高中数学二分法
- 格式:ppt
- 大小:2.14 MB
- 文档页数:33
二分法的定义与应用4.二分法的定义与应用【二分法的定义】二分法即一分为二的方法.设函数f(x)在[a,b]上连续,且满足f(a)•f(b)<0,我们假设f(a)<0,f (b)>0,那么当x1 =푎+푏时,若f(x1)=0,这说x1 为零点;若不为 0,假设大于 0,那么继续在[x1,b]区间2取中点验证它的函数值为 0,一直重复下去,直到找到满足要求的点为止.这就是二分法的基本概念.【二分法的应用】我们以具体的例子来说说二分法应用的一个基本条件:例题:下列函数图象均与x 轴有交点,其中能用二分法求函数零点的是解:能用二分法求函数零点的函数,在零点的左右两侧的函数值符号相反,有图象可得,只有③能满足此条件,故答案为③.在这个例题当中,所要求的能力其实就是对概念的理解,这也是二分法它惯用的考查形式,通过这个例题,希望同学们能清楚二分法的概念和常考题型.【二分法求方程的近似解】二分法在高中主要属于了解性的内容,拿二分法求近似解思路也比较固定,这里我们主要以例题来做讲解.例:用二分法求方程푙푛푥=1在[1,2]上的近似解,取中点c=1.5,则下一个有根区间是[1.5,2].푥解:令函数f(x)=lnx ―1,由于f(1.5)=ln(1.5)―푥11.5=11(ln1.52﹣2)<(lne2﹣2)=0,即f(1.5)33<0,而f(2)=ln2 ―12=ln2﹣ln 푒=ln2푒=1412ln푒>2ln1=0,即f(2)>0,1/ 2故函数f(x)在[1.5 2]上存在零点,故方程푙푛푥=1在[1.5,2]上有根,푥故答案为[1.5,2].通过这个例题,我们可以发现二分法的步奏,第一先确定f(a)•f(b)<0 的a,b 点;第二,寻找区间(a,b)的中点,并判断它的函数值是否为 0;第三,若不为 0,转第一步.2/ 2。
2.4.2求函数零点近似解的一种计算方法——二分法1.了解变号零点与不变号零点的概念.2.理解函数零点的性质.3.会用二分法求近似值.1.函数零点的性质如果函数y=f(x) 在区间[a,b]上的图象是不间断的曲线,并且在它的两个端点处的函数值异号,即f(a)·f(b)<0,那么这个函数在这个区间上至少有一个零点,即存在一点x0∈(a,b),使f(x0)=0,若函数图象通过零点时穿过x轴,这样的零点称为变号零点,如果没有穿过x轴,则称为不变号零点.2.二分法对于在区间[a,b]上连续不断,且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法.3.用二分法求函数 f (x ) 零点近似值的步骤 给定精确度(1)确定区间[a ,b ],验证f (a )·f (b )<0; (2)求区间(a ,b )的中点 x 1;(3)计算 f (x 1);①若f (x 1)=0,则 x 1 就是函数的零点;②若f (a )·f (x 1)<0,则令 b =x 1 (此时零点 x 0∈(a ,x 1));③若f (x 1)·f (b )<0,则令a =x 1(此时零点 x 0∈(x 1,b )).(4)判断是否达到精确度,即若|a -b |<,则得到零点近似值 a (或 b );否则重复 (2)~(4).1.函数f (x )=x 3-2x 2+3x -6在区间[-2,4]上的零点必属于区间( ) A .[-2,1] B .⎣⎡⎦⎤52,4 C .⎣⎡⎦⎤1,74 D .⎣⎡⎦⎤74,52解析:选D .由于f (-2)<0, f (4)>0,f (-2+42)=f (1)<0,f (1+42)=f (52)>0, f (1+522)=f (74)<0, 所以零点在区间⎣⎡⎦⎤74,52内.2.用二分法研究函数f (x )=x 2+3x -1的零点时,第一次经计算f (0)<0,f (0.5)>0,可得其中一个零点x 0∈________,第二次计算________.以上横线应填的内容分别是( )A .(0,0.5) f (0.25)B .(0,1) f (0.25)C .(0.5,1) f (0.75)D .(0,0.5) f (0.125)解析:选A .因为f (0)<0,f (0.5)>0, 所以函数f (x )的一个零点x 0∈(0,0.5), 第二次计算f ⎝⎛⎭⎫0+0.52=f (0.25).3.函数的零点都能用“二分法”求吗?解:不一定.例如:函数y =x 2的零点为x =0,但不能用二分法求解.