2n
2
2n
2
2t
2n
3
2
上式也可以合并写成
iD g(t)uD gDK(2t)uD
(5―32) (5―33)
《高频电路原理与分析》
第5章 频谱的线性搬移电路
式中,g(t)为时变电导,受u2的控制;K(ω2t)为开 关函数,它在u2的正半周时等于1,在负半周时为零,即
K
(2t)
1
0
2n
2
2t
5.1.2 对式(5―1)在EQ+u2上对u1用泰勒级数展开,有
i f (EQ u1 u2 )
f
( EQ
u2 )
f (EQ
u2 )u1
1 2!
f
(EQ
u2 )u12
1 n!
f
(n) (EQ
u2 )u1n
(5―11)
《高频电路原理与分析》
第5章 频谱的线性搬移电路
与式(5―5)相对应,有
《高频电路原理与分析》
第5章 频谱的线性搬移电路
u1
非线性 器件
滤波器
uo
u2
图5―2 非线性电路完成频谱的搬移 《高频电路原理与分析》
第5章 频谱的线性搬移电路
若作用在非线性器件上的两个电压均为余弦信号, 即u1=U1cosω1t,u2=U2cosω2t,利用式(5―7)和三角函 数的积化和差公式
uD=Eo+u1+u2),式(5―30)可进一步写为
iD
g DuD 0
u2 0 u2 0
(5―31)
《高频电路原理与分析》
第5章 频谱的线性搬移电路
由于u2=U2≥ cosω2t,则u2≥0对应于 2nπ-π/2≤ω2t≤2nπ+π/2,n=0,1,2,…,故有