高中数学总复习
- 格式:doc
- 大小:4.46 MB
- 文档页数:60
高中数学第一章-集合考试内容:集合、子集、补集、交集、并集.逻辑联结词.四种命题.充分条件和必要条件.考试要求: (1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合.(2)理解逻辑联结词“或”、“且”、“非”的含义理解四种命题及其相互关系;掌握充分条件、必要条件及充要条件的意义.§01. 集合与简易逻辑 知识要点一、知识结构:本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分:二、知识回顾:(一)集合1.基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.2.集合的表示法:列举法、描述法、图形表示法.集合元素的特征:确定性、互异性、无序性. 集合的性质:①任何一个集合是它本身的子集,记为;②空集是任何集合的子集,记为;③空集是任何非空集合的真子集;如果,同时,那么A = B.如果.[注]:①Z = {整数}(√) Z ={全体整数} (×)②已知集合S 中A 的补集是一个有限集,则集合A 也是有限集.(×)(例:S=N ; A=,则C s A= {0})A A ⊆A ⊆φB A ⊆A B ⊆C A C B B A ⊆⊆⊆,那么,+N③空集的补集是全集.④若集合A=集合B,则C B A=,C A B =C S(C A B)=D(注:C A B =).3. ①{(x,y)|xy =0,x∈R,y∈R}坐标轴上的点集.②{(x,y)|xy<0,x∈R,y∈R二、四象限的点集.③{(x,y)|xy>0,x∈R,y∈R} 一、三象限的点集.[注]:①对方程组解的集合应是点集.例:解的集合{(2,1)}.②点集与数集的交集是. (例:A ={(x,y)| y =x+1} B={y|y =x2+1} 则A∩B =)4. ①n个元素的子集有2n个. ②n个元素的真子集有2n-1个. ③n个元素的非空真子集有2n-2个.5. ⑴①一个命题的否命题为真,它的逆命题一定为真. 否命题逆命题.②一个命题为真,则它的逆否命题一定为真. 原命题逆否命题.例:①若应是真命题.,则a+b = 5,成立,所以此命题为真.②.1或y = 2.,故是的既不是充分,又不是必要条件.⑵小范围推出大范围;大范围推不出小范围.3.例:若.4.集合运算:交、并、补.5.主要性质和运算律(1)包含关系:(2)等价关系:(3)集合的运算律:交换律:结合律:分配律:.∅∅∅}⎩⎨⎧=-=+1323yxyxφ∅⇔⇔325≠≠≠+baba或,则且1≠x3≠y1≠∴yx且3≠+yx21≠≠yx且255xxx或,⇒{|,}{|}{,}A B x x A x BA B x x A x BA x U x A⇔∈∈⇔∈∈⇔∈∉U交:且并:或补:且C,,,,,;,;,.UA A A A U A UA B B C A C A B A A B B A B A A B B⊆Φ⊆⊆⊆⊆⊆⇒⊆⊆⊆⊇⊇CUA B A B A A B B A B U⊆⇔=⇔=⇔=C.;ABBAABBA==)()();()(CBACBACBACBA==)()()();()()(CABACBACABACBA==0-1律:等幂律:求补律:A∩C U A=φA∪C U A=U C U U=φ C Uφ=U反演律:C U(A∩B)= (C U A)∪(C U B) C U(A∪B)= (C U A)∩(C U B)6.有限集的元素个数定义:有限集A的元素的个数叫做集合A的基数,记为card( A)规定 card(φ) =0.基本公式:(3) card( U A)= card(U)- card(A)(二)含绝对值不等式、一元二次不等式的解法及延伸1.整式不等式的解法根轴法(零点分段法)①将不等式化为a0(x-x1)(x-x2)…(x-x m)>0(<0)形式,并将各因式x的系数化“+”;(为了统一方便)②求根,并在数轴上表示出来;③由右上方穿线,经过数轴上表示各根的点(为什么?);④若不等式(x的系数化“+”后)是“>0”,则找“线”在x轴上方的区间;若不等式是“<0”,则找“线”在x轴下方的区间.(自右向左正负相间)则不等式的解可以根据各区间的符号确定.特例①一元一次不等式ax>b解的讨论;②一元二次不等式ax2+box>0(a>0)解的讨论.>∆0=∆0<∆二次函数cbxaxy++=2(0>a)的图象,,,A A A U A A U A UΦ=ΦΦ===.,AAAAAA==(1)()()()()(2)()()()()()()()()card A B card A card B card A Bcard A B C card A card B card Ccard A B card B C card C Acard A B C=+-=++---+x)0)((002211><>++++--aaxaxaxa nnnn原命题若p 则q否命题若┐p 则┐q 逆命题若q 则p 逆否命题若┐q 则┐p 互为逆否互逆否互为逆否互互逆否互一元二次方程()的根002>=++a c bx ax 有两相异实根)(,2121x x x x <有两相等实根ab x x 221-== 无实根的解集)0(02>>++a c bx ax {}21x x x x x ><或⎭⎬⎫⎩⎨⎧-≠a b x x 2R 的解集)0(02><++a c bx ax {}21x x x x << ∅∅2.分式不等式的解法(1)标准化:移项通分化为>0(或<0); ≥0(或≤0)的形式,(2)转化为整式不等式(组)3.含绝对值不等式的解法(1)公式法:,与型的不等式的解法.(2)定义法:用“零点分区间法”分类讨论.(3)几何法:根据绝对值的几何意义用数形结合思想方法解题.4.一元二次方程根的分布一元二次方程ax 2+bx+c=0(a≠0)(1)根的“零分布”:根据判别式和韦达定理分析列式解之.(2)根的“非零分布”:作二次函数图象,用数形结合思想分析列式解之.(三)简易逻辑1、命题的定义:可以判断真假的语句叫做命题。
高中数学复习知识点总结一、函数与方程函数的概念与性质:包括定义域、值域、单调性、奇偶性等。
基本初等函数:如一次函数、二次函数、指数函数、对数函数、三角函数等。
函数的图象与变换:平移、伸缩、对称等变换。
方程的求解:一元一次方程、一元二次方程、分式方程、无理方程等。
二、数列与不等式数列的概念与性质:等差数列、等比数列的定义与性质。
数列的通项公式与前n项和公式。
不等式的性质与证明:均值不等式、柯西不等式等。
不等式的解法:一元一次不等式、一元二次不等式等。
三、三角函数与平面向量三角函数的基本性质:周期性、奇偶性、最大值与最小值等。
三角函数的图象与变换:相位变换、振幅变换等。
平面向量的概念与运算:数量积、向量积等。
平面向量的应用:解三角形、向量共线与共面问题等。
四、立体几何与解析几何立体几何的基本概念:点、线、面、体等。
平行与垂直的证明:线面平行、面面平行等。
空间角的计算:异面直线所成的角、线面角、二面角等。
解析几何的基本思想:利用坐标法研究几何问题。
直线与圆的方程:直线方程、圆的标准方程与一般方程等。
五、概率与统计概率的基本概念:必然事件、不可能事件、随机事件等。
概率的计算:古典概型、几何概型等。
统计的基本概念:平均数、方差、标准差等。
统计图表与数据分析:直方图、折线图、散点图等。
六、导数及其应用导数的概念与性质:定义、几何意义等。
导数的运算:求导法则、复合函数求导等。
导数的应用:函数单调性判断、极值求解等。
以上只是高中数学的部分关键知识点,实际复习过程中还需要根据教材和考纲进行详细梳理和深入理解。
同时,多做题、多总结是提高数学成绩的有效途径。
复习高中数学的5种方法复习高中数学的方法一、课后及时回忆如果等到把课堂内容遗忘得差不多时才复习,就几乎等于重新学习,所以课堂学习的新知识必须及时复习。
可以一个人单独回忆,也可以几个人在一起互相启发,补充回忆。
一般按照教师板书的提纲和要领进行,也可以按教材纲目结构进行,从课题到重点内容,再到例题的每部分的细节,循序渐进地进行复习。
在复习过程中要不失时机整理笔记,因为整理笔记也是一种有效的复习方法。
二、定期重复巩固即使是复习过的内容仍须定期巩固,但是复习的次数应随时间的增长而逐步减小,间隔也可以逐渐拉长。
可以当天巩固新知识,每周进行周小结,每月进行阶段性总结,期中、期末进行全面系统的学期复习。
从内容上看,每课知识即时回顾,每单元进行知识梳理,每章节进行知识归纳总结,必须把相关知识串联在一起,形成知识网络,达到对知识和方法的整体把握。
三、科学合理安排复习一般可以分为集中复习和分散复习。
实验证明,分散复习的.效果优于集中复习,特殊情况除外。
分散复习,可以把需要识记的材料适当分类,并且与其他的学习或娱乐或休息交替进行,不至于单调使用某种思维方式,形成疲劳。
分散复习也应结合各自认知水平,以及识记素材的特点,把握重复次数与间隔时间,并非间隔时间越长越好,而要适合自己的复习规律。
四、重点难点突破对所学的素材要进行分析、归类,找出重、难点,分清主次。
在复习过程中,特别要关注难点及容易造成误解的问题,应分析其关键点和易错点,找出原因,必要时还可以把这类问题进行梳理,记录在一个专题本上,也可以在电脑上做一个重难点“超市”,可随时点击,进行复习。
五、复习效果检测随着时间的推移,复习的效果会产生变化,有的淡化、有的模糊、有的不准确,到底各环节的内容掌握得如何,需进行效果检测,如:周周练、月月测、单元过关练习、期中考试、期末考试等,都是为了检测学习效果。
检测时必须独立,限时完成,保证检测出的效果的真实性,如果存在问题,应该找到错误的根源,并适时采取补救措施进行校正。
高中数学知识点总结1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。
{}{}{}如:集合,,,、、A x y x B y y x C x y y x A B C ======|lg |lg (,)|lg中元素各表示什么?2. 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况。
∅注重借助于数轴和文氏图解集合问题。
空集是一切集合的子集,是一切非空集合的真子集。
{}{}如:集合,A x x x B x ax =--===||22301若,则实数的值构成的集合为B A a ⊂(答:,,)-⎧⎨⎩⎫⎬⎭10133. 注意下列性质: {}()集合,,……,的所有子集的个数是;1212a a a n n()若,;2A B A B A A B B ⊆⇔==(3)德摩根定律:()()()()()()C C C C C C U U U U U U A B A B A B A B ==,4. 你会用补集思想解决问题吗?(排除法、间接法)如:已知关于的不等式的解集为,若且,求实数x ax x aM M M a --<∈∉50352的取值范围。
()(∵,∴·∵,∴·,,)33530555501539252∈--<∉--≥⇒∈⎡⎣⎢⎫⎭⎪M a a M a aa5. 可以判断真假的语句叫做命题,逻辑连接词有“或”,“且”和()()∨∧“非”().⌝若为真,当且仅当、均为真p q p q ∧若为真,当且仅当、至少有一个为真p q p q ∨若为真,当且仅当为假⌝p p6. 命题的四种形式及其相互关系是什么?(互为逆否关系的命题是等价命题。
)原命题与逆否命题同真、同假;逆命题与否命题同真同假。
7. 对映射的概念了解吗?映射f :A →B ,是否注意到A 中元素的任意性和B 中与之对应元素的唯一性,哪几种对应能构成映射?(一对一,多对一,允许B 中有元素无原象。
高中数学的复习方法5篇高中数学的复习方法11.回归课本,巩固基础:高考倒计时是回归课本的时候了,不要把课本丢下,着重看课本上的公式、理论、定理,学会变换,把基础打牢了自然能举一反三,灵活运用。
2.避免题海战术:对于一看就会的题型直接pass掉,做精题,精做题。
不要什么都做没有选择,没有计划,如果每一题都做不仅会浪费时间而且也提高不了多少。
3.不专注于难题:不会的题不要一个人在那死扣,如果一道题你看了20分钟都没有思路,无从下手,要么请教高手要么放弃,不要专注于难题。
尽量做一些看起来会但是不能全面做出来的题,克服会而做不对,对而做不全,这样提升空间比较大。
4.各类题的.解题方法:不同的题型有不同的解题方法,要善于归纳和整理。
要选择填空题可以选择排除法、带进去验证、直觉、数形结合的方法。
简单的题答得时候尽量要全面。
压轴题,选择、填空、答题都各自的压轴题,会做就做不会做就暂时放弃,先把会的题做出来后再回过头看。
5.训练考试意境:把每次训练都当做高考,数学的复习离不开做题,但是做题量不能太大,做题的时候更应该模拟高考的时间和场景,下午三点到五点考数学,所以在复习的时候也在这个时间做题,适应高考模式。
6.关于大题:简单的大体要尽量的把步骤写详细,尽量不要遗漏步骤,检查的时候比较方便。
也能让改卷老师无话可说。
难一点的大题,在题中你能得到什么信息就写上,做不全的题把自己会的写出来也会有步骤分的。
解题过程中发现自己做错了先把正确的步骤写下,然后把错误的划掉。
如果第一步做不出来可以用第二步的结论做第一步的题。
高中数学的复习方法2一、重要性高中的数学教学都是模块化的教学,他们把不同的知识进行分类总结,这样就给学生带来了最大的弊端:遗忘及生疏。
学生在漫长的间隔中往往会把前面学习过的知识忘掉或者生疏。
但是通过复习课可以把前面的知识进行系统的复习及练习,在复习中不但可以查漏补缺,而且还可以对以往的.知识进一步巩固以及系统化,从而达到提升的效果。
高中数学总复习题总结第一章 集合与函数概念一、选择题1.设全集U ={(x ,y )| x ∈R ,y ∈R },集合M =⎭⎬⎫⎩⎨⎧1=2-3-|),(x y y x , P ={(x ,y )| y ≠x +1},那么C U (M ∪P )等于( ).A .∅B .{(2,3)}C .(2,3)D .{(x ,y )| y =x +1}2.若A ={a ,b },B ⊆A ,则集合B 中元素的个数是( ). A .0B .1C .2D .0或1或23.函数y =f (x )的图象与直线x =1的公共点数目是( ). A .1B .0C .0或1D .1或24.设函数f (x )=2x +3,g (x +2)=f (x ),则g (x )的表达式是( ). A .2x +1B .2x -1C .2x -3D .2x +75. 已知函数f (x )=ax 3+bx 2+cx +d 的图象如图所示,则( ).A .b ∈(-∞,0)B .b ∈(0,1)C .b ∈(1,2)D .b ∈(2,+∞)6.设函数f (x )=⎩⎨⎧00++2 x c x c bx x ,,≤, 若f (-4)=f (0),f (-2)=-2,则关于x 的方程f (x )=x 的解的个数为( ).A .1B .2C .3D .47.设集合A ={x | 0≤x ≤6},B ={y | 0≤y ≤2},下列从A 到B 的对应法则f 不是映(第5题)>射的是( ).A .f :x →y =21x B .f :x →y =31xC .f :x →y =41x D .f :x →y =61x 8.有下面四个命题:①偶函数的图象一定与y 轴相交; ②奇函数的图象一定通过原点; ③偶函数的图象关于y 轴对称;④既是奇函数,又是偶函数的函数一定是f (x )=0(x ∈R ). 其中正确命题的个数是( ). A .1B .2C .3D .49.函数y =x 2-6x +10在区间(2,4)上是( ). A .递减函数B .递增函数C .先递减再递增D .先递增再递减10.二次函数y =x 2+bx +c 的图象的对称轴是x =2,则有( ). A .f (1)<f (2)<f (4) B .f (2)<f (1)<f (4) C .f (2)<f (4)<f (1)D .f (4)<f (2)<f (1)二、填空题11.集合{3,x ,x 2-2x }中,x 应满足的条件是 .12.若集合A ={x | x 2+(a -1)x +b =0}中,仅有一个元素a ,则a =___,b =___. 13.建造一个容积为8 m 3,深为2 m 的长方体无盖水池,如果池底和池壁的造价每平方米分别为120元和80元,那么水池的最低总造价为 元.14.已知f (x +1)=x 2-2x ,则f (x )= ;f (x -2)= . 15.y =(2a -1)x +5是减函数,求a 的取值范围 .16.设f(x)是R上的奇函数,且当x∈[0,+∞)时,f(x)=x(1+x3),那么当x∈(-∞,0]时,f(x)=.三、解答题17.已知集合A={x∈R| ax2-3x+2=0},其中a为常数,且a∈R.①若A是空集,求a的范围;②若A中只有一个元素,求a的值;③若A中至多只有一个元素,求a的范围.18.已知M ={2,a ,b },N ={2a ,2,b 2},且M =N ,求a ,b 的值.19.证明f (x )=x 3在R 上是增函数.20.判断下列函数的奇偶性: (1)f (x )=3x 4+21x ;(2)f (x )=(x -1)xx-+11; (3)f (x )=1-x +x -1;(4)f (x )=12-x +21x -.高一数学必修1第二章单元测试题(A 卷)班级 姓名 分数一、选择题:(每小题5分,共30分)。
史上最全高中数学复习资料史上最全高中数学复习资料数学作为一门基础学科,对于高中学生来说是一门必修课程,也是大多数学生头疼的科目之一。
为了帮助广大高中生更好地复习数学,我整理了一份史上最全的高中数学复习资料,希望能够对同学们有所帮助。