判断函数在某个区间内是否有零点(1)指出方程 x 5-x -1=0 的根所在的大致区间;(2)求证:方程x3-3x+1=0 的根一个在区间(-2,-1)内,一个在区间(0,1)内,另一个在区间(1,2)内.【解】(1)方程x5-x-1=0,即x5=x+1,令F(x)=x5-x-1,y=f(x)=x5,y=g(x)=x+1.在同一平面直角坐标系中,函数f(x)与g(x)的图象如图,显然它们只有1 个交点.两函数图象交点的横坐标就是方程的解.又F(1)=-1<0,F(2)=29>0,所以方程x5-x-1=0 的根在区间(1,2)内.(2)证明:令F(x)=x3-3x+1,它的图象一定是不间断的,又F(-2)=-8+6+1=-1<0,F(-1)=-1+3+1=3>0,所以方程x3-3x+1=0 的一根在区间(-2,-1)内.同理可以验证F(0)·F(1)=1×(-1)=-1<0,F(1)·F(2)=(-1)×3=-3<0,所以方程的另两根分别在区间(0,1)和(1,2)内.本题考查的是如何判断方程的根所在的大致区间问题,它是用二分法求方程近似解的前提.对于连续的函数可以多次验证某些点处的函数值的符号是否异号;若异号,则方程的解在以这两数为端点的区间内,这种方法需多次尝试,比较麻烦.另外在这个区间内也不一定只有一个解.已知f(x) 为偶函数,且当x≥0 时,f(x)=(x-1)2-1,求函数f(x)的零点,并判断哪些零点是变号零点,哪些零点是不变号零点.解:因为x≥0 时,f(x)=(x-1)2-1,而当x<0 时,-x>0,所以f(-x)=(-x-1)2-1,而f(x) 为偶函数,则f(-x)=f(x),所以 f (x ) =⎩⎪⎨⎪⎧(x -1)2-1(x ≥0),(x +1)2-1(x <0).解方程 (x -1)2-1=0, 得 x 1=0,x 2=2. 解方程 (x +1)2-1=0, 得 x 1=0,x 2=-2,故函数 f (x ) 共有 3 个零点为 -2,0,2,如图所示,可知函数 f (x )的变号零点为 -2,2,不变号零点为 0.用二分法求方程近似解用二分法求函数f(x)=x3-x-2的一个正实数零点(精确到0.1).【解】由f(1)=-2<0,f(2)=4>0,可以确定区间[1,2]作为计算的初始区间,用二分法逐步计算,具体如表.1.5,所以1.5可作为所求函数的一个正实数零点的近似值.用二分法求函数零点的近似值,首先要选好计算的初始区间,这个区间既要符合条件,又要使其长度尽量小,其次要依据条件给定的精确度及时检验计算所得到的区间是否满足这一精确度,以决定是停止计算还是继续计算.借助计算器,用二分法求方程(x+1)(x -2)(x-3)=1在区间(-1,0)内的近似解(精确到0.1).解:令f(x)=(x+1)(x-2)(x-3)-1,由于f(-1)=-1<0,f(0)=5>0,可取区间[-1,0]作为计算的初始区间.用二分法逐次计算,列表如下:5-0.9即为区间(-1,0)内的近似解.1.函数零点判定定理的应用判断一个函数是否有零点,首先看函数f(x) 在区间[a,b]上的图象是否连续,并且是否存在f(a)·f(b)<0,若存在,那么函数y=f(x) 在区间(a,b)内必有零点.对于函数f(x),若满足f(a)·f(b)<0,则f(x) 在区间[a,b]内不一定有零点,反之,f(x) 在区间[a,b]内有零点也不一定有f(a)·f(b)<0,如图所示.即此方法只适合变号零点的判断,不适合不变号零点.2.二分法的使用条件和范围(1)二分法的理论依据:如果函数y=f(x)是连续的,且f(a)与f(b)的符号相反(a<b),那么方程f(x)=0至少存在一个根在(a,b)之间.(2)用二分法求函数零点近似值的方法仅对函数的变号零点适合,对函数的不变号零点不适合.(3)每一次二分有根区间(a,b)为两个小区间,区间的长度都是原来区间长度的一半.用零点存在性定理判断函数的零点时,两个条件是缺一不可的.因此,在判断已知函数在区间上的零点是否存在时,应首先确定图象是不间断的.1.下列函数中能用二分法求零点的是()解析:选C.由二分法的定义知.2.设f(x)在区间[a,b]上是单调函数,且f(a)·f(b)<0,则方程f(x)=0在闭区间[a,b]内() A.至少有一实根B.至多有一实根C.没有实根D.必有唯一实根答案:D3.下面关于二分法的叙述,正确的是________.