模拟电子电路 集成运算放大器电路(3)
- 格式:ppt
- 大小:704.50 KB
- 文档页数:35
集成运算放大器基本应用 (模拟运算电路)实训指导(特别提醒:实验电路图中可能存在有的元器件数值与实验电路板中的不相同,实验时应以实验电路板中的为准。
另外,由于元器件老化、湿度变化、温度变化等诸多因素的影响所致,实验电路板中所标的元器件数值也可能与元器件的实际数值不一致。
有的元器件虽然已经坏了,但仅凭肉眼看不出来。
因此,在每次实验前,应该先对元器件(尤其是电阻、电容、三极管)进行单个元件的测量(注意避免与其它元器件或人体串联或并联在一块测量)。
并记下元器件的实际数值。
否则,实验测得的数值与计算出的数值可能无法进行科学分析。
)一.实验目的1.研究由集成运放组成的比例、加法、减法和积分等基本运算电路的功能。
2.了解运算放大器在实际应用时应考虑的一些问题。
二.实验原理集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。
当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。
在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。
基本运算电路。
1)反相比例运算电路电路如图8—1所示。
对于理想运放,该电路的输出电压与输入电压之间的关系为i F O U R RU 1-=为了减小输入级偏置电流引起的运算误差,在同相端应接入平衡电阻R 2=R 1||R F 。
U OOU U图8—1 图8—22)反相加法电路电路如图8—2,输出电压与输入电压之间的关系为)(2211i F i F O U R RU R R U +-=R 3= R 1‖R 2‖R F 3)同相比例运算电路图8—3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为 i F O U R R U ⎪⎪⎭⎫ ⎝⎛+=11 R 2 = R 1‖R F当R 1 ∞,U o =U i ,即得到如图8—3(b)所示的电压跟随器,图中R 2=R F ,用以减小漂移和起保作用。
一般R F 取10K Ω,R F 太小起不到保护作用,太大则影响跟随性。
模拟电子线路实验实验三集成运算放大器的线性应用【实验名称】集成运算放大器的线性应用【实验目的】1.熟悉集成运算放大器的使用方法,进一步了解其主要特性参数意义;2.掌握由集成运算放大器构成的各种基本运算电路的调试和测试方法;3.了解运算放大器在实际应用时应考虑的一些问题。
【预习要点】1.复习课件中集成运放线性应用部分内容。
2.在由集成运放组成的各种运算电路中,为什么要进行调零?【实验仪器设备】【实验原理】集成运算放大器是一种高放大倍数、高输入阻抗、低输出阻抗的直接耦合多级放大电路,具有两个输入端和一个输出端,可对直流信号和交流信号进行放大。
外接负反馈电路后,运放工作在线性状态,其输出电压V o与输入电压V i的运算关系仅取决于外接反馈网络与输入端阻抗的连接方式,而与运算放大器本身无关。
改变反馈网络与输入端外接阻抗的形式和参数,即能对V i进行各种数字运算。
本实验采用的集成运放型号为HA17741,引脚排列如图3-1(a)所示。
它是八脚双列直插式组件,②脚和③脚为反相和同相输入端,⑥脚为输出端,⑦脚和④脚为正,负电源端,①脚和⑤脚为失调调零端,①⑤脚之间可接入一只几十K 的电位器并将滑动触头接到负电源端。
⑧脚为空脚。
(a ) (b )图3-1为了补偿运放自身失调量的影响,提高运算精度,在运算前,应首先对运放进行调零,即保证输入为零时,输出也为零。
图3-1(b )是调零电位器连接示意图,使用时必须正确使用引脚才能确保电路正常工作。
所谓调零并不是对独立运放进行调零,而是对运放的应用电路调零,即将运放应用电路输入端接地(使输入为零),调节调零电位器,使输出电压等于零。
如图3-2所示。
+-△+R 2v i2oR 1v i1+12V-12VR wR1542367+-△+R 2v i2oR 1v i1+12V-12VR wR1542367图3-2集成运算放大器按照输入方式可分为同相、反相、差动三种接法。
按照运算关系可分为比例、加法、减法、积分、微分等,利用输入方式与运算关系的组合,可接成各种运算电路。
《模拟电子技术实验A》集成运算放大器应用综
合设计实验报告
