八年级初二数学《极差、方差和规范差》知识点
- 格式:doc
- 大小:80.50 KB
- 文档页数:2
课程解读一、学习目标:1. 掌握极差、方差、标准差的概念。
2. 理解极差、方差、标准差均可反映一组数据的稳定性大小。
二、重点、难点:重点:掌握极差、方差和标准差的概念,理解极差、方差、标准差是刻画数据离散程度的几个统计量;会求一组数据的极差、方差、标准差,并会判断这组数据的稳定性。
难点:理解数据的离散程度与三个“差”之间的关系。
三、考点分析:近几年来,与统计相关的知识以解答题的形式出现且逐年增多,从试题内容上看,由原来简单的求平均数、中位数、众数、方差等到要求用所学统计知识分析和处理数据,解决实际问题,试题考查从知识立意转向能力立意,选取与实际生活有关的问题,关注社会热点,题型越来越新颖。
知识梳理一、极差定义:一组数据中的最大数据与最小数据的差叫这组数据的极差. 表达式:极差=最大值-最小值 总结:1. 极差是刻画数据离散程度的最简单的统计量2. 特点是计算简单3. 极差利用了一组数据两端的信息,但不能反映出中间数据的分散状况注意:极差反映一组数据两个极端值之间的差异情况,仅由两个数据评判一组数据是不科学的,还要了解其他的统计量。
二、方差的概念:在一组数据1x ,2x ,…,n x 中,各数据与它们的平均数x 的差的平方的平均数,叫做这组数据的方差.通常用“2s ”表示,即:()()()[]2222121xx x x x x n s n -++-+-= .方差的计算: (1)基本公式:()()()[]2222121x x x x x x ns n -++-+-=.(2)简化计算公式(I ):])[(12222212x n x x x n s n -+++=.也可写成2222212)(1x x x x n s n -+++=.此公式的记忆方法是:方差等于原数据平方的平均数减去平均数的平方. (3)简化计算公式(II ):]')'''[(12222212x n x x x n s n -+++=.当一组数据中的数据较大时,可以依照简化平均数的计算方法,将每个数据同时减去一个与它们的平均数接近的常数a ,得到一组新数据a x x -=11',a x x -=22',…,a x x n n -=',那么,])'''[(12222212x n x x x n s n'-+++=,也可写成2222212)(1x x x x n s n '-'++'+'= .此公式的记忆方法是:方差等于新数据平方的平均数减去新数据平均数的平方. (4)新数据法:原数据1x ,2x ,…,n x 的方差与新数据a x x -=11',a x x -=22',…,a x x n n -='的方差相等,也就是说,根据方差的基本公式,求得1'x ,2'x ,…,n x '的方差就等于原数据的方差.三、标准差的概念和计算方差的算术平方根叫做这组数据的标准差,用“s ”表示,即:])()()[(1222212x x x x x x n s s n -++-+-== .方差和标准差都是用来描述一组数据波动情况的特征数,常用来比较两组数据的波动大小,我们所研究的仅是这两组数据的个数相等,平均数相等或比较接近时的情况.方差较大的数据波动较大,方差较小的数据波动较小.典型例题知识点一:极差例1.(1)一组数据:473、865、368、774、539、474的极差是 ,一组数据1736、1350、-2114、-1736的极差是 。
什么叫平均差?什么叫极差,?什么叫方差,什么叫标准差?(初二下学期)数学什么叫平均差?什么叫极差, 什么叫方差,什么叫标准差?(初二下学期)数学阅读:30722007-06-30 12:181.极差是指一组数据内的最大值和最小值之间的差异。
极差=最大值—最小值2.先平均,再求差,然后平方,最后再平方,得到的结果表示一组数据的偏离平均值的情况,这个结果通常称为方差。
方差S2=1/ n [ (x1-x)2+(x2-x)2+(x3-x)2+……+( xn-x)2]S2 是表示一组数据的方差,用x 表示一组数据的平均值,x1、x2、x3、 xn —表示各个原始数据。
方差是表现点的离散程度的,方差越小,点的离散程度越小,也就越接近平均值。
方差越小,成绩就越稳定。
3.至于标准差就是方差开根号。
平均差是说明集中趋势的,标准差是说明一组数据的离中趋势的。
极差越大,平均差的代表性越小,反之亦然;标准差越大,平均差的代表性越小,反之亦然。