①用二分法可求所有函数零点的近似值;②用二分法求方程的近似解时,可以精确到小数点后的任一位;③二分法无规律可循,无法在计算机上完成;④只有在求函数零点时才用二分法. 答案:②4.设函数y =f (x )在区间[a ,b ]上的图象是连续不间断曲线,且f (a )·f (b )<0,取x 0=a +b2,若f (a )·f (x 0)<0,则利用二分法求方程根时取有根区间为________.解析:利用二分法求方程根时,根据求方程的近似解的一般步骤,由于f (a )·f (x 0)<0, 则[a ,x 0]为新的区间. 答案:[a ,x 0][A 基础达标]1.函数f (x )=x 3-3x -3有零点的区间是( ) A .(-1,0) B .(0,1) C .(1,2)D .(2,3)解析:选D .因为f (2)·f (3)=(8-6-3)·(27-9-3)=-15<0, 所以f (x )有零点的区间是(2,3).2.如图是函数f (x )的图象,它与x 轴有4个不同的公共点,给出下列四个区间中,存在不能用二分法求出的零点,则该零点所在的区间是( )A .[-2.1,-1]B .[1.9,2.3]C .[4.1,5]D .[5,6.1]解析:选B .由不变号零点的特征易判断该零点在[1.9,2.3]内. 3.方程2x 3-4x 2+7x -9=0在区间[-2,4]上的根必定属于区间( ) A .(-2,1) B .(52,4)C .(π4,1)D .(1,74)解析:选D .设f (x )=2x 3-4x 2+7x -9, 由f (1)·f (74)<0知选D .4.已知函数f (x )与g (x )满足的关系为f (x )-g (x )=-x -3,根据所给数表,判断f (x )的一个零点所在的区间为( )A .(-1,0) C .(1,2)D .(2,3)解析:选C .由列表可知f (1)=g (1)-1-3=2.72-4=-1.28,f (2)=g (2)-2-3=7.39-5=2.39,所以f (1)·f (2)<0.所以f (x )的一个零点所在的区间为(1,2).5.若函数f (x )=x 3+x 2-2x -2的一个正整零点附近的函数值用二分法计算,其参考数据如下:A .1.2B .1.3C .1.4D .1.5解析:选C .由零点的定义知,方程的根所在区间为[1.406 25,1.437 5],故精确到0.1的近似根为1.4.6.函数f (x )=x 2+ax +b 有零点,但不能用二分法求出,则a ,b 的关系是________. 解析:因为函数f (x )=x 2+ax +b 有零点,但不能用二分法,所以函数f (x )=x 2+ax +b 的图象与x 轴相切,所以Δ=a 2-4b =0,所以a 2=4b . 答案:a 2=4b7.方程x 3=2x 精确到0.1的一个近似解是________. 解析:令f (x )=x 3-2x ,f (1)=-1<0,f (2)=4>0,所以在区间[1,2]上求函数f (x )的零点,即为方程x 3=2x 的一个根,依照二分法求解得x =1.4.答案:1.48.某方程有一无理根在区间D =(1,3)内,若用二分法求此根的近似值,则将D 至少等分________次后,所得近似值的精确度为0.1.解析:由3-12n ≤0.1,得2n ≥20,n >4,故至少等分5次. 答案:59.分别求出下列函数的零点,并指出是变号零点还是不变号零点. (1)f (x )=3x -6; (2)f (x )=x 2-x -12; (3)f (x )=x 2-2x +1; (4)f (x )=(x -2)2(x +1)x . 解:(1)零点是2,是变号零点. (2)零点是-3和4,都是变号零点. (3)零点是1,是不变号零点.(4)零点是-1,0和2,其中变号零点是0和-1,不变号零点是2. 10.已知函数f (x )=13x 3-x 2+1(1)证明方程f (x )=0在区间(0,2)内有实数解;(2)使用二分法,取区间的中点三次,指出方程f (x )=0(x ∈[0,2])的实数解x 0在哪个较小的区间内.解:(1)证明:因为f (0)=1>0,f (2)=-13<0,所以f (0)·f (2)<0,由函数的零点存在性定理可得方程 f (x )=0在区间(0,2)内有实数解. (2)取x 1=12(0+2)=1,得f (1)=13>0,由此可得f (1)·f (2)<0,下一个有解区间为(1,2). 再取x 2=12(1+2)=32,得f ⎝⎛⎭⎫32=-18<0, 所以f (1)·f ⎝⎛⎭⎫32<0,下一个有解区间为⎝⎛⎭⎫1,32. 