一、代数与函数代数与函数是高中数学的基础内容,也是后续学习的重要基石。
在这一部分,我们将重点关注代数方程、函数与方程组、不等式等内容。
1. 代数方程:包括一元一次方程、一元二次方程、高次方程等。
我们将详细介绍解方程的基本方法和技巧,并提供大量的例题和习题供同学们练习。
2. 函数与方程组:介绍函数的概念、性质和图像,并详细讲解方程组的解法。
我们将通过实例帮助同学们理解函数与方程组之间的关系,从而更好地应用于实际问题的解决。
3. 不等式:讲解不等式的基本性质和解法,包括一元一次不等式、一元二次不等式、绝对值不等式等。
我们将通过图像和实例,帮助同学们掌握不等式的解法和应用。
二、几何与向量几何与向量是高中数学的另一个重要部分,它涵盖了平面几何、空间几何和向量的基本概念、性质和定理。
1. 平面几何:介绍平面几何的基本概念,包括点、线、面、角等。
我们将详细讲解平面几何的基本定理和证明方法,并提供大量的例题和习题供同学们练习。
2. 空间几何:介绍三维空间中的几何概念和性质,包括直线、平面、体等。
我们将通过实例和图像,帮助同学们理解空间几何的基本定理和应用。
3. 向量:讲解向量的定义、运算和性质,包括向量的加法、减法、数量积和向量积等。
我们将通过实例和图像,帮助同学们掌握向量的运算法则和应用。
三、概率与统计概率与统计是高中数学的另一个重要组成部分,它涵盖了概率的基本概念、性质和计算方法,以及统计的基本概念、性质和分析方法。
1. 概率:介绍概率的基本概念和性质,包括事件、样本空间、概率计算等。
我们将通过实例和计算方法,帮助同学们理解概率的基本原理和应用。
2. 统计:介绍统计的基本概念和性质,包括数据的收集、整理、分析和表示等。
高中数学新课标总复习高中数学新课标总复习是针对高中数学课程的全面回顾和巩固,它涵盖了高中数学的主要知识点和技能,以帮助学生为高考或进一步的数学学习做好准备。
以下是高中数学新课标总复习的主要内容:1. 集合与简易逻辑:包括集合的概念、表示法、运算(交集、并集、补集),以及简易逻辑中的命题、逻辑连接词、真值表等。
2. 函数:函数的概念、表示法、函数的性质(单调性、奇偶性、周期性)、基本初等函数(一次函数、二次函数、幂函数、指数函数、对数函数、三角函数)及其图像和性质。
3. 导数与微积分初步:导数的概念、求导法则、导数的应用(极值、最值、曲线的切线方程),以及微积分的初步概念,如定积分和不定积分。
4. 三角函数与解三角形:三角函数的定义、图像和性质,包括正弦、余弦、正切函数,以及三角恒等变换和解三角形的方法。
5. 不等式:不等式的基本性质、解法,包括一元一次不等式、一元二次不等式、绝对值不等式和不等式的证明。
6. 数列:数列的概念、通项公式、求和公式,包括等差数列和等比数列的性质和应用。
7. 立体几何:空间几何体的表面积和体积计算,包括柱体、锥体、球体等,以及空间直线和平面的位置关系。
8. 解析几何:直线和圆的方程、直线与圆的位置关系、椭圆、双曲线、抛物线的标准方程和性质。
9. 概率与统计:随机事件的概率、条件概率、离散型随机变量的分布列和期望值、方差,以及统计图表的绘制和数据分析。
10. 算法初步:算法的概念、流程图的绘制、基本的算法设计方法。
在进行总复习时,学生应该系统地回顾每个章节的知识点,通过练习题和模拟试卷来检验自己的理解和应用能力。
同时,注意总结解题技巧和方法,提高解题效率。
此外,对于易错点和难点,应该特别关注并加以强化训练。
通过这样的复习,学生可以更好地掌握高中数学的知识体系,为未来的学习和考试打下坚实的基础。
2024年高考数学总复习第二章《函数与基本初等函数》§2.7函数的图象最新考纲 1.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.2.学会运用函数图象理解和研究函数的性质,解决方程解的个数与不等式解的问题.1.描点法作图方法步骤:(1)确定函数的定义域;(2)化简函数的解析式;(3)讨论函数的性质即奇偶性、周期性、单调性、最值(甚至变化趋势);(4)描点连线,画出函数的图象.2.图象变换(1)平移变换(2)对称变换①y =f (x )――――――→关于x 轴对称y =-f (x );②y =f (x )――――――→关于y 轴对称y =f (-x );③y =f (x )―――――→关于原点对称y =-f (-x );④y =a x (a >0且a ≠1)――――――→关于y =x 对称y =log a x (a >0且a ≠1).(3)伸缩变换①y =f (x )―――――――――――――――――――――――→a >1,横坐标缩短为原来的1a 倍,纵坐标不变0<a <1,横坐标伸长为原来的1a 倍,纵坐标不变y =f (ax ).②y =f (x )――――――――――――――――――――→a >1,纵坐标伸长为原来的a 倍,横坐标不变0<a <1,纵坐标缩短为原来的a 倍,横坐标不变y =af (x ).(4)翻折变换①y =f (x )――――――――――→保留x 轴上方图象将x 轴下方图象翻折上去y =|f (x )|.②y =f (x )―――――――――――→保留y 轴右边图象,并作其关于y 轴对称的图象y =f (|x |).概念方法微思考1.函数f (x )的图象关于直线x =a 对称,你能得到f (x )解析式满足什么条件?提示f (a +x )=f (a -x )或f (x )=f (2a -x ).2.若函数y =f (x )和y =g (x )的图象关于点(a ,b )对称,求f (x ),g (x )的关系.提示g (x )=2b -f (2a -x )题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数y =f (1-x )的图象,可由y =f (-x )的图象向左平移1个单位得到.(×)(2)当x ∈(0,+∞)时,函数y =|f (x )|与y =f (|x |)的图象相同.(×)(3)函数y =f (x )与y =-f (x )的图象关于原点对称.(×)(4)函数y =f (x )的图象关于y 轴对称即函数y =f (x )与y =f (-x )的图象关于y 轴对称.(×)题组二教材改编2.[P35例5(3)]函数f (x )=x +1x的图象关于()A .y 轴对称B .x 轴对称C .原点对称D .直线y =x 对称答案C 解析函数f (x )的定义域为(-∞,0)∪(0,+∞)且f (-x )=-f (x ),即函数f (x )为奇函数,故选C.3.[P32T2]小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速度行驶,与以上事件吻合得最好的图象是.(填序号)答案③解析小明匀速运动时,所得图象为一条直线,且距离学校越来越近,故排除①.因交通堵塞停留了一段时间,与学校的距离不变,故排除④.后来为了赶时间加快速度行驶,故排除②.故③正确.4.如图,函数f (x )的图象为折线ACB ,则不等式f (x )≥log 2(x +1)的解集是.答案(-1,1]解析在同一坐标系内作出y =f (x )和y =log 2(x +1)的图象(如图).由图象知不等式的解集是(-1,1].题组三易错自纠5.下列图象是函数y 2,x <0,-1,x ≥0的图象的是()答案C6.把函数f (x )=ln x 的图象上各点的横坐标扩大到原来的2倍,得到的图象的函数解析式是________________.答案y =解析根据伸缩变换方法可得,所求函数解析式为y =7.(2018·太原调研)若关于x 的方程|x |=a -x 只有一个解,则实数a 的取值范围是__________.答案(0,+∞)解析在同一个坐标系中画出函数y =|x |与y =a -x 的图象,如图所示.由图象知,当a >0时,方程|x |=a -x 只有一个解.题型一作函数的图象分别画出下列函数的图象:(1)y =|lg(x -1)|;(2)y =2x +1-1;(3)y =x 2-|x |-2;(4)y =2x -1x -1.解(1)首先作出y =lg x 的图象,然后将其向右平移1个单位,得到y =lg(x -1)的图象,再把所得图象在x 轴下方的部分翻折到x 轴上方,即得所求函数y =|lg(x -1)|的图象,如图①所示(实线部分).(2)将y =2x 的图象向左平移1个单位,得到y =2x +1的图象,再将所得图象向下平移1个单位,得到y =2x +1-1的图象,如图②所示.(3)y =x 2-|x |-2x 2-x -2,x ≥0,x 2+x -2,x <0,其图象如图③所示.(4)∵y =2+1x -1,故函数的图象可由y =1x 1个单位,再向上平移2个单位得到,如图④所示.思维升华图象变换法作函数的图象(1)熟练掌握几种基本函数的图象,如二次函数、反比例函数、指数函数、对数函数、幂函数、形如y =x +1x的函数.(2)若函数图象可由某个基本函数的图象经过平移、翻折、对称和伸缩得到,可利用图象变换作出,但要注意变换顺序.题型二函数图象的辨识例1(1)函数y =x 2ln|x ||x |的图象大致是()答案D 解析从题设提供的解析式中可以看出函数是偶函数,x ≠0,且当x >0时,y =x ln x ,y ′=1+ln x 0,1e 上单调递减,在区间1e,+∞ D.(2)设函数f (x )=2x ,则如图所示的函数图象对应的函数解析式是()A .y =f (|x |)B .y =-|f (x )|C .y =-f (-|x |)D .y =f (-|x |)答案C 解析题图中是函数y =-2-|x |的图象,即函数y =-f (-|x |)的图象,故选C.思维升华函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的周期性,判断图象的循环往复;(5)从函数的特征点,排除不合要求的图象.跟踪训练1(1)函数f (x )=1+log 2x 与g (x )=12x 在同一直角坐标系下的图象大致是()答案B 解析因为函数g (x )=12为减函数,且其图象必过点(0,1),故排除A ,D.因为f (x )=1+log 2x的图象是由y =log 2x 的图象上移1个单位得到的,所以f (x )为增函数,且图象必过点(1,1),故可排除C ,故选B.(2)函数y =1ln|e x -e -x |的部分图象大致为()答案D 解析令f (x )=1ln|e x -e -x |,则f (-x )=1ln|e -x -e x |=1ln|e x -e -x |=f (x ),∴f (x )是偶函数,图象关于y 轴对称,排除B ,C.当x >1时,y =1ln|e x -e -x |=1ln (e x -e -x ),显然y >0且函数单调递减,故D 正确.题型三函数图象的应用命题点1研究函数的性质例2(1)已知函数f (x )=x |x |-2x ,则下列结论正确的是()A .f (x )是偶函数,单调递增区间是(0,+∞)B .f (x )是偶函数,单调递减区间是(-∞,1)C .f (x )是奇函数,单调递减区间是(-1,1)D .f (x )是奇函数,单调递增区间是(-∞,0)答案C 解析将函数f (x )=x |x |-2x去掉绝对值,得f (x )x 2-2x ,x ≥0,-x 2-2x ,x <0,画出函数f (x )的图象,如图,观察图象可知,函数f (x )的图象关于原点对称,故函数f (x )为奇函数,且在(-1,1)上单调递减.(2)设f (x )=|lg(x -1)|,若0<a <b 且f (a )=f (b ),则ab 的取值范围是________.答案(4,+∞)解析画出函数f (x )=|lg(x -1)|的图象如图所示.由f (a )=f (b )可得-lg(a -1)=lg(b -1),解得ab =a +b >2ab (由于a <b ,故取不到等号),所以ab >4.命题点2解不等式例3函数f (x )是定义在[-4,4]上的偶函数,其在[0,4]上的图象如图所示,那么不等式f (x )cos x<0的解集为.答案-π2,-1∪1,π2解析当x ∈0,π2y =cos x >0.当x ∈π2,4y =cos x <0.结合y =f (x ),x ∈[0,4]上的图象知,当1<x <π2时,f (x )cos x <0.又函数y =f (x )cos x为偶函数,所以在[-4,0]上,f (x )cos x<0-π2,-1,所以f (x )cos x<0-π2,-1∪1,π2命题点3求参数的取值范围例4(1)已知函数f (x )12log x ,x >0,2x ,x ≤0,若关于x 的方程f (x )=k 有两个不等的实数根,则实数k 的取值范围是.答案(0,1]解析作出函数y =f (x )与y =k 的图象,如图所示,由图可知k ∈(0,1].(2)已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根,则实数k 的取值范围是.答案解析先作出函数f (x )=|x -2|+1的图象,如图所示,当直线g (x )=kx 与直线AB 平行时斜率为1,当直线g (x )=kx 过A 点时斜率为12,故f (x )=g (x )有两个不相等的实根时,k 的取值范围思维升华(1)注意函数图象特征与性质的对应关系.(2)方程、不等式的求解可转化为函数图象的交点和上下关系问题.跟踪训练2(1)(2018·昆明检测)已知f (x )=2x -1,g (x )=1-x 2,规定:当|f (x )|≥g (x )时,h (x )=|f (x )|;当|f (x )|<g (x )时,h (x )=-g (x ),则h (x )()A .有最小值-1,最大值1B .有最大值1,无最小值C .有最小值-1,无最大值D .有最大值-1,无最小值答案C 解析画出y =|f (x )|=|2x -1|与y =g (x )=1-x 2的图象,它们交于A ,B 两点.由“规定”,在A ,B 两侧,|f (x )|≥g (x ),故h (x )=|f (x )|;在A ,B 之间,|f (x )|<g (x ),故h (x )=-g (x ).综上可知,y =h (x )的图象是图中的实线部分,因此h (x )有最小值-1,无最大值.(2)设函数f (x )=|x +a |,g (x )=x -1,对于任意的x ∈R ,不等式f (x )≥g (x )恒成立,则实数a 的取值范围是.答案[-1,+∞)解析如图作出函数f (x )=|x +a |与g (x )=x -1的图象,观察图象可知,当且仅当-a ≤1,即a ≥-1时,不等式f (x )≥g (x )恒成立,因此a 的取值范围是[-1,+∞).高考中的函数图象及应用问题高考中考查函数图象问题主要有函数图象的识别,函数图象的变换及函数图象的应用等,多以小题形式考查,难度不大,常利用特殊点法、排除法、数形结合法等解决.熟练掌握高中涉及的几种基本初等函数是解决前提.一、函数的图象和解析式问题例1(1)如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP =x .将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为()答案B 解析当x ∈0,π4时,f (x )=tan x +4+tan 2x ,图象不会是直线段,从而排除A ,C ;当x ∈π4,3π4时,1+5,22.∵22<1+5,∴D ,故选B.(2)已知函数f (x )的图象如图所示,则f (x )的解析式可以是()A .f (x )=ln|x |x B .f (x )=e x xC .f (x )=1x2-1D .f (x )=x -1x答案A 解析由函数图象可知,函数f (x )为奇函数,应排除B ,C.若函数为f (x )=x -1x,则x →+∞时,f (x )→+∞,排除D ,故选A.(3)(2018·全国Ⅱ)函数f (x )=e x -e -x x 2的图象大致为()答案B 解析∵y =e x -e -x 是奇函数,y =x 2是偶函数,∴f (x )=e x -e -x x 2是奇函数,图象关于原点对称,排除A 选项.当x =1时,f (1)=e -e -11=e -1e >0,排除D 选项.又e>2,∴1e <12,∴e -1e >32,排除C 选项.故选B.二、函数图象的变换问题例2已知定义在区间[0,4]上的函数y =f (x )的图象如图所示,则y =-f (2-x )的图象为()答案D 解析方法一先作出函数y =f (x )的图象关于y 轴的对称图象,得到y =f (-x )的图象;然后将y =f (-x )的图象向右平移2个单位,得到y =f (2-x )的图象;再作y =f (2-x )的图象关于x 轴的对称图象,得到y =-f (2-x )的图象.故选D.方法二先作出函数y =f (x )的图象关于原点的对称图象,得到y =-f (-x )的图象;然后将y=-f (-x )的图象向右平移2个单位,得到y =-f (2-x )的图象.故选D.方法三当x =0时,y =-f (2-0)=-f (2)=-4.故选D.三、函数图象的应用例3(1)已知函数f (x )|,x ≤m ,2-2mx +4m ,x >m ,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是.答案(3,+∞)解析在同一坐标系中,作y =f (x )与y =b 的图象.当x >m 时,x 2-2mx +4m =(x -m )2+4m-m 2,所以要使方程f (x )=b 有三个不同的根,则有4m -m 2<m ,即m 2-3m >0.