中科院物理所-Rietveld方法原理
- 格式:ppt
- 大小:3.70 MB
- 文档页数:111
Rietveld方法在无机材料中的一些应用的开题报告【摘要】Rietveld方法是一种针对X射线和中子衍射数据处理的技术,它可以非常有效的进行物质结构的分析和结晶学信息的提取,被广泛应用于无机材料研究领域。
本文将介绍Rietveld方法的原理和一些应用,包括晶体结构分析、相变研究、固溶体分析、无机材料的纯度分析等方面,以期探索这种方法在无机材料中的更多应用。
【关键词】Rietveld方法;无机材料; X射线衍射;中子衍射;结晶学一、引言Rietveld方法是一种基于X射线和中子衍射数据处理的技术,它由荷兰物理学家Rietveld于1969年发明并提出。
该方法可以通过对被测物质的衍射数据进行全面的分析和处理,得到物质的结晶学信息、晶体结构信息以及物质特性等相关信息,从而为无机材料研究提供了新的思路和工具。
本文将探讨Rietveld方法在无机材料中的一些应用,包括晶体结构分析、相变研究、固溶体分析、无机材料的纯度分析等方面。
在这些应用中,Rietveld方法优越的实验数据分析能力被充分利用,为无机材料的研究提供了更多的思路和方法。
二、Rietveld方法的原理Rietveld方法的主要基础是全谱拟合法(Full profile fitting),它的核心思想是利用衍射图样的全谱信息,直接拟合实验观测值和计算出的高质量衍射图之间的差异,确定样品晶体结构参数和衍射峰强度系数的一个过程。
与传统的衍射数据分析方法不同,它可以对瑕疵、无序和离散取向体等复杂情况进行处理,得出高精度的结晶学参数。
Rietveld方法的处理过程可以分为如下步骤:1.建立初值模型:根据物质研究对象的特性、晶体结构等先建立一个初值模型,作为后续计算的起点。
2.收集衍射数据:利用X射线或中子衍射技术获取样品的衍射数据。
3.全谱拟合:利用初始模型计算出物质的理论衍射谱,并将其与实验数据进行全谱拟合,调整模型参数,反复迭代,直到模型与实验数据拟合较好。
Rietveld方法X射线粉末衍射分析报告之一李家驹 (中国科学院地质与地球物理研究所 北京) (岛津国际贸易(上海)有限公司 北京办事处 北京) 水泥熟料的物相定量分析1)水泥熟料的四个主要物相是硅酸三钙(Alite, Ca3Si2O7,C3S),硅酸二钙(Belite,Ca2SiO4, C2S),铝酸盐Aluminate,Ca3Al2O6,C3A)和铁铝酸盐(Ferrite,Ca4Al2Fe2O10,C4AF),以及微量的MgO(方镁石),CaO或硫酸盐及非晶态相等,有时出现一些反应不完全的残留相,如二氧化硅(SiO2,石英),甚至出现一些新的物相,还有一些添加的改善水泥质量与性能的石膏等。
前四种物相的含量的差别是水泥标号的指标。
因此水泥的物相的定量有实际意义。
只有最佳组合相的原材料混合物,才能生产高质量的水泥。
2)传统的水泥物相定量有三种方法。
(1)Bogue法:利用X射线荧光光谱分析的成分,按几种假设物相配分,计算出主要物相的含量。
但是有以下问题。
a.由于生产过程中变化的因素,并非完全产生理想的物相。
b. 非晶态相的含量。
(2)利用光学显微镜(OM)或扫描电子显微镜加能谱(SEM+EDX),计数统计熟料的物相晶粒面积,以及化学成分。
问题是物相判断准确度,特别是细微颗粒,非晶态等的观察和统计。
(3)X射线粉末衍射法(XRD) 。
利用各个物相的主要衍射峰强度的方法。
但由于水泥熟料物相晶体结构的复杂性,衍射峰的重叠。
即使非常注意样品的研磨与制备,对于定量的精确度与准确度有所改善,在工厂实验室,比前两种方法要好。
根据X射线粉末衍射法的所谓‘直接法’,是唯一能够直接提供熟料物相的分析方法。
以上三种定量方法的比较,使用显微镜方法,C3S与C2S的定量精度高一些,由于C3A与C4AF近似,所以XRD方法比较准确。
3)利用Rietveld方法的定量分析。