再取x 3=12⎝⎛⎭⎫1+32=54,得f ⎝⎛⎭⎫54=17192>0, 所以f ⎝⎛⎭⎫54·f ⎝⎛⎭⎫32<0,下一个有解区间为⎝⎛⎭⎫54,32. 综上所述,得所求的实数解x 0在区间⎝⎛⎭⎫54,32内.[B 能力提升]11.若函数f (x )的图象在R 上连续不断,且满足f (0)<0,f (1)>0,f (2)>0,则下列说法正确的是()A.f(x)在区间(0,1)上一定有零点,在区间(1,2)上一定没有零点B.f(x)在区间(0,1)上一定没有零点,在区间(1,2)上一定有零点C.f(x)在区间(0,1)上一定有零点,在区间(1,2)上可能有零点D.f(x)在区间(0,1)上可能有零点,在区间(1,2)上一定有零点解析:选C.根据零点存在性定理,由于f(0)·f(1)<0,f(1)·f(2)>0,所以f(x)在区间(0,1)上一定有零点,在区间(1,2)上无法确定,可能有,也可能没有,如图所示:12.已知定义在R上的函数f(x)的图象是连续不断的,且有如下部分对应值表:则f(x解析:由于f(2)>0,f(3)<0,f(4)>0,f(5)<0,所以f(2)·f(3)<0,f(3)·f(4)<0,f(4)·f(5)<0,故f(x)的零点个数至少有3个.答案:313.在一个风雨交加的夜里,从某水库闸房到防洪指挥部的电话线路发生了故障.这是一条10 km长的线路,如果沿着线路一小段一小段查找,困难很多.每查一个点要爬一次电线杆子,10 km长,大约有200多根电线杆子.则:(1)维修线路的工人师傅怎样工作最合理?(2)算一算要把故障可能发生的范围缩小到50 m~100 m 左右,即一两根电线杆附近,要查多少次?解:(1)如图,他首先从中点C查.用随身带的话机向两端测试时,发现AC段正常,断定故障在BC段,再到BC段中点D查,这次发现BD段正常,可见故障在CD段,再到CD中点E来查.(2)每查一次,可以把待查的线路长度缩减一半,因此只要7 次就够了.14.(选做题)求方程3x2-4x-1=0的根的近似值.解:令f(x)=3x2-4x-1,列出x,f(x)的一些对应值如下表:00若x0∈[-1,0],取区间[-1,0]的中点x1=-0.5,则f(-0.5)=1.75,因为f(-0.5)·f(0)<0,所以x0∈[-0.5,0].再取区间[-0.5,0]的中点x2=-0.25,则f(-0.25)=0.187 5,因为f(-0.25)·f(0)<0,所以x0∈[-0.25,0].同理,可得x0∈[-0.25,-0.125],x0∈[-0.25,-0.187 5],x0∈[-0.218 75,-0.187 5],区间[-0.218 75,-0.187 5]的左、右端点精确到0.1所取的近似值都是-0.2.所以把x0=-0.2作为方程3x2-4x-1=0的一个根的近似值.同理,若x0∈[1,2]时,方程的根的近似值为1.5.2±7综上,方程3x2-4x-1=0的根的精确值为x1,2=3,近似值为-0.2或1.5.。
高中数学二分法例题一、例题11. 题目- 用二分法求函数f(x)=x^3-x - 1在区间[1,2]内的零点(精确到0.1)。
2. 解析- 首先计算f(1)=1^3-1 - 1=-1,f(2)=2^3-2 - 1 = 5。
- 因为f(1)f(2)<0,所以函数f(x)在区间[1,2]内有零点。
- 取区间[1,2]的中点x_{1}=(1 + 2)/(2)=1.5。
- 计算f(1.5)=1.5^3-1.5 - 1 = 0.875。
- 因为f(1)f(1.5)<0,所以零点在区间[1,1.5]内。
- 再取区间[1,1.5]的中点x_{2}=(1+1.5)/(2)=1.25。
- 计算f(1.25)=1.25^3-1.25 - 1=-0.296875。
- 因为f(1.25)f(1.5)<0,所以零点在区间[1.25,1.5]内。
- 再取区间[1.25,1.5]的中点x_{3}=(1.25 + 1.5)/(2)=1.375。
- 计算f(1.375)=1.375^3-1.375 - 1 = 0.224609。
- 因为f(1.25)f(1.375)<0,所以零点在区间[1.25,1.375]内。
- 再取区间[1.25,1.375]的中点x_{4}=(1.25+1.375)/(2)=1.3125。
- 计算f(1.3125)=1.3125^3-1.3125 - 1=-0.051514。