又m >0,解得m >3.(2)不等式3sin π2x-12log x<0的整数解的个数为.答案2解析不等式3sin π2x12log x<0,即3sinπ2x<12log x.设f(x)=3sinπ2x,g(x)=12log x,在同一坐标系中分别作出函数f(x)与g(x)的图象,由图象可知,当x为整数3或7时,有f(x)<g(x),所以不等式3sin π2x12log x<0的整数解的个数为2.(3)已知函数f(x)sinπx,0≤x≤1,log2020x,x>1,若实数a,b,c互不相等,且f(a)=f(b)=f(c),则a+b+c的取值范围是.答案(2,2021)解析函数f(x)sinπx,0≤x≤1,log2020x,x>1的图象如图所示,不妨令a<b<c,由正弦曲线的对称性可知a+b=1,而1<c<2020,所以2<a+b+c<2021.1.(2018·浙江)函数y=2|x|sin2x的图象可能是()答案D解析由y =2|x |sin 2x 知函数的定义域为R ,令f (x )=2|x |sin 2x ,则f (-x )=2|-x |sin(-2x )=-2|x |sin 2x .∵f (x )=-f (-x ),∴f (x )为奇函数.∴f (x )的图象关于原点对称,故排除A ,B.令f (x )=2|x |sin 2x =0,解得x =k π2(k ∈Z ),∴当k =1时,x =π2,故排除C.故选D.2.如图,不规则四边形ABCD 中,AB 和CD 是线段,AD 和BC 是圆弧,直线l ⊥AB 交AB 于E ,当l 从左至右移动(与线段AB 有公共点)时,把四边形ABCD 分成两部分,设AE =x ,左侧部分的面积为y ,则y 关于x 的图象大致是()答案C解析当l 从左至右移动时,一开始面积的增加速度越来越快,过了D 点后面积保持匀速增加,图象呈直线变化,过了C 点后面积的增加速度又逐渐减慢.故选C.3.已知函数f (x )=log a x (0<a <1),则函数y =f (|x |+1)的图象大致为()答案A解析先作出函数f(x)=log a x(0<a<1)的图象,当x>0时,y=f(|x|+1)=f(x+1),其图象由函数f(x)的图象向左平移1个单位得到,又函数y=f(|x|+1)为偶函数,所以再将函数y=f(x+1)(x>0)的图象关于y轴对称翻折到y轴左边,得到x<0时的图象,故选A.4.若函数f(x)ax+b,x<-1,ln(x+a),x≥-1的图象如图所示,则f(-3)等于()A.-12B.-54C.-1D.-2答案C解析由图象可得-a+b=3,ln(-1+a)=0,得a=2,b=5,∴f(x)2x+5,x<-1,ln(x+2),x≥-1,故f(-3)=2×(-3)+5=-1,故选C.5.函数f(x)的图象向右平移1个单位,所得图象与曲线y=e x关于y轴对称,则f(x)的解析式为()A.f(x)=e x+1B.f(x)=e x-1C.f(x)=e-x+1D.f(x)=e-x-1答案D解析与y=e x的图象关于y轴对称的函数为y=e-x.依题意,f(x)的图象向右平移一个单位,得y=e-x的图象.∴f(x)的图象由y=e-x的图象向左平移一个单位得到.∴f(x)=e-(x+1)=e-x-1.6.(2018·承德模拟)已知函数f(x)的定义域为R,且f(x)2-x-1,x≤0,f x-1),x>0,若方程f(x)=x+a有两个不同实根,则实数a的取值范围为() A.(-∞,1)B.(-∞,1]C .(0,1)D .(-∞,+∞)答案A解析当x ≤0时,f (x )=2-x -1,当0<x ≤1时,-1<x -1≤0,f (x )=f (x -1)=2-(x -1)-1.类推有f (x )=f (x -1)=22-x -1,x ∈(1,2],…,也就是说,x >0的部分是将x ∈(-1,0]的部分周期性向右平移1个单位得到的,其部分图象如图所示.若方程f (x )=x +a 有两个不同的实数根,则函数f (x )的图象与直线y =x +a 有两个不同交点,故a <1,即a 的取值范围是(-∞,1).7.设函数y =f (x +1)是定义在(-∞,0)∪(0,+∞)上的偶函数,在区间(-∞,0)上是减函数,且图象过点(1,0),则不等式(x -1)f (x )≤0的解集为.答案{x |x ≤0或1<x ≤2}解析画出f (x )的大致图象如图所示.不等式(x -1)f (x )≤0>1,x )≤0<1,x )≥0.由图可知符合条件的解集为{x |x ≤0或1<x ≤2}.8.设函数y =f (x )的图象与y =2x -a 的图象关于直线y =-x 对称,且f (-2)+f (-4)=1,则实数a =.答案-2解析由函数y =f (x )的图象与y =2x -a 的图象关于直线y =-x 对称,可得f (x )=-a -log 2(-x ),由f (-2)+f (-4)=1,可得-a -log 22-a -log 24=1,解得a =-2.9.已知f (x )是以2为周期的偶函数,当x ∈[0,1]时,f (x )=x ,且在[-1,3]内,关于x 的方程f (x )=kx +k +1(k ∈R ,k ≠-1)有四个实数根,则k 的取值范围是.答案-13,解析由题意作出f (x )在[-1,3]上的示意图如图所示,记y =k (x +1)+1,∴函数y =k (x +1)+1的图象过定点A (-1,1).记B (2,0),由图象知,方程有四个实数根,即函数f (x )与y =kx +k +1的图象有四个交点,故k AB <k <0,k AB =0-12-(-1)=-13,∴-13<k <0.10.给定min{a ,b },a ≤b ,,b <a ,已知函数f (x )=min{x ,x 2-4x +4}+4,若动直线y =m与函数y =f (x )的图象有3个交点,则实数m 的取值范围为.答案(4,5)解析作出函数f (x )的图象,函数f (x )=min{x ,x 2-4x +4}+4的图象如图所示,由于直线y=m 与函数y =f (x )的图象有3个交点,数形结合可得m 的取值范围为(4,5).11.已知函数f (x )2(1-x )+1,-1≤x <0,3-3x +2,0≤x ≤a的值域为[0,2],则实数a 的取值范围是.答案[1,3]解析先作出函数f (x )=log 2(1-x )+1,-1≤x <0的图象,再研究f (x )=x 3-3x +2,0≤x ≤a的图象.令f ′(x )=3x 2-3=0,得x =1(x =-1舍去),由f ′(x )>0,得x >1,由f ′(x )<0,得0<x <1.又f (0)=f (3)=2,f (1)=0.所以1≤a ≤ 3.12.已知函数f (x )=2x ,x ∈R .(1)当实数m 取何值时,方程|f (x )-2|=m 有一个解?两个解?(2)若不等式f 2(x )+f (x )-m >0在R 上恒成立,求实数m 的取值范围.解(1)令F (x )=|f (x )-2|=|2x -2|,G (x )=m ,画出F (x )的图象如图所示.由图象可知,当m =0或m ≥2时,函数F (x )与G (x )的图象只有一个交点,原方程有一个实数解;当0<m <2时,函数F (x )与G (x )的图象有两个交点,原方程有两个实数解.(2)令f (x )=t (t >0),H (t )=t 2+t ,t >0,因为H (t )-14在区间(0,+∞)上是增函数,所以H (t )>H (0)=0.因此要使t 2+t >m 在区间(0,+∞)上恒成立,应有m ≤0,即所求m 的取值范围为(-∞,0].13.已知函数f (x )2+2x -1,x ≥0,2-2x -1,x <0,则对任意x 1,x 2∈R ,若0<|x 1|<|x 2|,下列不等式成立的是()A .f (x 1)+f (x 2)<0B .f (x 1)+f (x 2)>0C .f (x 1)-f (x 2)>0D .f (x 1)-f (x 2)<0答案D解析函数f (x )的图象如图实线部分所示,且f (-x )=f (x ),从而函数f (x )是偶函数且在[0,+∞)上是增函数,又0<|x 1|<|x 2|,∴f (x 2)>f (x 1),即f (x 1)-f (x 2)<0.14.已知函数f (x )=x |x -1|,g (x )=1+x +|x |2,若f (x )<g (x ),则实数x 的取值范围是.答案解析f (x )+1x -1,x >1,1+11-x,x <1,g (x )+x ,x ≥0,,x <0,作出两函数的图象如图所示.当0≤x <1时,由-1+11-x=x +1,解得x =5-12;当x >1时,由1+1x -1=x +1,解得x =5+12.结合图象可知,满足f (x )<g (x )的x -∞,5-12∪1+52,+∞15.已知函数f (x )-x 2+x ,x ≤1,13logx ,x >1,g (x )=|x -k |+|x -2|,若对任意的x 1,x 2∈R ,都有f (x 1)≤g (x 2)成立,则实数k 的取值范围为____________.答案-∞,74∪94,+∞解析对任意的x 1,x 2∈R ,都有f (x 1)≤g (x 2)成立,即f (x )max ≤g (x )min .观察f (x )-x 2+x ,x ≤1,13log x ,x >1的图象可知,当x =12时,函数f (x )max =14.因为g (x )=|x -k |+|x -2|≥|x -k -(x -2)|=|k -2|,所以g (x )min =|k -2|,所以|k -2|≥14,解得k ≤74或k ≥94.故实数k 的取值范围是-∞,74∪94,+∞16.已知函数f (x )(x -1)2,0≤x ≤2,14x -12,2<x ≤6.若在该函数的定义域[0,6]上存在互异的3个数x 1,x 2,x 3,使得f (x 1)x 1=f (x 2)x 2=f (x 3)x 3=k ,求实数k 的取值范围.解由题意知,直线y =kx 与函数y =f (x )(x ∈[0,6])的图象至少有3个公共点.函数y =f (x )的图象如图所示,由图知k ,1 6.。
2024年高考数学总复习第三章《导数及其应用》§3.1导数的概念及运算最新考纲1.通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵.2.通过函数图象直观理解导数的几何意义.3.能根据导数定义求函数y =c (c 为常数),y =x ,y =x 2,y =1x 的导数.4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.1.导数与导函数的概念(1)一般地,函数y =f (x )在x =x 0处的瞬时变化率是lim Δx →ΔyΔx =lim Δx →0f (x 0+Δx )-f (x 0)Δx,我们称它为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|0x x =,即f ′(x 0)=lim Δx →ΔyΔx =lim Δx →0f (x 0+Δx )-f (x 0)Δx.(2)如果函数y =f (x )在开区间(a ,b )内的每一点处都有导数,其导数值在(a ,b )内构成一个新函数,这个函数称为函数y =f (x )在开区间(a ,b )内的导函数.记作f ′(x )或y ′.2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率k ,即k =f ′(x 0).3.基本初等函数的导数公式基本初等函数导函数f (x )=c (c 为常数)f ′(x )=0f (x )=x α(α∈Q *)f ′(x )=αx α-1f (x )=sin x f ′(x )=cos x f (x )=cos x f ′(x )=-sin x f (x )=e xf ′(x )=e x f (x )=a x (a >0,a ≠1)f ′(x )=a x ln a f (x )=ln xf ′(x )=1xf(x)=log a x(a>0,a≠1)f′(x)=1 x ln a4.导数的运算法则若f′(x),g′(x)存在,则有(1)[f(x)±g(x)]′=f′(x)±g′(x);(2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);(3)f(x)g(x)′=f′(x)g(x)-f(x)g′(x)[g(x)]2(g(x)≠0).概念方法微思考1.根据f′(x)的几何意义思考一下,|f′(x)|增大,曲线f(x)的形状有何变化?提示|f′(x)|越大,曲线f(x)的形状越来越陡峭.2.直线与曲线相切,是不是直线与曲线只有一个公共点?提示不一定.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)f′(x0)是函数y=f(x)在x=x0附近的平均变化率.(×)(2)f′(x0)=[f(x0)]′.(×)(3)(2x)′=x·2x-1.(×)题组二教材改编2.若f(x)=x·e x,则f′(1)=.答案2e解析∵f′(x)=e x+x e x,∴f′(1)=2e.3.曲线y=1-2x+2在点(-1,-1)处的切线方程为.答案2x-y+1=0解析∵y′=2(x+2)2,∴y′|x=-1=2.∴所求切线方程为2x-y+1=0.题组三易错自纠4.如图所示为函数y=f(x),y=g(x)的导函数的图象,那么y=f(x),y=g(x)的图象可能是()答案D解析由y =f ′(x )的图象知,y =f ′(x )在(0,+∞)上单调递减,说明函数y =f (x )的切线的斜率在(0,+∞)上也单调递减,故可排除A ,C.又由图象知y =f ′(x )与y =g ′(x )的图象在x =x 0处相交,说明y =f (x )与y =g (x )的图象在x =x 0处的切线的斜率相同,故可排除B.故选D.5.若f (x )=sin xx ,则f ′π2=________.答案-4π2解析∵f ′(x )=x cos x -sin xx 2,∴f ′π2=-4π2.6.(2017·天津)已知a ∈R ,设函数f (x )=ax -ln x 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为.答案1解析∵f ′(x )=a -1x,∴f ′(1)=a -1.又∵f (1)=a ,∴切线l 的斜率为a -1,且过点(1,a ),∴切线l 的方程为y -a =(a -1)(x -1).令x =0,得y =1,故l 在y 轴上的截距为1.题型一导数的计算1.已知f (x )=sin x 21-2cos 2x4f ′(x )=.答案-12cos x 解析因为y =sin x 2-cos x2=-12sin x ,所以y ′=-12sin x ′=-12(sin x )′=-12cos x .2.已知y =cos xe x,则y ′=________.答案-sin x +cos x e x解析y ′=cos xe x ′=(cos x )′e x -cos x (e x )′(e x )2=-sin x +cos xe x.3.f (x )=x (2019+ln x ),若f ′(x 0)=2020,则x 0=.答案1解析f ′(x )=2019+ln x +x ·1x=2020+ln x ,由f ′(x 0)=2020,得2020+ln x 0=2020,∴x 0=1.4.若f (x )=x 2+2x ·f ′(1),则f ′(0)=.答案-4解析∵f ′(x )=2x +2f ′(1),∴f ′(1)=2+2f ′(1),即f ′(1)=-2,∴f ′(x )=2x -4,∴f ′(0)=-4.思维升华1.求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,尽量避免不必要的商的求导法则,这样可以减少运算量,提高运算速度减少差错.2.(1)若函数为根式形式,可先化为分数指数幂,再求导.(2)复合函数求导,应由外到内逐层求导,必要时可进行换元.题型二导数的几何意义命题点1求切线方程例1(1)(2018·湖北百所重点高中联考)已知函数f (x +1)=2x +1x +1,则曲线y =f (x )在点(1,f (1))处切线的斜率为()A .1B .-1C .2D .-2答案A解析由f (x +1)=2x +1x +1,知f (x )=2x -1x =2-1x .∴f ′(x )=1x2,∴f ′(1)=1.由导数的几何意义知,所求切线的斜率k =1.(2)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为.答案x -y -1=0解析∵点(0,-1)不在曲线f (x )=x ln x 上,∴设切点为(x 0,y 0).又∵f ′(x )=1+ln x ,∴直线l 的方程为y +1=(1+ln x 0)x .∴0=x 0ln x 0,0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.∴直线l 的方程为y =x -1,即x -y -1=0.命题点2求参数的值例2(1)直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),则2a +b =.答案1解析由题意知,y =x 3+ax +b 的导数为y ′=3x 2+a ,3+a +b =3,×12+a =k ,+1=3,由此解得k =2,a =-1,b =3,∴2a +b =1.