一、实验任务及要求
题目一
设计一个电路,当输入电压<1时,运放输出负电压,比较器输出高电平,点亮LED灯;当输入电压≥1V时,运放还是输出负电压,但比较器输出低电平,LED灯不亮。
电路框图如下:
基本设计要求:
1、输入电压能在0-12V左右变化。
2、在实验室提供的元器件清单中选取合适的元器件按照题目要求设
计。
3、运算放大器的增益=-5。
4、计算上拉电阻的阻值时取LED的压降=2V,电流=5mA。
扩展设计要求:(选做)
要求:在临界点,应有回差控制,回差电压1V左右。
二、实验设计原理说明
1、输入信号从集成运放的反相输入端引入,输出信号与输入信号反相。
、
2、运算放大器具备下列特性:无限大的输入阻抗、等于零的输出阻抗、无限大的开回路增益、无限大的共模排斥比的部分、无限大的频宽。
3、比较器当同相端(正)输入端电压和反相端(负)输入端都有电压输入时,运放处于非线性状态,当(正)输入端电压高于(负)输入端电压时,输出为+Vcc(高电平),反之则为-Vcc(低电平)。
4、输入电压再通过运算放大器后,被放大输出。
放大输出的电压在比较器中与调节设定的门限电压相比较,当放大后的电压大于门限电压时为高电平,led灯亮。
反之则为低电平,则led灯不亮。
5、设定的上拉电阻R=(12-2)/5=2k欧
三、电路板照片。
第4章多级放大电路和集成运算放大器例题【例4-1】 已知电路如图4-1所示,V 12CC +=V Ω='100b b r ,6021==ββ,Ω=k 300B1R ,Ω=k 2C1R ,Ω=k 200B2R ,Ω=k 2E R ,Ω=k 2L R ,V 7.0BE =U ,1C 、2C 、3C 对交流看作短路。
(1)估算静态工作点1B I 、1C I 、2B I 、2C I ;(2)计算总的电压放大倍数;(3)求放大电路的输入电阻和输出电阻。
图4-1 例4-1电路【解4-1】 【解题思路】本题是阻容耦合两级放大电路,故前后两级静态工作点独立;第一级为共发射极电路,故输入电阻即第一级放大电路的输入电阻;第二级为共集电极接法的射极跟随器,输出电阻尽管是第二级的输出电阻,但是在计算过程中要考虑前一级放大电路的影响。
【解题过程】(1)静态工作点μA 383003.11B1BEQ1CC 1≈=-=R U V I B 2.3mA μA 3860B11C1≈⨯==I I βμA352612003.11)1(E2B2BEQ2CC B2=⨯+=++-=R R U V I β 2.1mAμA 3560B22C2≈⨯==I I β(2)总的电压放大倍数是各级放大电路电压放大倍数的乘积。
采用教材P127页的方法1:在计算第一级的电压放大倍数时,把第二级的输入电阻作为第一级的负载考虑,然后单独计算第二级的放大倍数。
kΩ8.03.22661100mV 26)1(EQ11b b be1≈⨯+=++='I r r βkΩ8.01.22661100mV 26)1(EQ22b b be2≈⨯+=++='I r r βkΩ47)]2//2(618.0//[200)]//)(1(//[L E 2be2B2i2≈⨯+=++=R R r R R β1440.8)47//2(60)//(be1i2C11.i.o1u1.≈⨯-=-==r R R U U A β99.08.6161)//)(1()//)(1(L E 2be2L E 2.i2.o u2.≈-=+++==R R r R R U U A ββ143u2.u1.u .≈⋅=A A A (3)输入电阻和输出电阻kΩ8.08.0//300//be1B1i1i ≈===r R R R Ω450612//2008.0//21////2C1B2be2o2o ≈+=++==βR R r R R R E 【点 评】本题的难点是输出电阻的计算,由于输出级采用的是射极跟随器,故一方面输出电阻的计算应考虑前一级的影响;另外,在计算过程中,以发射极作为参照基准,在基极回路的电阻要等比缩小21β+倍。
模电设计性实验报告——集成运算放大器的运用之模拟运算电路重庆科技学院设计性实验报告学院:_电气与信息工程学院_ 专业班级: 自动化1102学生姓名: 罗讯学号: 2011441657实验名称: 集成运算放大器的基本应用——模拟运算电路完成日期:2013年 6月 20 日重庆科技学院学生实验报告集成运算放大器的基本应用——课程名称模拟电子技术实验项目名称模拟运算电路开课学院及实验室实验日期学生姓名罗讯学号 2011441657 专业班级自动化1102 指导教师实验成绩实验六集成运算放大器的基本应用——模拟运算电路一、实验目的1、研究有集成运算放大器组成的比例、加法和减法等基本运算电路的功能2、了解运算放大器在实际应用时应考虑的有些问题二、实验仪器1、双踪示波器;2、数字万用表;3、信号发生器三、实验原理在线性应用方面,可组成比例、加法、减法的模拟运算电路。