- 因为f(1.3125)f(1.375)<0,所以零点在区间[1.3125,1.375]内。
- 此时区间[1.3125,1.375]的长度为1.375 - 1.3125 = 0.0625<0.1。
- 所以函数f(x)在区间[1,2]内的零点近似值为1.3。
二、例题21. 题目- 已知函数y = f(x)在区间[a,b]上的图象是连续不断的一条曲线,且f(a)f(b)<0,当用二分法求函数y = f(x)的零点时,第一次所取的区间是[a,b],若f((a + b)/(2))=0,则函数y = f(x)的零点是()- A.a B.b C.(a + b)/(2) D.以上都不对2. 解析- 二分法的基本思想是将区间不断地一分为二,根据函数值的正负来确定零点所在的子区间。
高中数学二分法二分法:1、定义:二分法,是一种从曲线上求解函数极值、积分和解方程等不确定解的有效方法,它是利用一个给定的区间,先假设其取值范围,然后把这个区间分成两部分,根据函数的性质得到函数的最大值和最小值,最终把有限的区间越缩越小,趋近于极限,把某种特征的问题求解出来。
2、特点:二分法具备简单、有效率和可取得近似精确结果的特点,其完成求解的有效步骤是:先将需求解的范围把重点放在中间部分,然后判断函数在两个部分哪个更接近局部最优解,根据这种判断,把不满足要求的部分清除,继续通过重复偏心格把结果的范围缩小,最终当剩余段小于给定的一个误差范围时,得到比较接近真实解的一个近似解。
3、应用场景:二分法在高中数学中有广泛的应用,主要用于求定积分和平面几何中曲线,椭圆等函数最大值、最小值等问题的求解,在十字交叉法中,利用十字构图,根据不等式的约束条件,将最优解的区域以二分的方式划分,把区域的最优解计算出来,而在统计学中,也可以用来找出自变量和因变量的最佳拟合函数,这可通过对拟合函数的在自变量取值的山谷值的搜索,帮助研究者快速找到正确的回归模型。
4、具体实现:二分法是一种迭代算法,算法的迭代重点是:给定一个准确的区间,计算区间的中点,根据函数的增减性质来选取最优解,把不满足要求的部分清除掉,通过迭代的方式,重复这个过程,直到得到的某种特征的结果满足要求。
5、优点:二分法比较简单、有效率,而且可取得近似精确结果,也很容易理解,还可以获得较高的精度,并且在实际有效应用中具有良好的鲁棒性及快速类容错能力,适用于大规模数值计算,提高计算效率。
6、缺点:二分法所限制的误差范围可能过大,得到的结果往往不够精确,而且可能出现陷入局部最优的情况,从而影响最终的结果,易受到初值的影响,同时由于迭代容易受到干扰,有可能出现闭塞的情况。
综上所述,二分法是一种有效的有限迭代的方法,是高中数学中必不可少的重要的求解手段,它可以用来求解函数在某一区间最大值、最小值等问题,可以获得近似精确的结果,但同时也有一些缺点需要注意,所以才能在快速有效精确的基础上找到最佳解。
高中数学如何求解二分法和牛顿迭代法方程在高中数学中,求解方程是一个重要的内容,而二分法和牛顿迭代法是两种常用的求解方程的方法。
本文将介绍这两种方法的原理、应用以及解题技巧,并通过具体的例题来说明其考点和解题思路。
一、二分法的原理和应用二分法是一种通过不断缩小搜索范围来逼近方程根的方法。
其基本原理是将待求解的区间不断二分,判断根是否在左半区间还是右半区间,并将搜索范围缩小至根的附近。
具体步骤如下:1. 确定初始区间[a, b],使得f(a)与f(b)异号;2. 计算区间中点c=(a+b)/2;3. 判断f(c)与0的关系,若f(c)=0,则c为方程的根;若f(c)与f(a)异号,则根在区间[a, c]内,否则根在区间[c, b]内;4. 重复步骤2和步骤3,直到满足精度要求或找到根。
二分法的应用非常广泛,例如在求解函数的零点、解方程、求解最优化问题等方面都有应用。
下面通过一个具体的例题来说明二分法的应用和解题技巧。
例题1:求方程x^3-2x-5=0的根。
解题思路:1. 首先我们需要确定初始区间[a, b],使得f(a)与f(b)异号。
根据题目中的方程,可以取a=1,b=2,计算f(1)=-6和f(2)=1,满足条件;2. 计算区间中点c=(a+b)/2=1.5;3. 计算f(c)=f(1.5)=-1.375,与0的关系异号,说明根在区间[1, 1.5]内;4. 重复步骤2和步骤3,不断缩小搜索范围,直到满足精度要求或找到根。
通过不断迭代,我们可以得到方程的根为x=1.709。