(2)已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,与f (x )图象的切点为(1,f (1)),则m =.答案-2解析∵f ′(x )=1x,∴直线l 的斜率k =f ′(1)=1.又f (1)=0,∴切线l 的方程为y =x -1.g ′(x )=x +m ,设直线l 与g (x )的图象的切点为(x 0,y 0),则有x 0+m =1,y 0=x 0-1,y 0=12x 20+mx 0+72,m <0,∴m =-2.命题点3导数与函数图象例3(1)已知函数y =f (x )的图象是下列四个图象之一,且其导函数y =f ′(x )的图象如图所示,则该函数的图象是()答案B解析由y =f ′(x )的图象是先上升后下降可知,函数y =f (x )图象的切线的斜率先增大后减小,故选B.(2)已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=.答案0解析由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,∴f ′(3)=-13.∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ),∴g ′(3)=f (3)+3f ′(3),又由题图可知f (3)=1,∴g ′(3)=1+30.思维升华导数的几何意义是切点处切线的斜率,应用时主要体现在以下几个方面:(1)已知切点A (x 0,f (x 0))求斜率k ,即求该点处的导数值k =f ′(x 0).(2)若求过点P (x 0,y 0)的切线方程,可设切点为(x 1,y 1),1=f (x 1),0-y 1=f ′(x 1)(x 0-x 1)求解即可.(3)函数图象在每一点处的切线斜率的变化情况反映函数图象在相应点处的变化情况.跟踪训练(1)(2018·全国Ⅰ)已知f (x )=x 2,则曲线y =f (x )过点P (-1,0)的切线方程是.答案y =0或4x +y +4=0解析设切点坐标为(x 0,x 20),∵f ′(x )=2x ,∴切线方程为y -0=2x 0(x +1),∴x 20=2x 0(x 0+1),解得x 0=0或x 0=-2,∴所求切线方程为y =0或y =-4(x +1),即y =0或4x +y +4=0.(2)设曲线y =1+cos xsin x 在点x -ay +1=0平行,则实数a =.答案-1解析∵y ′=-1-cos xsin 2x,∴y ′π2x ==-1.由条件知1a=-1,∴a =-1.(3)(2018·开封模拟)函数f (x )=ln x +ax 的图象存在与直线2x -y =0平行的切线,则实数a 的取值范围是.答案(-∞,2)解析函数f (x )=ln x +ax 的图象存在与直线2x -y =0平行的切线,即f ′(x )=2在(0,+∞)上有解.所以f ′(x )=1x +a =2在(0,+∞)上有解,则a =2-1x .因为x >0,所以2-1x<2,所以a 的取值范围是(-∞,2).1.已知函数f (x )=1x cos x ,则f (π)+f ()A .-3π2B .-1π2C .-3πD .-1π答案C解析因为f ′(x )=-1x 2cos x +1x (-sin x ),所以f (π)+f =-1π+2π×(-1)=-3π.2.(2018·衡水调研)设f (x )=x ln x ,若f ′(x 0)=2,则x 0的值为()A .e 2B .e C.ln 22D .ln 2答案B解析由f (x )=x ln x ,得f ′(x )=ln x +1.根据题意知,ln x 0+1=2,所以ln x 0=1,即x 0=e.3.曲线y =sin x +e x 在点(0,1)处的切线方程是()A .x -3y +3=0B .x -2y +2=0C .2x -y +1=0D .3x -y +1=0答案C解析y ′=cos x +e x ,故切线斜率k =2,切线方程为y =2x +1,即2x -y +1=0.4.设函数f (x )在定义域内可导,y =f (x )的图象如图所示,则导函数f ′(x )的图象可能是()答案C解析原函数的单调性是当x <0时,f (x )单调递增;当x >0时,f (x )的单调性变化依次为增、减、增,故当x <0时,f ′(x )>0;当x >0时,f ′(x )的符号变化依次为+,-,+.故选C.5.已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是()A.3π4, B.π4,,3π4 D.0答案A解析求导可得y ′=-4e x +e -x +2,∵e x +e -x +2≥2e x ·e -x +2=4,当且仅当x =0时,等号成立,∴y ′∈[-1,0),得tan α∈[-1,0),又α∈[0,π),∴3π4≤α<π.6.(2018·广州调研)已知曲线y =ln x 的切线过原点,则此切线的斜率为()A .eB .-e C.1eD .-1e答案C解析y =ln x 的定义域为(0,+∞),且y ′=1x,设切点为(x 0,ln x 0),则y ′|0x x ==1x 0,切线方程为y -ln x 0=1x 0(x -x 0),因为切线过点(0,0),所以-ln x 0=-1,解得x 0=e ,故此切线的斜率为1e.7.(2018·鹰潭模拟)已知曲线f (x )=2x 2+1在点M (x 0,f (x 0))处的瞬时变化率为-8,则点M 的坐标为.答案(-2,9)解析∵f (x )=2x 2+1,∴f ′(x )=4x ,令4x 0=-8,则x 0=-2,∴f (x 0)=9,∴点M 的坐标是(-2,9).8.已知曲线y =14x 2-3ln x 的一条切线的斜率为-12,则切点的横坐标为________.答案2解析设切点坐标为(m ,n )(m >0),对y =14x 2-3ln x 求导得y ′=12x -3x ,可令切线的斜率为12m-3m =-12,解方程可得m =2(舍去负值).9.若曲线y =ln x 的一条切线是直线y =12x +b ,则实数b 的值为.答案-1+ln 2解析由y =ln x ,可得y ′=1x,设切点坐标为(x 0,y 0),由曲线y =ln x 的一条切线是直线y=12x +b ,可得1x 0=12,解得x 0=2,则切点坐标为(2,ln 2),所以ln 2=1+b ,b =-1+ln 2.10.(2018·云南红河州检测)已知曲线f (x )=x ln x 在点(e ,f (e))处的切线与曲线y =x 2+a 相切,则a =______.答案1-e解析因为f ′(x )=ln x +1,所以曲线f (x )=x ln x 在x =e 处的切线斜率为k =2,则曲线f (x )=x ln x 在点(e ,f (e))处的切线方程为y =2x -e.由于切线与曲线y =x 2+a 相切,故y =x 2+a 可联立y =2x -e ,得x 2-2x +a +e =0,所以由Δ=4-4(a +e)=0,解得a =1-e.11.已知f ′(x ),g ′(x )分别是二次函数f (x )和三次函数g (x )的导函数,且它们在同一平面直角坐标系内的图象如图所示.(1)若f (1)=1,则f (-1)=;(2)设函数h (x )=f (x )-g (x ),则h (-1),h (0),h (1)的大小关系为.(用“<”连接)答案(1)1(2)h (0)<h (1)<h (-1)解析(1)由题图可得f ′(x )=x ,g ′(x )=x 2,设f (x )=ax 2+bx +c (a ≠0),g (x )=dx 3+ex 2+mx +n (d ≠0),则f ′(x )=2ax +b =x ,g ′(x )=3dx 2+2ex +m =x 2,故a =12,b =0,d =13,e =m =0,所以f (x )=12x 2+c ,g (x )=13x 3+n ,由f (1)=1,得c =12,则f (x )=12x 2+12,故f (-1)=1.(2)h(x)=f(x)-g(x)=12x2-13x3+c-n,则有h(-1)=56+c-n,h(0)=c-n,h(1)=16+c-n,故h(0)<h(1)<h(-1).12.已知函数f(x)=x3-4x2+5x-4.(1)求曲线f(x)在点(2,f(2))处的切线方程;(2)求经过点A(2,-2)的曲线f(x)的切线方程.解(1)∵f′(x)=3x2-8x+5,∴f′(2)=1,又f(2)=-2,∴曲线在点(2,f(2))处的切线方程为y+2=x-2,即x-y-4=0.(2)设曲线与经过点A(2,-2)的切线相切于点P(x0,x30-4x20+5x0-4),∵f′(x0)=3x20-8x0+5,∴切线方程为y-(-2)=(3x20-8x0+5)·(x-2),又切线过点P(x0,x30-4x20+5x0-4),∴x30-4x20+5x0-2=(3x20-8x0+5)(x0-2),整理得(x0-2)2(x0-1)=0,解得x0=2或1,∴经过点A(2,-2)的曲线f(x)的切线方程为x-y-4=0或y+2=0.13.已知函数f(x)=e x-mx+1的图象为曲线C,若曲线C存在与直线y=e x垂直的切线,则实数m的取值范围是()D.(e,+∞)答案B解析由题意知,方程f′(x)=-1e有解,即ex-m=-1e有解,即ex=m-1e有解,故只要m-1e>0,即m>1e即可,故选B.14.(2018·泰安模拟)若曲线f(x)=a cos x与曲线g(x)=x2+bx+1在交点(0,m)处有公切线,求a+b的值.解依题意得,f ′(x )=-a sin x ,g ′(x )=2x +b ,f ′(0)=g ′(0),即-a sin 0=2×0+b ,得b =0.又m =f (0)=g (0),即m =a =1,因此a +b =1.15.给出定义:设f ′(x )是函数y =f (x )的导函数,f ″(x )是函数f ′(x )的导函数,若方程f ″(x )=0有实数解x 0,则称点(x 0,f (x 0))为函数y =f (x )的“拐点”.已知函数f (x )=5x +4sin x -cos x 的“拐点”是M (x 0,f (x 0)),则点M ()A .在直线y =-5x 上B .在直线y =5x 上C .在直线y =-4x 上D .在直线y =4x 上答案B 解析由题意,知f ′(x )=5+4cos x +sin x ,f ″(x )=-4sin x +cos x ,由f ″(x 0)=0,知4sin x 0-cos x 0=0,所以f (x 0)=5x 0,故点M (x 0,f (x 0))在直线y =5x 上.16.已知函数f (x )=x -3x.(1)求曲线f (x )过点(0,-3)的切线方程;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,并求此定值.解(1)f ′(x )=1+3x2,设切点为(x 0,y 0),则曲线y =f (x )在点(x 0,y 0)处的切线方程为y -y 0x -x 0),∵切线过(0,-3),∴-30-x 0),解得x 0=2,∴y 0=12,∴所求切线方程为y -12=74(x -2),即y =74x -3.(2)设P (m ,n )为曲线f (x )上任一点,由(1)知过P 点的切线方程为y -n x -m ),即y x -m ),令x =0,得y =-6m,从而切线与直线x =0令y =x ,得y =x =2m ,从而切线与直线y =x 的交点为(2m,2m ),∴点P (m ,n )处的切线与直线x =0,y =x 所围成的三角形的面积S =12·|-6m |·|2m |=6,为定值.。
高中数学复习提纲总 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-第一章集合与简易逻辑集合及其运算一.集合的概念、分类:二.集合的特征:⑴确定性⑵无序性⑶互异性三.表示方法:⑴列举法⑵描述法⑶图示法⑷区间法四.两种关系:从属关系:对象∈、∉集合;包含关系:集合⊆、集合五.三种运算:交集:{|}A B x x A x B =∈∈且并集:{|}A B x x A x B =∈∈或补集:U A {|U }x x x A =∈∉且六.运算性质:⑴A ∅=A ,A ∅=∅.⑵空集是任意集合的子集,是任意非空集合的真子集.⑶若B A ⊆,则A B =A ,A B =B .⑷U A A =()∅,U A A =()U ,U U A =()A . ⑸U U AB =()()U A B (),U U A B =()()U A B ().⑹集合123{,,,,}n a a a a ⋅⋅⋅的所有子集的个数为2n ,所有真子集的个数为21n -,所有非空真子集的个数为22n -,所有二元子集(含有两个元素的子集)的个数为2n C .简易逻辑一.逻辑联结词:1.命题是可以判断真假的语句的语句,其中判断为正确的称为真命题,判断为错误的为假命题.2.逻辑联结词有“或”、“且”、“非”.3.不含有逻辑联结词的命题,叫做简单命题,由简单命题再加上一些逻辑联结词构成的命题叫复合命题.4.真值表:二.四种命题:1.原命题:若p则q逆命题:若P则q,即交换原命题的条件和结论;否命题:若q则p,即同时否定原命题的条件和结论;逆否命题:若┑P则┑q,即交换原命题的条件和结论,并且同时否定.2.四个命题的关系:⑴原命题为真,它的逆命题不一定为真;⑵原命题为真,它的否命题不一定为真;⑶原命题为真,它的逆否命题一定为真.三.充分条件与必要条件1.“若p则q”是真命题,记做p q⇒,“若p则q”为假命题,记做p q,2.若p q⇒,则称p是q的充分条件,q是p的必要条件3.若p q⇒,且p q,则称p是q的充分非必要条件;若p q,且p q⇐,则称p是q的必要非充分条件;若p q⇐,则称p是q的充要条件;⇒,且p q若p q,且p q,则称p是q的既不充分也不必要条件.4.若p的充分条件是q,则q p⇒;若p的必要条件是q,则p q⇒.第二章函数指数与对数运算一.分数指数幂与根式:如果n x a=,则称x是a的n次方根,0的n次方根为0,若0a≠,则当n为奇数时,a的n次方根有1n为偶数时,负数没有n次方根,正数a的n次方根有2个,其中正的n.负的n次方根记做1.负数没有偶次方根;2.两个关系式:n a=||a na n⎧=⎨⎩为奇数为偶数3、正数的正分数指数幂的意义:mna=正数的负分数指数幂的意义:mna-=.4、分数指数幂的运算性质:⑴m n m n a a a +⋅=;⑵m n m n a a a -÷=;⑶()m n mn a a =;⑷()m m m a b a b ⋅=⋅;⑸01a =,其中m 、n 均为有理数,a ,b 均为正整数二.对数及其运算1.定义:若b a N =(0a >,且1a ≠,0)N >,则log a b N =.2.两个对数:⑴常用对数:10a =,10log lg b N N ==;⑵自然对数: 2.71828a e =≈,log ln e b N N ==.3.三条性质:⑴1的对数是0,即log 10a =;⑵底数的对数是1,即log 1a a =;⑶负数和零没有对数.4.四条运算法则:⑴log ()log log a a a MN M N =+;⑵log log log a a a M M N N=-; ⑶log log n a a M n M =;⑷1log log a a M n=. 5.其他运算性质:⑴对数恒等式:log a b a b =; ⑵换底公式:log log log c a c a b b=; ⑶log log log a b a b c c ⋅=;log log 1a b b a ⋅=; ⑷log log m n a a n b b m=. 函数的概念一.映射:设A 、B 两个集合,如果按照某中对应法则f ,对于集合A 中的任意一个元素,在集合B 中都有唯一的一个元素与之对应,这样的对应就称为从集合A 到集合B 的映射.二.函数:在某种变化过程中的两个变量x 、y ,对于x 在某个范围内的每一个确定的值,按照某个对应法则,y 都有唯一确定的值和它对应,则称y 是x 的函数,记做()y f x =,其中x 称为自变量,x 变化的范围叫做函数的定义域,和x 对应的y 的值叫做函数值,函数值y 的变化范围叫做函数的值域.三.函数()y f x =是由非空数集A 到非空数集B 的映射.四.函数的三要素:解析式;定义域;值域.函数的解析式一.根据对应法则的意义求函数的解析式; 例如:已知x x x f 2)1(+=+,求函数)(x f 的解析式.二.已知函数的解析式一般形式,求函数的解析式;例如:已知()f x 是一次函数,且[()]43f f x x =+,函数)(x f 的解析式.三.由函数)(x f 的图像受制约的条件,进而求)(x f 的解析式.函数的定义域一.根据给出函数的解析式求定义域:⑴整式:x R ∈⑵分式:分母不等于0⑶偶次根式:被开方数大于或等于0⑷含0次幂、负指数幂:底数不等于0⑸对数:底数大于0,且不等于1,真数大于0二.根据对应法则的意义求函数的定义域:例如:已知()y f x =定义域为]5,2[,求(32)y f x =+定义域; 已知(32)y f x =+定义域为]5,2[,求()y f x =定义域;三.实际问题中,根据自变量的实际意义决定的定义域.函数的值域一.基本函数的值域问题:二.求函数值域(最值)的常用方法:函数的值域决定于函数的解析式和定义域,因此求函数值域的方法往往取决于函数解析式的结构特征,常用解法有:观察法、配方法、换元法(代数换元与三角换元)、常数分离法、单调性法、不等式法、*反函数法、*判别式法、*几何构造法和*导数法等.