全距(Range),又称极差,是用来表示统计资料中的变异量数(measures of variation),其最大值与最小值之间的差距;即最大值减最小值后所得之数据。
极差不能用作比较,单位不同 ; 方差能用作比较,因为都是个比率。
极差是指一组测量值内最大值与最小值之差,又称范围误差或全距,以R表示。
它是标志值变动的最大范围,它是测定标志变动的最简单的指标。
移动极差(Moving Range)是其中的一种。
极差没有充分利用数据的信息,但计算十分简单,仅适用样本容量较小(n<10)情况。
中文名:极差外文名:range别称:全距属性:用来表示统计资料中的变异量数适用:适用样本容量较小(n<10)情况分享计算公式全距=最大标志值—最小标志值R=Xmax-Xmin(其中,Xmax为最大值,Xmin为最小值)例如:12 12 13 14 16 21这组数的极差就是:21-12=9方差计算公式:s^2=(1/n)*[(x1-x0)^2 + (x2-x0)^2 +...+ (xn-x0)^2](X0即为x的平均值)移动极差移动极差(Moving Range),是指两个或多个连续样本值中最大值与最小值之差,这种差是按这样方式计算的:每当得到一个额外的数据点时,就在样本中加上这个新的点,同时删除其中时间上“最老的”点,然后计算与这点有关的极差,因此每个极差的计算至少与前一个极差的计算共用一个点的值。
八年级数学《极差、方差和标准差》知识点极差、方差、标准差都是用来研究一组数据的离散程度,表示一组数据离散程度的指标.一、定义理解1极差极差是用来反映一组数据变化范围的大小. 我们可以用一组数据中的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差就称为极差.极差=最大值-最小值极差仅只表示一组数据变化范围的大小,只对极端值较为敏感,而不能表示其它更多的意义.2、方差方差是反映一组数据的整体波动大小的指标,它是指一组数据中各数据与这组数据的平均数的差的平方的平均数,它反映的是一组数据偏离平均值的情况.求一组数据的方差可以简记为:“先平均,再求差,然后平方,最后再平均•"通常用S表示一组数据的方差,用X表示一组数据的平均数,x“ x2、… X n表示各数据.方差计算公式是:s2=1[(x 1- x) 2+(x2- x) 2+—+(X n- x) 2];3、标准差在计算方差的过程中,可以看出S2的数量单位与原数据的不一致,因而在实际应用时常常将求出的方差再幵平方,这就是标准差.标准差=..方差,方差=标准差2.一组数据的标准差计算公式是S j1~xi~x X2—"X ~ xn~x ,其中X为n个数据X i, X2,…,X n的平均数.方差和标准差都是用来描述一组数据波动情况的特征数,常用来比较两组数据的波动大小.方差较大的波动较大,方差较小的波动较小,方差的单位是原数据的单位平方,标准差的单位与原数据的单位相同.在解决实际问题时,常用样本的方差来估计总体方差方法去考察总体的波动情况.二、例题讲析例1、甲、乙两支篮球队在一次联赛中,各进行10次比赛得分如下:甲队:100,97,99,96,102,103,104,101,101,100乙队:97,97,99,95,102,100,104,104,103,102(1)求甲、乙两队的平均分和极差?(2)计算甲、乙两队的方差与标准差,并判断哪支球队发挥更为稳定?解:(1) x= (100 97 99 96 102 103 104 101 101 100)= 100.3?10甲队的极差=104-96= 8; 甲队的极差=104-95= 9(2) S 甲2丄[(100 100.3)2(99 100.3)2(100 100.3)2 ]=5.6110甲队的标准差:-.5.61 2.37 ; 乙队的标准差:.9.21 3.03 所以,由此可以判断甲队的得分方差小,标准差也相应较小,因此他们在联赛中发挥更为稳定一些.例2、对10盆同一品种的花施用甲、乙两种花肥,把10盆花分成两组,每组5盆,记录其花期:甲组:25, 23, 28, 22, 27乙组:27, 24, 24, 27, 23(1)10盆花的花期最多相差几天?(2)施用何种花肥,花的平均花期较长?(3)施用哪种保花肥效果更好?分析:花期的极差就是花期最多相差的天数,花的平均花期就是分别求得甲、乙两组数据的平均数,而看哪种保花肥效果好,关键是比较方差,方差越小,波动越小,效果越好!