这个例题展示了二分法的基本思路和解题技巧,通过不断缩小搜索范围,我们可以逼近方程的根。
二、牛顿迭代法的原理和应用牛顿迭代法是一种通过不断迭代逼近方程根的方法,其基本原理是利用函数的切线来逼近根的位置。
具体步骤如下:1. 确定初始点x0;2. 计算函数f(x)在x0处的导数f'(x0);3. 计算切线的方程y=f(x0)+f'(x0)(x-x0);4. 求切线与x轴的交点x1,即x1=x0-f(x0)/f'(x0);5. 重复步骤2到步骤4,直到满足精度要求或找到根。
例说“二分法”思想的应用“二分法”是高中数学必修内容之一,是现代信息技术与函数、方程知识的有机整合,是求方程近似解的常用方法。
利用“二分法”可以帮助我们轻松、快捷解决一些相关的问题。
一、利用“二分法”思想巧证不等式例1. 已知三个正数a 、b 、c ,满足b a c 2+>,求证ab c c a ab c c 22-+<<--。
解析:从所要证的目标的结构上看,可把ab c c 2--、ab c c 2-+看作一元二次方程0ab cx 2x 2=+-的两个根,同时构造一个区间)ab c c ,ab c c (22-+--。
设ab cx 2x )x (f 2+-=利用“二分法”思想,要证目标,只需证a 在区间)ab c c ,ab c c (22-+--内即可。
如图1所示,由于二次函数的图象开口方向向上,只需证0)a (f <因0)b c 2a (a ab ca 2a )a (f 2<+-=+-=所以a 在区间内,即ab c c a ab c c 22-+<<--图1二、利用“二分法”思想巧证一元二次方程根的分布例2. 已知函数c bx 2ax 3)x (f 2++=,0c b a =++,0)1(f ,0)0(f >>,求证:(1)0a >且1ba 2-<<-; (2)方程0)x (f =在(0,1)内有两个实根证明:(1)利用0)1(f ,0)0(f >>及0c b a =++,容易证明(略)。
(2)一般地,要证方程0)x (f =在(0,1)内有两个实根,只需证明:①△0≥②对称轴落在区间(0,1)内③区间(0,1)端点f(0),f(1)的符号。
而采用“二分法”,其解法简洁明快,只需证明:①区间(0,1)两个端点f(0),f(1)的符号都为正(题目已知条件已给定)②在区间(0,1)内寻找一个二分点,使这个二分点所对应的函数值小于0,它保证抛物线与x 轴有两个不同的交点(因a>0抛物线开口方向向上)。
高中数学二分法教案
教学目标:
1. 了解二分法的基本概念和原理;
2. 掌握二分法在解决数值问题中的应用;
3. 能够灵活运用二分法解决实际问题。
教学准备:
1. 教师准备PPT或黑板,用于展示二分法的原理和应用;
2. 学生准备笔记本和铅笔,用于记录重点知识;
3. 安排实例练习,帮助学生掌握二分法的具体应用。
教学过程:
一、导入(5分钟)
教师简单介绍二分法的概念和应用,引导学生思考如何用二分法解决数值问题。
二、二分法原理讲解(15分钟)
1. 教师介绍二分法的基本原理,即将问题的解空间不断二分,缩小解的范围;
2. 示范一些简单的例题,让学生理解二分法的思路和步骤。
三、实例练习(20分钟)
1. 教师给学生提供一些实例题,让学生在课堂上尝试用二分法解决;
2. 学生可以在小组内合作讨论,共同解决问题。
四、讲解应用领域(10分钟)
1. 教师介绍二分法在实际生活中的应用领域,如在计算机算法中的应用等;
2. 引导学生思考如何将二分法应用到更广泛的领域中。
五、总结与提高(5分钟)
教师总结本节课的重点知识,强调学生需要多加练习,巩固所学知识;
鼓励学生在课后积极思考并尝试解决更复杂的问题。
教学反思:
本节课通过讲解二分法的原理和应用,让学生掌握了一种解决数值问题的方法。
在今后的数学学习中,学生可以灵活运用二分法,提高解题效率。
同时,教师需要引导学生在解题过程中保持耐心和灵活的思维方式。
高一数学2分法的知识点2分法是高中数学中的一个重要知识点,它在数学分析和数值计算中起到了至关重要的作用。
本文将详细介绍2分法的概念、原理和应用,以帮助读者更好地理解和运用这一数学方法。
一、概念2分法,又称二分法或折半法,是一种常用的数值逼近方法。
它的基本思想是将计算区间二等分,通过逐步缩小区间范围来逼近函数的根或极值。
二、原理2分法的原理基于介值定理和收敛定理。
当函数在某一区间上连续且函数值在区间两端的符号不同,根据介值定理,可以推断该区间内存在根。