反函数一.反函数:设函数()y f x =()x A ∈的值域是C ,根据这个函数中x ,y 的关系,用y 把x 表示出,得到()x y ϕ=.若对于C 中的每一y 值,通过()x y ϕ=,都有唯一的一个x 与之对应,那么,()x y ϕ=就表示y 是自变量,x 是自变量y 的函数,这样的函数()x y ϕ=()y C ∈叫做函数()y f x =()x A ∈的反函数,记作1()x f y -=,习惯上改写成1()y f x -=.二.函数()f x 存在反函数的条件是:x 、y 一一对应.三.求函数()f x 的反函数的方法:⑴求原函数的值域,即反函数的定义域⑵反解,用y 表示x ,得1()x f y -=⑶交换x 、y ,得1()y f x -=⑷结论,表明定义域四.函数()y f x =与其反函数1()y f x -=的关系:⑴函数()y f x =与1()y f x -=的定义域与值域互换.⑵若()y f x =图像上存在点(,)a b ,则1()y f x -=的图像上必有点(,)b a ,即若()f a b =,则1()f b a -=.⑶函数()y f x =与1()y f x -=的图像关于直线y x =对称.函数的奇偶性:一.定义:对于函数()f x 定义域中的任意一个x ,如果满足()()f x f x -=-,则称函数()f x 为奇函数;如果满足()()f x f x -=,则称函数()f x 为偶函数.二.判断函数()f x 奇偶性的步骤:1.判断函数()f x 的定义域是否关于原点对称,如果对称可进一步验证,如果不对称;2.验证()f x 与()f x -的关系,若满足()()f x f x -=-,则为奇函数,若满足()()f x f x -=,则为偶函数,否则既不是奇函数,也不是偶函数. 二.奇函数的图象关于原点对称,偶函数的图象关于y 轴对称.三.已知()f x 、()g x 分别是定义在区间M 、N ()MN ≠∅上的奇(偶)函数,分别根据条件判断下列函数的奇偶性.五.若奇函数()f x 的定义域包含0,则(0)0f =.六.一次函数y kx b =+(0)k ≠是奇函数的充要条件是0b =;二次函数2y ax bx c =++(0)a ≠函数的周期性:一.定义:对于函数)(x f ,如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有()()f x T f x +=,则)(x f 为周期函数,T 为这个函数的一个周期.2.如果函数)(x f 所有的周期中存在一个最小的正数,那么这个最小正数就叫做)(x f 的最小正周期.如果函数()f x 的最小正周期为T ,则函数()f ax 的最小正周期为||T a . 函数的单调性一.定义:一般的,对于给定区间上的函数()f x ,如果对于属于此区间上的任意两个自变量的值1x ,2x ,当x x <时满足:⑴()()f x f x <,则称函数()f x 在该区间上是增函数;⑵()()f x f x >,则称函数()f x 在该区间上是减函数.二.判断函数单调性的常用方法:1.定义法:⑴取值;⑵作差、变形;⑶判断:⑷定论:*2.导数法:⑴求函数f(x)的导数'()f x;⑵解不等式'()0f x>,所得x的范围就是递增区间;⑶解不等式'()0f x<,所得x的范围就是递减区间.3.复合函数的单调性:对于复合函数[()]y f u=,则()=,可根据它们的单调性=,设()u g xy f g x确定复合函数[()]=,具体判断如下表:y f g x4.奇函数在对称区间上的单调性相反;偶函数在对称区间上的单调性相同.函数的图像一.基本函数的图像.二.图像变换:三.函数图像自身的对称四.两个函数图像的对称第三章数列数列的基本概念一.数列是按照一定的顺序排列的一列数,数列中的每一个数都叫做这个数列的项.二.如果数列{}n a 中的第n 项n a 与项数n 之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公事,它实质是定义在正整数集或其有限子集的函数解析式.三.数列的分类:按项的特点可分为递增数列、递减数列、常数列、摇摆数列按项数可分为有穷数列和无穷数列四.数列的前n 项和:1231n n n S a a a a a -=+++⋅⋅⋅++n S 与n a 的关系:1112n n n S n a S S n -=⎧=⎨-≥⎩五.如果已知数列{}n a 的第1项(或前几项),且任一项n a 与它的前一项1n a -(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.递推公式也是给出数列的一种方法.如:在数列{}n a 中,11a =,1112n n a a -=+,其中1112n n a a -=+即为数列{}n a 的递推公式,根据数列的递推公式可以求出数列中的每一项,同时可根据数列的前几项推断出数列{}n a 的通项公式,至于猜测的合理性,可利用数学归纳法进行证明.如上述数列{}n a ,根据递推公式可以得到:232a =,374a =,4158a =,53116a =,进一步可猜测1212n n n a --=. 等差数列一.定义:如果一个数列从第2项起,每一项与前一项的差是同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示.二.通项公式:若已知1a 、d ,则1(1)n a a n d =+-;若已知m a 、d ,则()n m a a n m d =+-三.前n 项和公式:若已知1a ,n a ,则12n n a a S n +=⨯;若已知1a 、d ,则1(1)2n n n S na d -=+ 注:⑴前n 项和公式n S 的推导使用的是倒序相加法的方法.⑵在数列{}n a 中,通项公式n a ,前n 项和公式n S 均是关于项数n 的函数,在等差数列{}n a 通项公式n a 是关于n 的一次函数关系,前n 项和公式n S 是关于n 的没有常数项的二次函数关系.⑶在等差数列中包含1a 、d 、n 、n a 、n S 这五个基本量,上述的公式中均含有4基本量,因此在数列运算中,只需知道其中任意3个,可以求出其余基本量.四.如果a 、b 、c 成等差数列,则称b 为a 与c 的等差中项,且2a cb +=. 五.证明数列{}n a 是等差数列的方法:1.利用定义证明:1n n a a d --=(2)n ≥2.利用等差中项证明:2a cb += 3.利用通项公式证明:n a an b =+4.利用前n 项和公式证明:2n S an bn =+六.性质:在等差数列}{n a 中,1.若某几项的项数成等差数列,则对应的项也成等差数列,即:若2m n k +=,则2m n k a a a +=.2.若两项的项数之和与另两项的项数之和相等,则对应项的和也相等,即:若m n k l +=+,则m n k l a a a a +=+.3.依次相邻每k 项的和仍成等差数列,即:k S ,2k k S S -,32k k S S -成等差数列.4.n a ,1-n a ,2-n a ,…,2a ,1a 仍成等差数列,其公差为d -.三.等比数列一.定义:如果一个数列从第2项起,每一项与前一项的比都是同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,通常用宇母q (0)q ≠表示.二.通项公式:若已知1a 、q ,则n a =11n a q -;若已知m a 、q ,则n a =n m m a q -三.前n 项和公式:当公比1q =时,1n S na =当公比1q ≠时,若已知1a 、n a 、q ,则n S =11n a a q q--若已知1a 、q 、n ,则1(1)1n n a q S q-=- 注:⑴等比数列前n 项和公式n S 的推导使用的是错位相减的方法.⑵在等比数列中包含1a 、q 、n 、n a 、n S 这五个基本量,上述的公式中均含有4基本量,因此在数列运算中,只需知道其中任意3个,可以求出其余基本量.四.若a 、b 、c 成等比数列,则称b 为a 与c 的等比中项,且a 、b 、c 满足关系式b =五.证明数列{}n a 是等比数列的方法:1.利用定义证明:1n n a q a -=(2)n ≥ 2.利用等比中项证明:2b ac =3.利用通项公式证明:n n a aq =六.性质:在等比数列}{n a 中,1.若某几项的项数成等差数列,则对应的项成等比数列,即:若2m n k +=,则2m n k a a a ⋅=2.若两项的项数之和与另两项的项数之和相等,则对应项的积相等,即:若m n k l +=+,则m n k l a a a a ⋅=⋅3.若数列公比1q ≠-,则依次相邻每k 项的和仍成等比数列,即k S ,2k k S S -,32k k S S -成等比数列。
高考数学复习必修1第一章、集合一、基础知识(理解去记)定义1 一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素x 在集合A 中,称x 属于A ,记为A x ∈,否则称x 不属于A ,记作A x ∉。
例如,通常用N ,Z ,Q ,B ,Q+分别表示自然数集、整数集、有理数集、实数集、正有理数集,不含任何元素的集合称为空集,用∅来表示。
集合分有限集和无限集两种。
集合的表示方法有列举法:将集合中的元素一一列举出来写在大括号内并用逗号隔开表示集合的方法,如{1,2,3};描述法:将集合中的元素的属性写在大括号内表示集合的方法。
例如{有理数},}0{>x x 分别表示有理数集和正实数集。
定义2 子集:对于两个集合A 与B ,如果集合A 中的任何一个元素都是集合B中的元素,则A 叫做B 的子集,记为B A ⊆,例如Z N ⊆。
规定空集是任何集合的子集,如果A 是B 的子集,B 也是A 的子集,则称A 与B 相等。
如果A 是B 的子集,而且B 中存在元素不属于A ,则A 叫B 的真子集。
便于理解:B A ⊆包含两个意思:①A 与B 相等 、②A 是B 的真子集定义3 交集,}.{B x A x x B A ∈∈=且 定义4 并集,}.{B x A x x B A ∈∈=或定义5 补集,若},{,1A x I x x A C I A ∉∈=⊆且则称为A 在I 中的补集。
定义6 集合},,{b a R x b x a x <∈<<记作开区间),(b a ,集合},,{b a R x b x a x <∈≤≤记作闭区间],[b a ,R 记作).,(+∞-∞定义7 空集∅是任何集合的子集,是任何非空集合的真子集。
补充知识点 对集合中元素三大性质的理解(1)确定性集合中的元素,必须是确定的.对于集合A 和元素a ,要么a A ∈,要么a A ∉,二者必居其一.比如:“所有大于100的数”组成一个集合,集合中的元素是确定的.而“较大的整数”就不能构成一个集合,因为它的对象是不确定的.再如,“较大的树”、“较高的人”等都不能构成集合.(2)互异性对于一个给定的集合,集合中的元素一定是不同的.任何两个相同的对象在同一集合中时,只能算作这个集合中的一个元素.如:由a ,2a 组成一个集合,则a 的取值不能是0或1.(3)无序性 集合中的元素的次序无先后之分.如:由123,,组成一个集合,也可以写成132,,组成一个集合,它们都表示同一个集合.帮你总结:学习集合表示方法时应注意的问题(1)注意a 与{}a 的区别.a 是集合{}a 的一个元素,而{}a 是含有一个元素a 的集合,二者的关系是{}a a ∈. (2)注意∅与{}0的区别.∅是不含任何元素的集合,而{}0是含有元素0的集合. (3)在用列举法表示集合时,一定不能犯用{实数集}或{}R 来表示实数集R 这一类错误,因为这里“大括号”已包含了“所有”的意思.用特征性质描述法表示集合时,要特别注意这个集合中的元素是什么,它应具备哪些特征性质,从而准确地理解集合的意义.例如:集合{()x y y =,中的元素是()x y ,,这个集合表示二元方程y =集,或者理解为曲线y =集合{x y =中的元素是x ,这个集合表示函数y =x 的取值范围;集合{y y =中的元素是y ,这个集合表示函数y =y 的取值范围;集合{y =中的元素只有一个(方程y =,它是用列举法表示的单元素集合.(4)常见题型方法:当集合中有n 个元素时,有2n 个子集,有2n-1个真子集,有2n-2个非空真子集。
第 1页(共22页)高中数学常用公式及结论1 元素与集合的关系:U x A x C A ∈⇔∉,U x C A x A ∈⇔∉ A A ∅⇔≠∅Ø2德摩根公式 :();()U U U U U U C A B C A C B C A B C A C B ==3包含关系A B ⊆⇔A B A A B B=⇔= U U C B C A ⇔⊆U A C B ⇔=ΦU C A B R ⇔=4元素个数关系:()()card A B cardA cardB card A B =+- ()card A B C cardA cardB cardC =++()()()()card A B card B C card C A card A B C ---+5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有21n -个;非空子集有21n -个;非空的真子集有22n -个6二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠;(2)顶点式2()()(0)h f x a a k x =-+≠;(当已知抛物线的顶点坐标(,)h k 时,设为此式)(3)零点式12()()()(0)f x a x x x a x =--≠;(当已知抛物线与x 轴的交点坐标为12(,0),(,0)x x 时,设为此式)(4)切线式:02()()(()),0x kx d f x a x a =-+≠+(当已知抛物线与直线y kx d =+相切且切点的横坐标为0x 时,设为此式)7解连不等式()N f x M <<常有以下转化形式()N f x M <<⇔[()][()]0f x M f x N --<⇔()0()f x NM f x ->-()()f x Nf x M ⇔><⎧⎨⎩8方程)0(02≠=++a c bx ax 在),(21k k 内有且只有一个实根,等价于12()()0f k f k <或122240b k k ab ac ⎧<-<⎪⎨⎪∆=-=⎩ 9闭区间上的二次函数的最值二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在ab x 2-=处及区间的两端点处取得,具体如下:(1)当a>0时,若[]q p abx ,2∈-=,则{}m i n m ax m a x ()(),()(),(2bf x f f x f p f q a =-=; []q p abx ,2∉-=,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =(2)当a<0时,若[]q p abx ,2∈-=,则{}min ()min (),()f x f p f q =, 若[]q p abx ,2∉-=,则{}max()ma x ()f x fp f q=,{}min()min (),()f x f p f q = 10一元二次方程2()f x x px q =++=0的实根分布(1)方程0)(=x f 在区间),(+∞m 内有根的充要条件为()0f m <或2402p q pm ⎧-≥⎪⎨->⎪⎩; (2)方程0)(=x f 在区间(,)m n 内有根的充要条件为第 2页(共22页)()()0f m f n <或22240()0p m n m p q f n +⎧<-<⎪⎪-≥⎨⎪>⎪⎩或22240()0m n p n p q f m +⎧≤-<⎪⎪-≥⎨⎪>⎪⎩;(3)方程0)(=x f 在区间(,)m -∞内有根的充要条件为()0f m <或2402p q pm ⎧-≥⎪⎨-<⎪⎩ 11定区间上含参数的不等式恒成立(或有解)的条件依据(1)在给定区间),(+∞-∞的子区间L (形如[]βα,,(]β,∞-,[)+∞,α不同)上含参数的不等式()f x t ≥(t 为参数)恒成立的充要条件是m i n (),()f x t x L ≥∈ (2)在给定区间),(+∞-∞的子区间L 上含参数的不等式()f x t ≤(t 为参数)恒成立的充要条件是max (),()f x t x L ≤∈(3) 在给定区间),(+∞-∞的子区间L 上含参数的不等式()f x t ≥(t 为参数)的有解充要条件是max (),()f x t x L ≥∈(4) 在给定区间),(+∞-∞的子区间L 上含参数的不等式()f x t ≤(t 为参数)有解的充要条件是min (),()f x t x L ≤∈12真值表13.