解:(1) 28- 22= 6 (天) 所以,10盆花的花期最多相差6天._ 1(2)由平均数公式得:x= -(25 23 28 22 27)= 25?5得站=心,所以,无论用哪种花肥,花的平均花期相等.(3)由方差公式得:得S B2 s乙故施用乙种花肥,效果比较可靠三、反馈练习1. 一组数据5, 8, x, 10, 4的平均数是2x,则这组数据的方差是____________ .2. 五名同学目测同一本教科书的宽度时,产生的误差如下(单位:cm): 2,-2, —1, 1, 0,则这组数据的极差为______ cm.方差是_________ ,标准差是______3. 若样本1, 2, 3, x的平均数为5,又样本1, 2, 3, x, y的平均数为6,则样本1, 2, 3, x, y的极差是 _________ ,方差是_______ ,标准差是______ .4. 已知一组数据0, 1, 2, 3, 4的方差为2,则数据20, 21, 22, 23, 24的方差为 ____ ,标准差为________ .5. 一组数据—8,- 4, 5, 6, 7, 7, 8, 9的极差是 ________ ,方差是______ ,标准6. 若样本X1,X2,……,X n的平均数为 =5,方差S2= 0.025,贝肪羊本4X I,4X2,4X n的平均数X /= _______ ,方差S7 2= _______ .。
极差、方差与标准差一.基本知识点讲解:1.极差:是指一组数据中最大数据与最小数据的差。
2. 方差:设在一组数据x1 x2 x3……x n中各数据与它们的平均数的差的平方分别是(x1- )2, (x2- )2……(x n- )2,则他们的平均数:方差可以用来衡量这组数据的波动的大小,一组数据的方差越大,就说明这组数据的波动也越大,这波动的大小是指偏离平均数的大小。
3. 标准差:一组数据的方差的算术平方根叫做这组数据的标准差,用S来表示,即:标准差也只是来衡量一组数据波动大小的量,它虽然比计算方差多开一次平方,但它的度量单位与原数据的度量单位是一致的,所以有时用标准差比较方便。
4. 计算方差的三个公式公式①是方差的定义,一组数据的每个数都减去它们的平均数的平方,再求这些平方的和,比较麻烦,因此可用公式②以使计算过程较为简单,当不是整数时尤为简单。
接近这组数据的平均数的一个常数。
二.例题解析:(1)应用公式①例1. 计算数据9.9、9.7、10.3、9.8、9.8、10、10.1、10.4的方差与标准差。
解:例2. 甲乙两组进行投篮比赛,每组选派10名队员参加,每人投10次,每次投中的人数如下:甲组:7、6、8、8、5、9、7、7、6、7乙组:6、7、8、4、10、9、7、6、6、7求:甲、乙两组哪一组的投篮情况比较稳定解:∴甲乙两组的平均命中率相同,但甲组的投篮比较稳定,所以甲组的投篮情况较好。
(2)应用公式②例3. 甲、乙两人在相同条件下各射靶10次,各次命中环数如下:甲:4、7、10、9、5、6、8、6、8、8乙:7、8、6、6、7、8、7、8、5、9求甲、乙两人谁的射击成绩比较稳定解:(3)应用公式③例4. 求以下数据的方差(精确到0.1)10、13、9、11、8、10、11、12、8、14、10、9解:设a=10,每个数都减去10,有三:小结:1. 方差是以平均数为基数,揭示数据波动的大、小,所以首先要把平均数算准确。
数据的分析知识点:数据的代表:平均数、众数、中位数、极差、方差知识点详解:1.解统计学的几个基本概念总体、个体、样本、样本容量是统计学中特有的规定,准确把握教材,明确所考查的对象是解决有关总体、个体、样本、样本容量问题的关键。
2.平均数当给出的一组数据,都在某一常数a上下波动时,一般选用简化平均数公式,其中a是取接近于这组数据平均数中比较“整”的数;•当所给一组数据中有重复多次出现的数据,常选用加权平均数公式。
3.众数与中位数平均数、众数、中位数都是用来描述数据集中趋势的量。
平均数的大小与每一个数据都有关,任何一个数的波动都会引起平均数的波动,当一组数据中有个数据太高或太低,用平均数来描述整体趋势则不合适,用中位数或众数则较合适。
中位数与数据排列有关,个别数据的波动对中位数没影响;当一组数据中不少数据多次重复出现时,可用众数来描述。
4.极差用一组数据中的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,极差=最大值-最小值。