通过将区间一分为二,根据符号变化确定目标区间,不断缩小区间范围,就能逐步逼近函数的根或极值点。
三、步骤使用2分法求解函数根的一般步骤如下:1. 选择一个初始的区间[a, b],确保函数在该区间上连续且函数值在区间两端的符号不同。
2. 计算区间的中点c,即c = (a + b) / 2。
3. 计算函数在中点处的函数值f(c)。
4. 如果f(c)为0,则c为函数的根,算法结束。
5. 如果f(c)不为0,根据中点的函数值与区间两端的函数值的符号关系,确定目标区间。
6. 将目标区间重新定义为[a, c]或[c, b],重复步骤2至步骤5,直到满足收敛条件。
7. 根据需要,可以设置最大迭代次数或精度条件,以控制算法的收敛速度和结果精度。
四、应用案例2分法在实际问题中有广泛的应用,比如求方程的根、函数的零点、函数的极值点等。
以下是一个应用于求方程根的例子:假设要求方程f(x) = x^3 - 2x - 5 = 0在区间[1, 2]内的根,可以使用2分法进行逼近计算:1. 初始区间为[1, 2],可以验证f(1) = -6,f(2) = 1,符号不同,满足条件。
2. 计算区间中点c = (1 + 2) / 2 = 1.5。
3. 计算f(1.5),得到f(1.5) = -2.375。
4. 由于f(1.5)与f(1)的符号相同,目标区间为[1.5, 2]。
5. 将区间重新定义为[1.5, 2],重复步骤2至步骤5。
二分法的概念对于在区间[a,b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.由函数的零点与相应方程根的关系,可用二分法来求方程的近似解.给定精确度,用二分法求函数零点近似值的步骤如下:(1)确定区间,,验证·<0,给定精确度;(2)求区间,的中点;(3)计算:1若=,则就是函数的零点;2若·<0,则令=(此时零点);3若·<0,则令=(此时零点);(4)判断是否达到精确度;即若<,则得到零点近似值(或);否则重复步骤2-4.结论: 由函数的零点与相应方程根的关系,我们可用二分法来求方程的近似解.思考:为什么由<,便可判断零点的近似值为(或)?一、能用二分法求零点的条件例1下列函数中能用二分法求零点的是()判定一个函数能否用二分法求其零点的依据是:其图象在零点附近是连续不断的,且该零点为变号零点.因此,用二分法求函数的零点近似值的方法仅对函数的变号零点适用,对函数的不变号零点不适用.变式迁移1下列函数图象与x轴均有交点,但不宜用二分法求交点横坐标的是()二、求函数的零点例2判断函数y=x3-x-1在区间[1,1.5]内有无零点,如果有,求出一个近似零点(精确度0.1).分析由题目可获取以下主要信息:①判断函数在区间[1,1.5]内有无零点,可用根的存在性定理判断;②精确度0.1.解答本题在判断出在[1,1.5]内有零点后可用二分法求解.解因为f(1)=-1<0,f(1.5)=0.875>0,且函数y=x3-x-1的图象是连续的曲线,所以它在区间[1,1.5]内有零点,用二分法逐次计算,列表如下:区间中点值中点函数近似值(1,1.5) 1.25-0.3(1.25,1.5) 1.3750.22(1.25,1.375) 1.312 5-0.05(1.312 5,1.375) 1.343 750.08由于|1.375-1.312 5|=0.062 5<0.1,所以函数的一个近似零点为1.312 5.点评由于用二分法求函数零点的近似值步骤比较繁琐,因此用列表法往往能比较清晰地表达.事实上,还可用二分法继续算下去,进而得到这个零点精确度更高的近似值.变式迁移2求函数f(x)=x3+2x2-3x-6的一个正数零点(精确度0.1).解由于f(1)=-6<0,f(2)=4>0,可取区间(1,2)作为计算的初始区间,用二分法逐次计算,列表如下:区间中点中点函数值(1,2) 1.5-2.625(1.5,2) 1.750.234 4(1.5,1.75) 1.625-1.302 7(1.625,1.75) 1.687 5-0.561 8(1.687 5,1.75) 1.718 75-0.170 7由于|1.75-1.687 5|=0.062 5<0.1,所以可将1.687 5作为函数零点的近似值.三、二分法的综合运用例3证明方程6-3x=2x在区间[1,2]内有唯一一个实数解,并求出这个实数解(精确度0.1).分析由题目可获取以下主要信息:①证明方程在[1,2]内有唯一实数解;②求出方程的解.