常见结论的否定形式原结论 反设词 原结论 反设词 是 不是 至少有一个 一个也没有都是 不都是 至多有一个 至少有两个大于 不大于 至少有n 个 至多有(1n -)个 小于不小于至多有n 个 至少有(1n +)个对所有x ,成立存在某x ,不成立p 或q p ⌝且q ⌝ 对任何x ,不成立 存在某x ,成立p 且qp ⌝或q ⌝14四种命题的相互关系:原命题若p 则q 否命题若┐p 则┐q逆命题若q 则p逆否命题若┐q 则┐p互为逆否互逆否互为逆否互互逆否互15充要条件(记p 表示条件,q 表示结论) (1)充分条件:若p q ⇒,则p 是q 充分条件(2)必要条件:若q p ⇒,则p 是q 必要条件(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然 16函数的单调性的等价关系 (1)设[]1212,,,x x a b x x ∈≠那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数(2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增p q 非pp或q p且q真 真 假 真 真 真 假 假 真 假 假 真 真 真 假 假 假 真 假 假第 3页(共22页)函数;如果0)(<'x f ,则)(x f 为减函数17如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数)(x f 和)(x g 都是增函数,则在公共定义域内,和函数)()(x g x f +也是增函数; 如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数; 如果函数)(u f y =和)(x g u =在其对应的定义域上都是增函数,则复合函数)]([x g f y =是增函数;如果函数)(u f y =和)(x g u =在其对应的定义域上一个是减函数而另一个是增函数,则复合函数)]([x g f y =是减函数18.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数19常见函数的图像:k<0k>0y=kx+boyxa<0a>0y=ax 2+bx+coyx-1-212y=x+1xo yx0<a<1a>11y=a xoyx0<a<1a>11y=log a xoyx20对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是2ba x +=;两个函数)(a x f y +=与)(xb f y -= 的图象关于直线2ba x +=对称21若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2(a对称;若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数22.多项式函数110()n n n n P x a x a x a --=+++ 的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零23函数()y f x =的图象的对称性(1)函数()y f x =的图象关于直线x a =对称()(f a x f a x ⇔+=-(2)f a x f x⇔-= (2)函数()y f x =的图象关于直线2a bx +=对称()(f a m x f bm x ⇔+=- ()()f a b mx f mx ⇔+-= 24两个函数图象的对称性(1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称(2)函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a bx m+=对称(3)函数)(x f y =和)(1x f y -=的图象关于直线y=x 对称25若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象26.互为反函数的两个函数的关系:a b f b a f =⇔=-)()(127函数()y f x =与其反函数1()y f x -=的图像的交点不一定全在直线y x =上28几个常见的函数方程第 4页(共22页)(1)正比例函数()f x cx =⇔()()(),(1)f x y f x f y f c +=+=(2)指数函数()x f x a =⇔()()(),(1)0f x y f x f y f a +==≠ (3)对数函数()log a f x x =⇔()()(),()1(0,1)f xy f x f y f a a a =+=>≠(4)幂函数()f x x α=⇔()()(),(1)f xy f x f y f α'==(5)余弦函数()cos f x x =,正弦函数()s i g x x =,()()()()()f x y f x f y g x g y -=+,0sin (0)1,lim 1x xf x→==29几个函数方程的周期(约定a>0)(1))()(a x f x f +=,则)(x f 的周期T=a ;(2))0)(()(1)(≠=+x f x f a x f ,或1()()f x a f x +=-(()0)f x ≠,则)(x f 的周期T=2a ;(3))0)(()(11)(≠+-=x f a x f x f ,则)(x f 的周期T=3a ; (4))()(1)()()(212121x f x f x f x f x x f -+=+且1212()1(()()1,0||2)f a f x f x x x a =⋅≠<-<,则)(x f 的周期T=4a ; 30分数指数幂(1)1mn n m a a =(0,,a m n N *>∈,且1n >)(2)1m n m na a -=(0,,a m n N *>∈,且1n >)31.根式的性质 (1)()n n a a =(2)当n 为奇数时,n n a a =;当n 为偶数时,,0||,0n n a a a a a a ≥⎧==⎨-<⎩32.有理指数幂的运算性质(1) (0,,)r s r s a a a a r s Q +⋅=>∈(2) ()(0,,)r s rs a a a r s Q =>∈(3)()(0,0,)r r r ab a b a b r Q =>>∈注: 若a >0,p 是一个无理数,则a p表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用33指数式与对数式的互化式:log b a N b a N =⇔=(0,1,0)a a N >≠>34对数的换底公式 :log log log m a m NN a= (0a >,且1a ≠,0m >,且1m ≠, 0N >)对数恒等式:log a N a N =(0a >,且1a ≠,0N >)推论 log log m na a nb b m=(0a >,且1a ≠, 0N >) 35.对数的四则运算法则:若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a MN M N =+; (2) log log log a a a MM N N=-; (3)log log ()n a a M n M n R =∈;(4)log log (,)m n a a nN N n m R m=∈ 36设函数)0)((log )(2≠++=a c bx ax x f m ,记ac b 42-=∆若)(x f 的定义域为R ,则0>a 且0<∆;若)(x f 的值域为R ,则0>a ,且0≥∆37 对数换底不等式及其推广:设1n m >>,0p >,0a >,且1a ≠,则(1)log ()log m p m n p n ++< (2)2log log log 2a a a m nm n +<第 5页(共22页)38 平均增长率的问题(负增长时0p <)如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)xy N p =+39数列的通项公式与前n 项的和的关系:11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++ )40等差数列的通项公式:*11(1)()n a a n d dn a d n N =+-=+-∈;其前n 项和公式为:1()2n n n a a s +=1(1)2n n na d -=+211()22d n a d n =+-41等比数列的通项公式:1*11()n n n aa a q q n N q-==⋅∈;其前n 项的和公式为11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩ 或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩42等比差数列{}n a :11,(0)n n a qa d a b q +=+=≠的通项公式为1(1),1(),11n n n b n d q a bq d b q d q q -+-=⎧⎪=+--⎨≠⎪-⎩;其前n 项和公式为:(1),(1)1(),(1)111n n nb n n d q s d q db n q q q q +-=⎧⎪=-⎨-+≠⎪---⎩43分期付款(按揭贷款) :每次还款(1)(1)1nnab b x b +=+-元(贷款a 元,n 次还清,每期利率为b )44.常见三角不等式(1)若(0,)2x π∈,则sin tan x x x <<(2) 若(0,)2x π∈,则1sin cos 2x x <+≤(3) |sin ||cos |1x x +≥45同角三角函数的基本关系式 :22sin cos 1θθ+=,tan θ=θθcos sin ,tan 1cot θθ⋅=46正弦、余弦的诱导公式(奇变偶不变,符号看象限)212(1)sin ,()sin()2(1)s ,()nn n n co n απαα-⎧-⎪+=⎨⎪-⎩为偶数为奇数,212(1)s ,()s()2(1)sin ,()nn co n n co n απαα+⎧-⎪+=⎨⎪-⎩为偶数为奇数 47和角与差角公式sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±= ;tan tan tan()1tan tan αβαβαβ±±=22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式); 22cos()cos()cos sin αβαβαβ+-=-sin cos a b αα+=22sin()a b αϕ++(辅助角ϕ所在象限由点(,)a b 的象限决定,tan baϕ= )48二倍角公式及降幂公式第 6页(共22页)sin 2sin cos ααα=22tan 1tan αα=+ 2222cos2cos sin 2cos 112sin ααααα=-=-=-221tan 1tan αα-=+22tan tan 21tan ααα=- 221cos 21cos 2sin ,cos 22αααα-+==49 三倍角公式3sin 33sin 4sin 4sin sin()sin()33ππθθθθθθ=-=-+3cos34cos 3cos 4cos cos()cos()33ππθθθθθθ=-=-+323tan tan tan 3tan tan()tan()13tan 33θθππθθθθθ-==-+- 50三角函数的周期公式函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0)的周期2||T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A ≠0)的周期||T πω=51正弦定理 :2sin sin sin a b cR A B C ===(R 为ABC ∆外接圆的半径)2sin ,2sin ,2sin a R A b R B c R C ⇔===::sin :sin :sin a b c A B C ⇔=52余弦定理2222cos a b c bc A =+-;2222cos b c a ca B =+-;2222cos c a b ab C =+-53面积定理(1)111222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高)(2)111sin sin sin 222S ab C bc A ca B === (3)221(||||)()2OAB S OA OB OA OB ∆=⋅-⋅ 54三角形内角和定理在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A B π+⇔=-222()C A B π⇔=-+55 简单的三角方程的通解sin (1)arcsin (,||1)k x a x k a k Z a π=⇔=+-∈≤ s 2arccos (,||1)co x a x k a k Z a π=⇔=±∈≤tan arctan (,)x a x k a k Z a R π=⇒=+∈∈ 特别地,有sin sin (1)()k k k Z αβαπβ=⇔=+-∈ s cos 2()co k k Z αβαπβ=⇔=±∈tan tan ()k k Z αβαπβ=⇒=+∈ 56最简单的三角不等式及其解集sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ>≤⇔∈++-∈sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ<≤⇔∈--+∈ cos (||1)(2arccos ,2arccos ),x a a x k a k a k Z ππ>≤⇔∈-+∈cos (||1)(2arccos ,22arccos ),x a a x k a k a k Z πππ<≤⇔∈++-∈tan ()(arctan ,),2x a a R x k a k k Z πππ>∈⇒∈++∈tan ()(,arctan ),2x a a R x k k a k Z πππ<∈⇒∈-+∈57实数与向量的积的运算律:设λ、μ为实数,那么(1) 结合律:λ(μa )=(λμ) a;第 7页(共22页)(2)第一分配律:(λ+μ) a =λa +μa;(3)第二分配律:λ(a +b )=λa+λb 58向量的数量积的运算律:(1) a ·b= b ·a (交换律);(2)(λa )·b = λ(a ·b )=λa ·b =a·(λb );(3)(a +b )·c = a ·c+b ·c 59平面向量基本定理如果1e 、2e是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a =λ11e +λ22e.不共线的向量1e 、2e叫做表示这一平面内所有向量的一组基底.60.向量平行的坐标表示设a =11(,)x y ,b =22(,)x y ,且b ≠0 ,则ab (b ≠0)12210x y x y ⇔-= 53 a 与b 的数量积(或内积):a ·b =|a ||b|cos θ61 a ·b的几何意义:数量积a ·b 等于a 的长度|a|与b 在a 的方向上的投影|b |cos θ的乘积.62平面向量的坐标运算(1)设a =11(,)x y ,b =22(,)x y ,则a +b=1212(,)x x y y ++(2)设a =11(,)x y ,b =22(,)x y ,则a -b=1212(,)x x y y --(3)设A 11(,)x y ,B22(,)x y ,则2121(,)AB OB OA x x y y =-=--(4)设a =(,),x y R λ∈,则λa=(,)x y λλ(5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212()x x y y +63两向量的夹角公式121222221122cos ||||x x y y a ba b x y x yθ+⋅==⋅+⋅+ (a=11(,)x y ,b =22(,)x y )64平面两点间的距离公式,A B d =||AB AB AB =⋅222121()()x x y y =-+-(A 11(,)x y ,B 22(,)x y )65向量的平行与垂直 :设a=11(,)x y ,b =22(,)x y ,且b ≠0 ,则a ||b ⇔b =λa12210x y x y ⇔-=a ⊥b (a ≠0 )⇔ a ·b=012120x x y y ⇔+=66线段的定比分公式 :设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12PP 的分点, λ是实数,且12PP PP λ=,则121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩⇔121OP OP OP λλ+=+ ⇔12(1)OP tOP t OP =+- (11t λ=+)67三角形的重心坐标公式△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC的重心的坐标是123123(,)33x x x y y y G ++++ 68点的平移公式 ''''x x h x x h y y k y y k⎧⎧=+=-⎪⎪⇔⎨⎨=+=-⎪⎪⎩⎩''OP OP PP ⇔=+ 注:图形F 上的任意一点P(x ,y)在平移后图形'F 上的对应点为'''(,)P x y ,且'PP的坐标为(,)h k 69“按向量平移”的几个结论(1)点(,)P x y 按向量a=(,)h k 平移后得到点'(,)P x h y k ++第 8页(共22页)(2) 函数()y f x =的图象C 按向量a=(,)h k 平移后得到图象'C ,则'C 的函数解析式为()y f x h k =-+(3) 图象'C 按向量a=(,)h k 平移后得到图象C ,若C 的解析式()y f x =,则'C 的函数解析式为()y f x h k =+-(4)曲线C :(,)0f x y =按向量a=(,)h k 平移后得到图象'C ,则'C 的方程为(,)0f x h y k --=(5) 向量m =(,)x y 按向量a=(,)h k 平移后得到的向量仍然为m=(,)x y70 三角形五“心”向量形式的充要条件设O 为ABC ∆所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则(1)O 为ABC ∆的外心222OA OB OC ⇔==(2)O 为ABC ∆的重心0OA OB OC ⇔++=(3)O 为ABC ∆的垂心OA OB OB OC OC OA ⇔⋅=⋅=⋅(4)O 为ABC ∆的内心0aOA bOB cOC ⇔++=(5)O 为ABC ∆的A ∠的旁心aOA bOB cOC ⇔=+71常用不等式:(1),a b R ∈⇒222a b ab +≥(当且仅当a =b 时取“=”号).