5.方差与标准差用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,计算公式是s2=[(x1-)2+(x2-)2+…+(x n-)2];方差是反映一组数据的波动大小的一个量,其值越大,波动越大,也越不稳定或不整齐。
一、选择题1.一组数据3,5,7,m,n的平均数是6,则m,n的平均数是()A.6B.7C. 7.5D. 152.小华的数学平时成绩为92分,期中成绩为90分,期末成绩为96分,若按3:3:4的比例计算总评成绩,则小华的数学总评成绩应为()A.92 B.93 C.96 D.92.73.关于一组数据的平均数、中位数、众数,下列说法中正确的是()A.平均数一定是这组数中的某个数B. 中位数一定是这组数中的某个数C.众数一定是这组数中的某个数D.以上说法都不对4.某小组在一次测试中的成绩为:86,92,84,92,85,85,86,94,92,83,则这个小组本次测试成绩的中位数是()A.85 B.86 C.92 D.87.95.某人上山的平均速度为3km/h,沿原路下山的平均速度为5km/h,上山用1h,则此人上下山的平均速度为()A.4 km/hB. 3.75 km/hC. 3.5 km/hD.4.5 km/h6.在校冬季运动会上,有15名选手参加了200米预赛,取前八名进入决赛.已知参赛选手成绩各不相同,某选手要想知道自己是否进入决赛,只需要了解自己的成绩以及全部成绩的()A.平均数B.中位数C.众数D.以上都可以二、填空题:(每小题6分,共42分)7.将9个数据从小到大排列后,第个数是这组数据的中位数8.如果一组数据4,6,x,7的平均数是5,则x = .9.已知一组数据:5,3,6,5,8,6,4,11,则它的众数是,中位数是 . 10.一组数据12,16,11,17,13,x的中位数是14,则x = .11.某射击选手在10次射击时的成绩如下表:则这组数据的平均数是,中位数是,众数是 .12.某小组10个人在一次数学小测试中,有3个人的平均成绩为96,其余7个人的平均成绩为86,则这个小组的本次测试的平均成绩为 .13.为了了解某立交桥段在四月份过往车辆承载情况,连续记录了6天的车流量(单位:千辆/日):3.2,3.4,3,2.8,3.4,7,则这个月该桥过往车辆的总数大约为辆.数据的分析知识点:选用恰当的数据分析数据知识点详解:一:5个基本统计量(平均数、众数、中位数、极差、方差)的数学内涵:平均数:把一组数据的总和除以这组数据的个数所得的商。
欢迎阅读
页脚内容
八年级数学《极差、方差和标准差》知识点
极差、方差、标准差都是用来研究一组数据的离散程度,表示一组数据离散程度的指标.
一、定义理解
1、极差
极差是用来反映一组数据变化范围的大小.我们可以用一组数据中的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差就称为极差.
极差=最大值-最小值
极差仅只表示一组数据变化范围的大小,只对极端值较为敏感,而不能表示其它更多的意义.
2
2S 表 s 23将个数据12x x ,方
例1、甲、乙两支篮球队在一次联赛中,各进行10次比赛得分如下:
甲队:100,97,99,96,102,103,104,101,101,100
乙队:97,97,99,95,102,100,104,104,103,102
(1) 求甲、乙两队的平均分和极差?
(2)计算甲、乙两队的方差与标准差,并判断哪支球队发挥更为稳定?
解:(1)3.10010010110110410310296999710010
1)=(=甲+++++++++⨯x 甲队的极差=104-96=8; 甲队的极差=104-95=9
(2)61.5])3.100100()3.10099()3.100100[(10
12222=甲-++-+-= S
欢迎阅读
页脚内容 甲队的标准差:37.261.5≈; 乙队的标准差:03.321.9≈
所以,由此可以判断甲队的得分方差小,标准差也相应较小,因此他们在联赛中发挥更为稳定一些.
例2、对10盆同一品种的花施用甲、乙两种花肥,把10盆花分成两组,每组5盆,记录其花期: 甲组:25,23,28,22,27
乙组:27,24,24,27,23
(1)10盆花的花期最多相差几天?
(2)施用何种花肥,花的平均花期较长?
(3)施用哪种保花肥效果更好?
分析:花期的极差就是花期最多相差的天数,花的平均花期就是分别求得甲、乙两组数据的平
得2甲S 1.2.0, 3.4. 5..
6.x。