TT ''=--=-αβ.又12{,}span 'αα也是线性方程组 13423422x x x x x x =-⎧⎨=-⎩ 的解空间.12{,}span 'ββ是线性方程组13423413232x x x x x x ⎧=-+⎪⎨⎪=-⎩ 的解空间,所以所求的交空间就是线性方程组1342341342342213232x x x x x x x x x x x x =-⎧⎪=-⎪⎪⎨=-+⎪⎪=-⎪⎩ 的解空间,容易求出其基础解系为[5,2,3,4]T-,所以交空间的维数为1,基为[5,2,3,4]T -.评注:本题有几个知识点是很重要的.12(1){,,,}n span ααα的基底就是12,,,nααα的极大线性无关组.维数等于秩12{,,,}n ααα.1212(2){,}{,}span span +ααββ1212{,,,}span =ααββ.(3)方法一的思路,求交1212{,}{,}span span ααββ就是求向量ξ,既可由12,αα线性表示,又可由12,ββ线性表示的那部分向量.(4)方法二是借用“两个齐次线性方程组解空间的交空间就是联立方程组的解空间”,将本题已知条件改造为齐次线性方程组来求解.1-8解:(1):解出方程组1234123420510640x x x x x x x x ---=⎧⎨---=⎩(Ⅰ)的基础解系,即是1V 的基,解出方程组123420x x x x -++=(Ⅱ)的基础解系,即是2V 的基; (2): 解出方程组1234123412342051064020x x x x x x x x x x x x ---=⎧⎪---=⎨⎪-++=⎩的基础解系,即为12V V ⋂的基;(3):设{}{}1121,,,,,k l V span V span ααββ==,则11,,,,,k l ααββ的极大无关组即是12V V +的基. 1-9解:仿上题解.1-10解: 仿上题解.1-11 证:设210121()()()0k k l l l l --++++=ξξξξA AA①用1k -A从左侧成①式两端,由()0k=ξA 可得10()0k l -=ξA因为1()0k -≠ξA,所以00l =,代入①可得21121()()()0k k l l l --+++=ξξξA AA②用2k -A从左侧乘②式两端,由()0k=ξA可得00l =,继续下去,可得210k l l -===,于是21,(),(),,()k -ξξξξA AA线性无关.1-12 解:由1-11可知,n 个向量210,(),(),,()n -≠ξξξξAAA线性无关,它是V 的一个基.又由21212121[,(),(),,()][(),(),,()][(),(),,(),0]000010000100[,(),(),,()]0000010n n n n n n----⨯==⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ξξξξξξξξξξξξξξA A A AA A A A AAA AA 所以A在21,(),(),,()n -ξξξξA AA 下矩阵表示为n 阶矩阵0000100001000000010⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦评注:n 维线性空间V 中任何一组n 个线性无关的向量组都可以构成V 的一个基,因此21,(),(),,()n -ξξξξA AA是V 的一个基.1-13证: 设()()()111,,,,,,,,,,,r s m r s A A ξξξββααα==设11,,,,,,r r s ξξξξξ是的极大无关组,则可以证明11,,,,,,r r s ααααα是的极大无关组.1-14 解:(1)由题意知123123[,,][,,]=ααααααA A123123111[,,][,,]011001⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦βββααα设A在基123,,βββ下的矩阵表示是B ,则11111123111011103011001215001244346238--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎡⎤⎢⎥=---⎢⎥⎢⎥⎣⎦B P AP (2)由于0A ≠,故0=AX 只有零解,所以A的核是零空间.由维数定理可知A的值域是线性空间3R .1-15解:已知()()2323,,,,A αααααα=11A(1) 求得式()()2323,,,,P εεεααα=11中的过渡矩阵P ,则1B P AP -=即为所求; (2)仿教材例1.5.1.(见<矩阵分析>史荣昌编著.北京理工大学出版社.) 1-16解:设()23,,A ααα=1,则{}23(),,;()R A span N A ααα=1就是齐次方程组0Ax = 的解空间. 1-17证:由矩阵的乘法定义知AB BA 与的主对角线上元素相等,故知AB BA 与的迹相等;再由1-18 题可证.1-18证:对k 用数学归纳法证。
第一套试题答案一(10分)、证明:(1)设11k x +22k x +33k x =0, ①用σ作用式①两端,有111k x λ+222k x λ+333k x λ=0 ②1λ⨯①-②,有21223133()()0k x k x λλλλ-+-= ③再用σ作用式③两端,有2122231333()()0k x k x λλλλλλ-+-= ④ ③⨯2λ-④,有313233()()0k x λλλλ--=。
由于123,,λλλ互不相等,30x ≠,因此30k =,将其代入④,有20k =,利用①,有10k =。
故1x ,2x ,3x 是线性无关的。
(2)用反证法。
假设1x +2x +3x 是σ的属于特征值λ的特征向量,于是有123123()()x x x x x x σλ++=++即112223123()x x x x x x λλλλ++=++112223()()()0x x x λλλλλλ-+-+-=由于1x ,2x ,3x 线性无关,因此123λλλλ===,这与123,,λλλ互不相等矛盾。
所以,1x +2x +3x 不是σ的特征向量。
二(10分)、解:2312321232()()1;()(2);()(2)()1;()(2);()(2)1()(2)(2)A D D D d d d A λλλλλλλλλλλλλλλλλλλλ==-=-==-=-⎛⎫⎪- ⎪ ⎪-⎝⎭的行列式因子分别为,不变因子分别为,于是的Smith 标准形为.三(10分)、解:11121634E A λλλλ+⎛⎫ ⎪-= ⎪ ⎪---⎝⎭210001000(1)λλ⎛⎫ ⎪≅- ⎪ ⎪-⎝⎭A λλ2矩阵的初等因子为: -1, (-1),100:011001J ⎛⎫⎪= ⎪ ⎪⎝⎭故约当标准形为。
四(12分)、解:令()()()1120,E A λλλλ-=-++=得特征值123112λλλ==-=-,,,解齐次方程组()0,E A x -=()2;Tii α=1得基础解系解齐次方程组()0,E A x --=()101;Tα=-2得基础解系解齐次方程组()20,E A x --=()1;T ii α=-3得基础解系αααααα123123由于,,已两两正交,将,,单位化得()()()11121011623T T Tp i i p p i i --123=,=,= ()1,(2)1.3H U p p p U AU ⎛⎫⎪==- ⎪ ⎪⎝⎭123令分,则五(10分)、解:(){}11(1),01,()TAx o i N A span ξξ===解齐次方程组得基础解系,,;又(){}{}()232323010,,,,100,,00H H R A span o span A o i ξξξξξξ⎛⎫⎪===-= ⎪ ⎪-⎝⎭这里,; 显然(),0,iji j ξξ=≠当时;()().HN A R A ⊥故有()()()()()()()()()333(2)dim dim dim 3dim ,Q H H H H N A R A C N A R A N A R A C N A R A C ++=+==+=是的子空间且故。