1) 反相比例运算电路电路如图6-1所示。
对于理想运放,该电路的输出电压与输入电压之间的关系为为减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻//。
RF 100k1 5 4 R1 10k2 Ui 6 Uo3 U1 R2 9.1k 7图6-1 反相比例运算电路2) 反相加法电路电路如图6-2所示,输出电压与输入电压之间的关系为:////RF 100kR1 10k Ui1 4 1 5 R2 20k 2 Ui2 6 Uo 3 U1 R3 6.2k 7图6-2 反相加法运算电路3) 同相比例运算电路图6-3(a)是同相比例运算电路。
RF 100k1 5 4 R1 10k 26 Uo 3R2 9.1k U1 7RF10k4 1 526 R2 Uo 3 Ui 10k U1 7(a)同乡比例运算 (b)电压跟随器图6-3 同相比例运算电路它的输出电压与输入电压之间关系为://当即得到如图6-3所示的电压跟随器。
图中,用以减小漂移和起保护作用。
一般取10KΩ,太小起不到保护作用,太大则影响跟随性。
第五章集成运算放大电路及其应用【教学要求】本章主要叙述了集成运放内部电路的组成及作用;讨论了电流源电路、差分放大器等单元电路;同时介绍了集成运放的理想化条件及它的三种基本电路和运算、集成运放的应用电路及其特点和集成运放的非线性应用;教学内容、要求和重点如表5.1。
表5.1 教学内容、要求和重点【例题分析与解答】【例题5-1】差动放大器如图5-1所示。
已知三极管的β1=β2=50,β3=80,r bb’=100Ω,U BE1=U BE2=0.7V,U BE3=-0.2V,V CC=12V。
当输入信号U i=0时,测得输出U o=0。
1:估算T1、T2管的工作电流I c1、I c2和电阻R e的大小。
2:当U i=10mV时,估算输出U o的值图5-1解:1:由电路可知,当U i =0时,要保证U o =0V ,则电阻R e3上压降应为12V ,,由此可求得3c I :mA R U U I e cc o c 11212)(33==--=,T 3管的设计电流3E I 为:33c E I I ≈,而T 2管集电极电阻R c2上的压降2C R U 可近似为:V U R I U EB e E R C 2.32.0313332=+⨯=+⋅≈。
于是T 1、T 2管的集电极电流1C I 、2C I 为:)(32.0102.32212mA R U I I C RR C C C ====。
射极电阻R e 上的电流e R I 为:)(64.021mA I I I C C R e=+=。
若设T 1管基极电位U B1=0V ,则U E1=-0.7V ,射极电阻R e 为:)(7.1764.0127.0)(1Ω=+-=--=K I U U R e R CC E e2:U i =10mA 时,U o 的大小:由于电路的结构为单入、单出型,故将T 3管构成的后级电路输入电阻R i2作为差放级的负载考虑,其电压放大倍数A u1为:)(2)//(12211be b i c u r R R R A +=β;其中: )(24.432.026)501(1001Ω=⨯++=K r be ,3332)1(e be i R r R β++=; 而3be r 为: )(2.2126)801(1003Ω=⨯++=K r be ; 所以: )(2453)801(2.22Ω=⨯++=K R i电压放大倍数为:8.45)24.41(2)245//10(501=+⨯⨯=u AT3管构成的后级放大电路的电压放大倍数2u A 为:9.33812.21280)1(333332-=⨯=⨯-=++-=e be c u R r R A ββ当输入U i =10mA 时,电路输出电压U o 为:)(8.110)9.3(8.4521V U A A U i u u o -=⨯-⨯=⋅⋅=【例5-2】图5-2给出了采用两级运放电路实现的差分比例运算电路。