解答本题可借助函数f(x)=2x+3x-6的单调性及根的存在性定理证明,进而用二分法求出这个解.证明设函数f(x)=2x+3x-6,∵f(1)=-1<0,f(2)=4>0,又∵f(x)是增函数,所以函数f(x)=2x+3x-6在区间[1,2]内有唯一的零点,则方程6-3x=2x在区间[1,2]内有唯一一个实数解.设该解为x0,则x0∈[1,2],取x1=1.5,f(1.5)=1.33>0,f(1)·f(1.5)<0,∴x0∈(1,1.5),取x2=1.25,f(1.25)=0.128>0,f(1)·f(1.25)<0,∴x0∈(1,1.25),取x3=1.125,f(1.125)=-0.445<0,f(1.125)·f(1.25)<0,∴x0∈(1.125,1.25),取x4=1.187 5,f(1.187 5)=-0.16<0,f(1.187 5)·f(1.25)<0,∴x0∈(1.187 5,1.25).∵|1.25-1.187 5|=0.062 5<0.1,∴1.187 5可以作为这个方程的实数解.点评用二分法解决实际问题时,应考虑两个方面,一是转化成函数的零点问题,二是逐步缩小考察范围,逼近问题的解.变式迁移3求32的近似解(精确度为0.01并将结果精确到0.01).解设x=32,则x3-2=0.令f(x)=x3-2,则函数f(x)的零点的近似值就是32的近似值,以下用二分法求其零点的近似值.由于f(1)=-1<0,f(2)=6>0,故可以取区间[1,2]为计算的初始区间.用二分法逐步计算,列表如下:区间中点中点函数值[1,2] 1.5 1.375[1,1.5] 1.25-0.046 9[1.25,1.5] 1.3750.599 6[1.25,1.375] 1.312 50.261 0[1.25,1.312 5] 1.281 250.103 3[1.25,1.281 25] 1.265 6250.027 3[1.25,1.265 625] 1.257 812 5-0.01[1.257 812 5,1.265 625] 1.261 718 750.008 6 由于|1.265 625-1.257 812 5|=0.007 81<0.01,所以函数f(x)零点的近似值是1.26,即32的近似值是1.26.四、总结1.能使用二分法求方程近似解的方法仅对函数的变号零点适用,对函数的不变号零点不适用.2.二分法实质是一种逼近思想的应用.区间长度为1时,使用“二分法”n次后,精确度为1 2n.3.求函数零点的近似值时,所要求的精确度不同,得到的结果也不相同.精确度为ε,是指在计算过程中得到某个区间(a,b)后,若其长度小于ε,即认为已达到所要求的精确度,可停止计算,否则应继续计算,直到|a-b|<ε为止.练习1.下列函数中不能用二分法求零点的是()A.f(x)=2x+3 B.f(x)=ln x+2x-6C.f(x)=x2-2x+1 D.f(x)=2x-12.设f(x)=3x+3x-8,用二分法求方程3x+3x-8=0在x∈(1,2)内近似解的过程中得f(1)<0,f(1.5)>0,f(1.25)<0,则方程的根落在区间()A.(1,1.25) B.(1.25,1.5)C.(1.5,2) D.不能确定3.函数f(x)=x2-5的正零点的近似值(精确到0.1)是()A.2.0 B.2.1 C.2.2 D.2.34.方程2x-1+x=5的解所在的区间是()A.(0,1) B.(1,2) C.(2,3) D.(3,4)5.用二分法研究函数f(x)=x3+3x-1的零点时,第一次经计算f(0)<0,f(0.5)>0,可得其中一个零点x0∈________,第二次应计算________.以上横线上应填的内容为()A.(0,0.5),f(0.25) B.(0,1),f(0.25)C.(0.5,1),f(0.25) D.(0,0.5),f(0.125)6.在用二分法求方程f(x)=0在[0,1]上的近似解时,经计算,f(0.625)<0,f(0.75)>0,f(0.687 5)<0,即可得出方程的一个近似解为____________(精确度为0.1).7.用二分法求方程x2-5=0在区间(2,3)的近似解经过________次二分后精确度能达到0.01.8.用二分法求函数的零点,函数的零点总位于区间[a n,b n] (n∈N)上,当|a n-b n|<m时,函数的零点近似值x0=a n+b n2与真实零点a的误差最大不超过______.答案m2。