(2),a b R +∈⇒2a bab +≥(当且仅当a =b 时取“=”号). (3)3333(0,0,0).a b c abc a b c ++≥>>>(4)柯西不等式:22222()()(),,,,.a b c d ac bd a b c d R ++≥+∈ (5)b a b a b a +≤+≤-(6)22222ab a b a bab a b ++≤≤≤+(当且仅当a =b 时取“=”号) 72极值定理:已知y x ,都是正数,则有(1)若积xy 是定值p ,则当y x =时和y x +有最小值p 2;(2)若和y x +是定值s ,则当y x =时积xy 有最大值241s(3)已知,,,a b x y R +∈,若1ax by +=则有21111()()2()by ax ax by a b a b ab a b x y x y x y+=++=+++≥++=+(4)已知,,,a b x y R +∈,若1a bx y +=则有2()()2()a b ay bxx y x y a b a b ab a b x y x y+=++=+++≥++=+73一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->,如果a 与2ax bx c ++同号,则其解集在两根之外;如果a 与2ax bx c ++异号,则其解集在两根之间简言之:同号两根之外,异号两根之间121212()()0()x x x x x x x x x <<⇔--<<;121212,()()0()x x x x x x x x x x <>⇔--><或 74含有绝对值的不等式 :当a> 0时,有 22x a x a a x a <⇔<⇔-<<22x a x a x a >⇔>⇔>或x a <-75无理不等式(1)()0()()()0()()f x f x g x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩(2)2()0()0()()()0()0()[()]f x f x f x g x g x g x f x g x ≥⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或2()0()0()[()]()0g x f x f x g x g x ≥≥⎧⎧⇔⎨⎨><⎩⎩或第 9页(共22页)(3)2()0()()()0()[()]f x f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩76指数不等式与对数不等式 (1)当1a >时,()()()()f x g x a a f x g x >⇔>; ()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩(2)当01a <<时,()()()()f x g x a a f x g x >⇔<; ()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩77斜率公式2121y yk x x -=-(111(,)P x y 、222(,)P x y )78直线的五种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距)(3)两点式 112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y(1212,x x y y ≠≠))两点式的推广:211211()()()()0x x y y y y x x -----=(无任何限制条件!)(4)截距式1x ya b+=(a b 、分别为直线的横、纵截距,00a b ≠≠、) (5)一般式 0Ax By C ++=(其中A 、B 不同时为0) 79两条直线的平行和垂直(1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ⇔=≠; ②12121l l k k ⊥⇔=-(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零,①11112222||A B C l l A B C ⇔=≠;②1212120l l A A B B ⊥⇔+=; 80夹角公式(1)2121tan ||1k kk k α-=+ (111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan ||A B A B A A B B α-=+(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠)直线12l l ⊥时,直线l 1与l 2的夹角是2π81 1l 到2l 的角公式(1)2121tan 1k kk k α-=+(111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan A B A B A A B B α-=+(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠)直线12l l ⊥时,直线l 1到l 2的角是2π82.四种常用直线系方程及直线系与给定的线段相交: (1)定点直线系方程:经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k 是待定的系数; 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数.(2)共点直线系方程:经过两直线1111:0l A x B y C ++=,2222:0l A x B y C ++=的交点的直线系方程为第 10页(共22页)111222()()0A x B y C A x B y C λ+++++=(除2l ),其中λ是待定的系数.(3)平行直线系方程:直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.与直线0Ax By C ++=平行的直线系方程是0Ax By λ++=(0λ≠),λ是参变量.(4)垂直直线系方程:与直线0Ax By C ++= (A ≠0,B ≠0)垂直的直线系方程是0Bx Ay λ-+=,λ是参变量.(5)直线系(,,)F x y λ=与线段1122,(,),(,)A B A x y B x y相交⇔1122(,,)(,,)0F x yF x y λλ⋅≤ 83点到直线的距离 :0022||Ax By C d A B++=+(点00(,)P x y ,直线l :0Ax By C ++=)84 0Ax By C ++>或0<所表示的平面区域设直线:0l Ax By C ++=,则0Ax B y C ++>或0<所表示的平面区域是:若0B ≠,当B 与Ax By C ++同号时,表示直线l 的上方的区域;当B 与Ax By C ++异号时,表示直线l 的下方的区域简言之,同号在上,异号在下若0B =,当A 与Ax By C ++同号时,表示直线l 的右方的区域;当A 与Ax By C ++异号时,表示直线l 的左方的区域 简言之,同号在右,异号在左85 111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域 111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域是两直线1110A x B y C ++=和2220A x B y C ++=所成的对顶角区域(上下或左右两部分)86 圆的四种方程(1)圆的标准方程 222()()x a y b r -+-=(2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0)(3)圆的参数方程 cos sin x a r y b r θθ=+⎧⎨=+⎩(4)圆的直径式方程 1212()()()()0x x x x y y y y --+--=(圆的直径的端点是11(,)A x y 、22(,)B x y )87 圆系方程(1)过点11(,)A x y ,22(,)B x y 的圆系方程是1212112112()()()()[()()()()]0x x x x y y y y x x y y y y x x λ--+--+-----=1212()()()()()0x x x x y y y y ax by c λ⇔--+--+++=,其中0ax by c ++=是直线AB 的方程,λ是待定的系数.(2)过直线l :0Ax By C ++=与圆C :220x y Dx Ey F ++++=的交点的圆系方程是22()0x y Dx Ey F Ax By C λ+++++++=,λ是待定的系数.(3) 过圆1C :221110x y D x E y F ++++=与圆2C :222220x y D x E y F ++++=的交点的圆系方程是2222111222()0x y D x E y F x y D x E y F λ+++++++++=,λ是待定的系数.特别地,当1λ=-时,2222111222()0x y D x E y F x y D x E y F λ+++++++++=就是121212()()()0D D x E E y F F -+-+-=表示两圆的公共弦所在的直线方程88点与圆的位置关系:点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种若2200()()d a x b y =-+-,则d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内89直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种(22BA C Bb Aa d +++=):第 11页(共22页)ddd相离外切相交内切内含r 1+r 2r 2-r 1od0<∆⇔⇔>相离r d ;0=∆⇔⇔=相切r d ;0>∆⇔⇔<相交r d90两圆位置关系的判定方法:设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21条公切线外离421⇔⇔+>r r d ;条公切线外切321⇔⇔+=r r d ;条公切线相交22121⇔⇔+<<-r r d r r ;条公切线内切121⇔⇔-=r r d ; 无公切线内含⇔⇔-<<210r r d91圆的切线方程及切线长公式(1)已知圆220x y Dx Ey F ++++=.①若已知切点00(,)x y 在圆上,则切线只有一条,其方程是0000()()022D x xE y y x x y yF ++++++= 当00(,)x y 圆外时, 0000()()022D x xE y y x x y yF ++++++=表示过两个切点的切点弦方程.求切点弦方程,还可以通过连心线为直径的圆与原圆的公共弦确定②过圆外一点的切线方程可设为00()y y k x x -=-,再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.③斜率为k 的切线方程可设为y kx b =+,再利用相切条件求b ,必有两条切线.(2)已知圆222x y r +=.①过圆上的000(,)P x y 点的切线方程为200x x y y r +=; ②斜率为k 的圆的切线方程为21y kx r k =±+(3) 过圆220x y Dx Ey F ++++=外一点00(,)x y 的切线长为220000l x y Dx Ey F =++++92椭圆22221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ=⎧⎨=⎩ 离心率221c b e a a==-,准线到中心的距离为2a c,焦点到对应准线的距离(焦准距)2b p c = 通径的一半(焦参数):2b a93椭圆22221(0)x y a b a b+=>>焦半径公式及两焦半径与焦距构成三角形的面积21()a PF e x a ex c =+=+,22()a PF e x a ex c =-=-;1221tan 2F PF F PFS b ∆∠=94.椭圆的的内外部(1)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的内部2200221x y a b⇔+<(2)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的外部2200221x y a b⇔+>95 椭圆的切线方程(1)椭圆22221(0)x y a b a b+=>>上一点00(,)P x y 处的切线方程是00221x x y ya b+=第 12页(共22页)(2)过椭圆22221x ya b+=外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b+= (3)椭圆22221(0)x y a b a b+=>>与直线0Ax By C ++=相切的条件是22222A a B b c +=96双曲线22221(0,0)x y a b a b -=>>的离心率221c b e a a ==+,准线到中心的距离为2a c,焦点到对应准线的距离(焦准距)2b pc = 通径的一半(焦参数):2b a焦半径公式21|()|||a PF e x a ex c =+=+,22|()|||a PF e x a ex c=-=-,两焦半径与焦距构成三角形的面积1221cot 2F PF F PFS b ∆∠=97双曲线的内外部(1)点00(,)P x y 在双曲线22221(0,0)x y a b a b-=>>的内部2200221x y a b⇔-> (2)点00(,)P x y 在双曲线22221(0,0)x y a b a b-=>>的外部2200221x y a b⇔-< 98双曲线的方程与渐近线方程的关系(1)若双曲线方程为12222=-by a x ⇒渐近线方程:22220x y a b -=⇔x ab y ±= (2)若渐近线方程为x aby ±=⇔0=±b y a x ⇒双曲线可设为λ=-2222by a x (3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222by a x(0>λ,焦点在x 轴上,0<λ,焦点在y 轴上) (4) 焦点到渐近线的距离总是b 99 双曲线的切线方程(1)双曲线22221(0,0)x y a b a b-=>>上一点00(,)P x y 处的切线方程是00221x x y ya b-= (2)过双曲线22221x y a b-=外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b-= (3)双曲线22221x y a b-=与直线0Ax By C ++=相切的条件是22222A a B b c -=100 抛物线px y 22=的焦半径公式抛物线22(0)y px p =>焦半径02pCF x =+过焦点弦长p x x px p x CD ++=+++=212122101抛物线px y 22=上的动点可设为P ),2(2 y py或2(2,2)P pt pt第 13页(共22页)P (,)x y ,其中 22y px =102二次函数2224()24b ac b y ax bx c a x a a-=++=++(0)a ≠的图象是抛物线:(1)顶点坐标为24(,)24b ac b a a--;(2)焦点的坐标为241(,)24b ac b a a-+-; (3)准线方程是2414ac b y a--=103以抛物线上的点为圆心,焦半径为半径的圆必与准线相切;以抛物线焦点弦为直径的圆,必与准线相切;以抛物线的焦半径为直径的圆必与过顶点垂直于轴的直线相切104 抛物线的切线方程(1)抛物线px y 22=上一点00(,)P x y 处的切线方程是00()y y p x x =+(2)过抛物线px y 22=外一点00(,)P x y 所引两条切线的切点弦方程是00()y y p x x =+(3)抛物线22(0)y px p =>与直线0Ax By C ++=相切的条件是22pB AC =105两个常见的曲线系方程 (1)过曲线1(,)0f x y =,2(,)0f x y =的交点的曲线系方程是12(,)(,)0f x y f x y λ+=(λ为参数)(2)共焦点的有心圆锥曲线系方程22221x y a k b k+=--,其中22max{,}k a b <当22min{,}k a b <时,表示椭圆; 当2222min{,}max{,}a b k a b <<时,表示双曲线106直线与圆锥曲线相交的弦长公式 221212()()AB x x y y =-+-或2222211212(1)()||1tan ||1t AB k x x x x y y co αα=+-=-+=-+(弦端点A ),(),,(2211y x B y x ,由方程⎩⎨⎧=+=0)y ,x (F bkx y 消去y 得到02=++c bx ax ,0∆>,α为直线AB 的倾斜角,k 为直线的斜率,2121212||()4x x x x x x -=+-)107圆锥曲线的两类对称问题(1)曲线(,)0F x y =关于点00(,)P x y 成中心对称的曲线是00(2-,2)0F x x y y -=(2)曲线(,)0F x y =关于直线0Ax By C ++=成轴对称的曲线是22222()2()(,)0A Ax By C B Ax By C F x y A B A B ++++--=++特别地,曲线(,)0F x y =关于原点O 成中心对称的曲线是(,)0F x y --=曲线(,)0F x y =关于直线x 轴对称的曲线是(,)0F x y -= 曲线(,)0F x y =关于直线y 轴对称的曲线是(,)0F x y -= 曲线(,)0F x y =关于直线y x =轴对称的曲线是(,)0F y x =曲线(,)0F x y =关于直线y x =-轴对称的曲线是(,)0F y x --=108圆锥曲线的第二定义:动点M 到定点F 的距离与到定直线l 的距离之比为常数e ,若01e <<,M 的轨迹为椭圆;若1e =,M 的轨迹为抛物线;若1e >,M 的轨迹为双曲线109.