虽然提出Rietveld方法的基本思想是利用粉末衍射数据解析晶体结构。
Rietveld方法简介从1967年里特沃尔德根据中子衍射图谱,提出衍射峰形拟合法修正晶体结构以来,由于中子衍射峰型简单,且基本复合高斯分布,在20世纪70年代初,里特沃尔德衍射峰形拟合法在中子粉末衍射修正晶体结构方面得到了广泛的应用,并获得了成功。
1977年以后里特沃尔德图形拟合修正晶体结构的方法开始用于X射线粉末衍射,其中包括同步X射线辐射源的应用,得到了很大的发展。
Rietveld图形拟合修正结构法,就是利用电子计算机程序逐点(通过一定的实验间隔取衍射数据,一个衍射峰可以取若干点衍射强度数据,这样就可以有足够多的衍射强度实验点)比较衍射强度的计算值和观察值,用最小二乘法调节结构原子参数和峰形参数,使计算峰形与观察峰形拟合,即图形的加权剩余差方因子Rwp为最小。
由于所修正的参数都不是线性关系,为了使最小二乘法能够收敛,初始输入的结构原子参数必须基本正确。
因此Rietveld方法只用于修正结构参数,它不能用于测定未知结构的粉末试样的晶体结构。
Rietveld方法用最小二乘法修正的参数有两类:(1)结构参数:包括在不对称单位内全部原子的位置xi , yi , zi,比例因子S(scale factor),全部原子的各向同性或各向异性的温度因子Bi;(2)峰形参数:包括峰形半高宽参数U、V、W,仪器的零点Z0, 晶体的点阵常数a, b, c, α, β, γ以及峰形的不对称参数、择优取向参数等。
Rietveld图形拟合修正结构法是否能够获得满意的结果,受到很多因素的影响:如峰型函数Gk,峰宽函数Hk,背景函数Yib,择优取向的校正等,因此Young等经过建议修正结构参数和峰型参数的顺序(见文献)。
选择正确的修正晶体结构的策略,可节省大量时间和避免过失。
Rietveld法晶体结构修正结果的正确性虽然用拟合图示法(包括全谱的观察值和计算值,以及它们之间的差值)可能是最好的一种表示法,但剩余方差R因子也是一种常用的作为Rietveld法修正结果的数值判据。
Rietveld法的理论分析及其在相分析中的应用X射线多晶衍射的Rietveld法是一种在材料结构分析领域被广泛采用的方法。
本文通过XRD图谱的模拟计算清楚的解释了Rietveld法的原理,并利用该方法对一些合金相的晶体结构进行了研究。
1.XRD图谱的模拟计算根据X射线衍射强度理论,采用不同的峰形函数计算了Ti粉的衍射谱,在加入择优取向因子校正后还计算了冷轧Ti片的衍射谱。
从总体上看计算谱与实验谱大致相符。
2.晶体结构精修采用Rietveld法对三元化合物Zn<sub>55.24</sub>Al<sub>18.86</sub>Zr<sub>25.9</sub>的晶体结构进行了研究,Rietveld精修的可靠性因子为Rp=7.15%,Rwp=9.56%。
该化合物属正方晶系,空间群为P4/mmm,点阵常数:a=b=4.07080(3)(?),c=4.07366(9)(?)。
精修的结果表明Zr原子占据1a位置,部分Zn原子占据2e位置,另一部分Zn原子和Al原子混合占据1c位置。
最后通过理论计算验证了所得结构的合理性。
采用Rietveld法对三元硼化物Mo<sub>2</sub>NiB<sub>2</sub>的晶体结构及相变进行了研究,结果表明在掺V后Mo<sub>2</sub>NiB<sub>2</sub>的晶体结构发生了由斜方向正方的转变。
Mo<sub>2</sub>NiB<sub>2</sub>的点阵常数:a=7.0914(2)(?),b=4.5639(9)(?),c=3.1787(8)(?),精修的可靠性因子为Rp=6.74%,Rwp=8.52%。
Mo<sub>2</sub>NiB<sub>2</sub>掺V的点阵常数:a=b=5.8244(5)(?),c=3.1239(6)(?),可靠性因子为Rp=5.69%,Rwp=7.41%。