证明直线与直线的平行的思考途径 (1)转化为判定共面二直线无交点; (2)转化为二直线同与第三条直线平行; (3)转化为线面平行; (4)转化为线面垂直; (5)转化为面面平行110.证明直线与平面的平行的思考途径 (1)转化为直线与平面无公共点;第 14页(共22页)(2)转化为线线平行; (3)转化为面面平行111.证明平面与平面平行的思考途径 (1)转化为判定二平面无公共点; (2)转化为线面平行; (3)转化为线面垂直112.证明直线与直线的垂直的思考途径 (1)转化为相交垂直; (2)转化为线面垂直;(3)转化为线与另一线的射影垂直; (4)转化为线与形成射影的斜线垂直 113.证明直线与平面垂直的思考途径(1)转化为该直线与平面内任一直线垂直; (2)转化为该直线与平面内相交二直线垂直; (3)转化为该直线与平面的一条垂线平行; (4)转化为该直线垂直于另一个平行平面 114.证明平面与平面的垂直的思考途径 (1)转化为判断二面角是直二面角; (2)转化为线面垂直;(3) 转化为两平面的法向量平行115空间向量的加法与数乘向量运算的运算律(1)加法交换律:a +b =b +a.(2)加法结合律:(a +b )+c =a+(b +c ).(3)数乘分配律:λ(a +b )=λa+λb .116平面向量加法的平行四边形法则向空间的推广始点相同且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量117共线向量定理对空间任意两个向量a 、b (b ≠0 ),a ∥b ⇔存在实数λ使a=λb .P A B 、、三点共线⇔||AP AB ⇔AP t AB = ⇔(1)OP t OA tOB =-+||AB CD ⇔AB、CD 共线且AB CD 、不共线⇔A B t C D= 且AB CD 、不共线118共面向量定理向量p与两个不共线的向量a 、b 共面的⇔存在实数对,x y ,使p xa yb =+.推论 空间一点P 位于平面MAB 内的⇔存在有序实数对,x y ,使MP xMA yMB =+ ,或对空间任一定点O ,有序实数对,x y ,使OP OM xMA yMB =++119对空间任一点O 和不共线的三点A 、B 、C ,满足O P x O A y O B z =++(x y z k ++=),则当1k =时,对于空间任一点O ,总有P 、A 、B 、C 四点共面;当1k ≠时,若O ∈平面ABC ,则P 、A 、B 、C 四点共面;若O ∉平面ABC ,则P 、A 、B 、C 四点不共面.C A B 、、、D 四点共面⇔AD 与AB、AC 共面⇔A Dx A B =+⇔ (1)OD x y OA xOB yOC =--++(O ∉平面ABC )120空间向量基本定理如果三个向量a、b 、c 不共面,那么对空间任一向量b ,存在一个唯一的有序实数组x ,y ,z ,使p=x a +y b +z c .推论 设O 、A 、B 、C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数x ,y ,z ,使OP xOA yOB zOC =++121射影公式已知向量AB =a 和轴l ,e是l 上与l 同方向的单位向量作A 点在l 上的射影A ',作B 点在l 上的射影B ',则||cos ,A B AB a e a e ''=<>=⋅ 122向量的直角坐标运算设a=123(,,)a a a ,b =123(,,)b b b 则第 15页(共22页)αθθ2θ1A BD C(1) a +b =112233(,,)a b a b a b +++; (2) a -b=112233(,,)a b a b a b ---;(3)λa=123(,,)a a a λλλ (λ∈R);(4) a ·b=112233a b a b a b ++; 123设A 111(,,)x y z ,B 222(,,)x y z ,则 AB OB OA =-= 212121(,,)x x y y z z ---124.空间的线线平行或垂直设111(,,)a x y z =r ,222(,,)b x y z =r,则a b r r P ⇔(0)a b b λ=≠r r r r ⇔121212x x y y z zλλλ=⎧⎪=⎨⎪=⎩;a b ⊥r r ⇔0a b ⋅=r r⇔1212120x x y y z z ++=125夹角公式设a=123(,,)a a a ,b =123(,,)b b b ,则112233222222123123cos ,a b a b a b a b a a ab b b++<>=++++推论 2222222112233123123()()()a b a b a b a a a b b b ++≤++++,此即三维柯西不等式126 正棱锥的侧面与底面所成的角为θ,则cos SS θ=底面侧面特别地,对于正四面体每两个面所成的角为θ,有1cos 3θ= 127.异面直线所成角cos |cos ,|a b θ=r r =121212222222111222||||||||x x y y z z a b a b x y z x y z ++⋅=⋅++⋅++r rr r(其中θ(090θ<≤oo)为异面直线a b ,所成角,,a b r r分别表示异面直线a b ,的方向向量)128直线AB 与平面所成角sin ||||AB m arc AB m β⋅=(m为平面α的法向量) 129若ABC ∆所在平面β与过若AB 的平面α成的角θ,另两边AC ,BC 与平面α成的角分别是1θ、2θ,A B 、为ABC ∆的两个内角,则2222212sin sin (sin sin )sin A B θθθ+=+特别地,当90ACB ∠= 时,有22212sin sin sin θθθ+=130若ABC ∆所在平面β与过AB 的平面α成的角θ,另两边AC ,BC与平面α成的角分别是1θ、2θ,''A B 、为ABO ∆的两个内角,则222'2'212tan tan (sin sin )tan A B θθθ+=+特别地,当90AOB ∠= 时,有22212sin sin sin θθθ+=131二面角l αβ--的平面角(根据具体图形确定是锐角或是钝角)cos ||||m n arc m n θ⋅= 或cos ||||m narc m n π⋅-(m ,n 为平面α,β的法向量)132三余弦定理设AC 是α内的任一条直线,AD 是α的一条斜线AB 在α内的射影,且BD ⊥AD ,垂足为D ,设AB 与α(AD)所成的角为1θ, AD 与AC 所成的角为2θ, AB 与AC 所成的角为θ.则12cos cos cos θθθ=133 三射线定理若夹在平面角为ϕ的二面角间的线段与二面角的两个半平面所成的角是1θ,2θ,与二面角的棱所成的角是θ,则有22221212sin sin sin sin 2sin sin cos ϕθθθθθϕ=+- ;第 16页(共22页)1212||180()θθϕθθ-≤≤-+(当且仅当90θ=时等号成立)134空间两点间的距离公式 若A 111(,,)x y z ,B 222(,,)x y z ,则,A B d =||AB AB AB =⋅222212121()()()x x y y z z =-+-+-135 点Q 到直线l 距离221(||||)()||h a b a b a =-⋅ (点P 在直线l 上,a 为直线l 的方向向量,b =PQ )136异面直线间的距离||||CD n d n ⋅=(12,l l 是两异面直线,其公垂向量为n ,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离)137点B 到平面α的距离||||AB n d n ⋅=(n 为平面α的法向量,A α∈,AB 是α的一条斜线段)138异面直线上两点距离公式2222cos d h m n mn θ=++ 222'2cos ,d h m n mn EA AF =++-2222cos d h m n mn ϕ=++-('E AA F ϕ=--)(两条异面直线a 、b 所成的角为θ,其公垂线段'AA 的长度为h 在直线a 、b 上分别取两点E 、F ,'A E m =,AF n =,EF d =)139三个向量和的平方公式2222()222a b c a b c a b b c c a ++=+++⋅+⋅+⋅ 2222||||cos ,2||||cos ,2||||cos ,a b c a b a b b c b c c a c a =+++⋅+⋅+⋅140 长度为l 的线段在三条两两互相垂直的直线上的射影长分别为123l l l 、、,夹角分别为123θθθ、、,则有22123l l l l =++222123c o s c o s c o s 1θθθ⇔++=222123s i n s i n s i nθθθ⇔++= (立体几何中长方体对角线长的公式是其特例)141 面积射影定理 'cos S S θ=(平面多边形及其射影的面积分别是S 、'S ,它们所在平面所成锐二面角的为θ)142 斜棱柱的直截面已知斜棱柱的侧棱长是l ,侧面积和体积分别是S 斜棱柱侧和V 斜棱柱,它的直截面的周长和面积分别是1c 和1S ,则①1S c l =斜棱柱侧;②1V S l =斜棱柱143.作截面的依据三个平面两两相交,有三条交线,则这三条交线交于一点或互相平行144.棱锥的平行截面的性质如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似,截面面积与底面面积的比等于顶点到截面距离与棱锥高的平方比(对应角相等,对应边对应成比例的多边形是相似多边形,相似多边形面积的比等于对应边的比的平方);相应小棱锥的体积与原棱锥的体积的比等于顶点到截面距离与棱锥高的立方比;相应小棱锥的的侧面积与原棱锥的的侧面积的比等于顶点到截面距离与棱锥高的平方比.145欧拉定理(欧拉公式) 2V F E +-=(简单多面体的顶点数V 、棱数E 和面数F)(1)E =各面多边形边数和的一半特别地,若每个面的边数为n 的多边形,则面数F 与棱数E 的关系:12E nF =;(2)若每个顶点引出的棱数为m ,则顶点数V 与棱数E 的关系:12E mV = 146球的半径是R ,则其体积343V R π=,其表面积24S R π=. 147球的组合体第 17页(共22页)(1)球与长方体的组合体: 长方体的外接球的直径是长方体的体对角线长(2)球与正方体的组合体:正方体的内切球的直径是正方体的棱长, 正方体的棱切球的直径是正方体的面对角线长, 正方体的外接球的直径是正方体的体对角线长(3) 球与正四面体的组合体: 棱长为a 的正四面体的内切球的半径为612a (正四面体高63a 的14),外接球的半径为64a (正四面体高63a 的34) 148.柱体、锥体的体积13V Sh =柱体(S 是柱体的底面积、h 是柱体的高)13V Sh =锥体(S 是锥体的底面积、h 是锥体的高)149分类计数原理(加法原理):12n N m m m =+++150分步计数原理(乘法原理):12n N m m m =⨯⨯⨯151排列数公式 :mn A =)1()1(+--m n n n =!!)(m n n -(n ,m ∈N *,且m n ≤).规定1!0=152排列恒等式 :(1)1(1)m m n nA n m A -=-+;(2)1m mn n n A A n m-=-; (3)11m m n n A nA --=; (4)11n n n n n n nA A A ++=-; (5)11m m m n n n A A mA -+=+ (6) 1!22!33!!(1)!1n n n +⋅+⋅++⋅=+-153组合数公式:mn C =mn m mA A=m m n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(n ∈N *,m N ∈,且m n ≤)154组合数的两个性质:(1)m n C =m n n C - ;(2) m n C +1-m n C =mn C 1+规定10=n C155组合恒等式(1)11m m n n n m C C m --+=;(2)1m m n n n C C n m-=-;(3)11m m n n n C C m --=; (4)∑=nr rn C 0=n 2;(5)1121++++=++++r n r n r r r r r r C C C C C(6)n n n r n n n n C C C C C 2210=++++++(7)14205312-+++=+++n n n n n n n C C C C C C(8)1321232-=++++n n n n n n n nC C C C(9)r n m r n r m n r m n r m C C C C C C C +-=+++0110(10)n n n n n n n C C C C C 22222120)()()()(=++++156排列数与组合数的关系:m mn nA m C =⋅! 157.单条件排列(以下各条的大前提是从n 个元素中取m 个元素的排列)(1)“在位”与“不在位”①某(特)元必在某位有11--m n A 种;②某(特)元不在某位有11---m n m n A A (补集思想)1111---=m n n A A (着眼位置)11111----+=m n m m n A A A (着眼元素)种(2)紧贴与插空(即相邻与不相邻)①定位紧贴:)(n m k k ≤≤个元在固定位的排列有km k n k k A A --种②浮动紧贴:n 个元素的全排列把k 个元排在一起的排法有k kk n k n A A 11+-+-种注:此类问题常用捆绑法;③插空:两组元素分别有k 、h 个(1+≤h k ),把它们合在一起来作全排列,k 个的一组互不能挨近的所有排列数有kh h h A A 1+种。
高中数学知识点全总结一、直线与方程高考考试内容及考试要求:考试内容:1.直线的倾斜角和斜率;直线方程的点斜式和两点式;直线方程的一般式;2.两条直线平行与垂直的条件;两条直线的交角;点到直线的距离;考试要求:1.理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程;2.掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式能够根据直线的方程判断两条直线的位置关系;二、直线与方程课标要求:1.在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素;3.根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系;4.会用代数的方法解决直线的有关问题,包括求两直线的交点,判断两条直线的位置关系,求两点间的距离、点到直线的距离以及两条平行线之间的距离等。
要点精讲:1.直线的倾斜角:当直线l与x轴相交时,取x轴作为基准,x 轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角。
特别地,当直线l与x轴平行或重合时,规定α=0°.倾斜角α的取值范围:0°≤α<180°.当直线l与x轴垂直时,α=90°.2.直线的斜率:一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是k=tanα(1)当直线l与x轴平行或重合时,α=0°,k=tan0°=0;(2)当直线l与x轴垂直时,α=90°,k不存在。
由此可知,一条直线l的倾斜角α一定存在,但是斜率k不一定存在。
3.过两点p1(x1,y1),p2(x2,y2)(x1≠x2)的直线的斜率公式:(若x1=x2,则直线p1p2的斜率不存在,此时直线的倾斜角为90°)。
4.两条直线的平行与垂直的判定(1)若l1,l2均存在斜率且不重合:注:上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立。