最新人教版数学八年级下册:全册知识点归纳资料
- 格式:doc
- 大小:92.45 KB
- 文档页数:6
人教版八年级下册数学知识点汇总第十六章二次根式。
1. 二次根式的概念。
- 形如√(a)(a≥slant0)的式子叫做二次根式。
其中“√()”称为二次根号,a叫做被开方数。
- 注意:被开方数a必须是非负数,否则√(a)无意义。
例如√(-2)就不是二次根式。
2. 二次根式的性质。
- √(a)(a≥slant0)是一个非负数,即√(a)≥slant0。
- (√(a))^2=a(a≥slant0)。
例如(√(5))^2 = 5。
- √(a^2)=| a|=a(a≥sl ant0) -a(a<0)。
如√(3^2) = 3,√((-3)^2)=| - 3|=3。
3. 二次根式的乘除。
- 二次根式的乘法法则:√(a)·√(b)=√(ab)(a≥slant0,b≥slant0)。
例如√(2)×√(3)=√(2×3)=√(6)。
- 二次根式的除法法则:√(a)÷√(b)=√(frac{a){b}}(a≥slant0,b>0)。
如√(8)÷√(2)=√(frac{8){2}}=√(4) = 2。
4. 二次根式的加减。
- 最简二次根式:被开方数不含分母,被开方数中不含能开得尽方的因数或因式的二次根式。
例如√(8)不是最简二次根式,化简为2√(2)后是最简二次根式。
- 二次根式加减时,先将二次根式化为最简二次根式,然后合并同类二次根式(同类二次根式是指被开方数相同的二次根式)。
例如√(12)+√(27)=2√(3)+3√(3)=5√(3)。
第十七章勾股定理。
1. 勾股定理。
- 直角三角形两直角边a、b的平方和等于斜边c的平方,即a^2+b^2=c^2。
- 例如在直角三角形中,两直角边分别为3和4,则斜边c=√(3^2)+4^{2}=√(9 + 16)=√(25)=5。
2. 勾股定理的逆定理。
- 如果三角形的三边长a、b、c满足a^2+b^2=c^2,那么这个三角形是直角三角形。
八年级数学下册 知识清单二次根式1.定义及存在意义的条件: 定义:形如)0(≥a a 的式子叫做二次根式;有意义的条件:a ≥0. 2.根式化简及根式运算: 最简二次根式应满足的条件:(1)被开方数不含分母或分母中不含二次根式; (2)被开方数中的因数或因式不能再开方。
同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式。
根式化简公式:a a =2,2)(a =a ;根式运算: 乘法公式:)0,0(≥≥⋅=⋅b a b a b a ;b a b a ⋅=2除法公式:)0,0(>≥=⇔=b a b a ba b a b a 分母有理化:把分母中的根号化去,叫做分母有理化。
分母有理化的方法与步骤:①先将分子、分母化成最简二次根式;②将分子、分母都乘以分母的有理化因式,使分母中不含根式; ③最后结果必须化成最简二次根式或有理式。
常见分母有理化公式:b a ba ba a a a --=+=1,1 二次根式加减运算的步骤: (一化,二找,三合并 ) (1)将每个二次根式化为最简二次根式。
(2)找出其中的同类二次根式。
(3)合并同类二次根式。
3.双重非负性:002==⇒=+y x y x 且;00==⇒=+y x y x 且;000==⇒=+y x y x 且【典型例题1】 1、使代数式有意义的自变量x 的取值范围是( )A.x ≥3B.x >3且x ≠4C.x ≥3且x ≠4D.x >3 2、若式子-+1有意义,则x 的取值范围是( )A.x ≥21 B.x ≤21 C.x =21 D.以上答案都不对【典型例题2】3、已知x 、y 为实数,且y=﹣+4.+=( )A.13B.1C.5D.6 4、下列式子中,属于最简二次根式的是( )A. B. C. D.5、下列根式中,最简二次根式是( ) A.B.C.D.6、下列根式中与不是同类二次根式的是( )A. B. C. D.【典型例题3】7、化简的结果为()A. B. C.D.8、把根号外的因式移到根号内,得()A. B. C. D.9、计算的结果估计在()A.6至7之间B.7至8之间C.8至9之间D.9至10之间10、若,则( )A.1-2aB.1C.-1D.以上答案都不对【典型例题4】11、已知,,则代数式的值是()A.9B.±3C.3D.512、若m=,则m5﹣2m4﹣2016m3=()A.2015B.2016C.2017D.0【典型例题5】13、已知:实数a,b 在数轴上的位置如图所示,化简:﹣|a﹣b|.14、若的整数部分是a,小数部分是b ,求的值.15、已知△ABC的三边长a,b,c均为整数,且a和b 满足试求△ABC的c边的长.勾股定理1.勾股定理:在直角三角形中,两直角边的平方和等于斜边的平方。
人教版八年级下册数学知识点全面总结一、实数与代数式1.1 有理数- 概念:整数和分数的统称,包括正整数、0、负整数、正分数、负分数。
- 加减乘除法则:同号相加(减)取其相加(减)后的结果,并保留原来的符号;异号相加(减)取其相加(减)后的结果,并保留绝对值较大的数的符号。
乘法法则:同号得正,异号得负。
除法法则:除以一个不等于0的数等于乘这个数的倒数。
1.2 代数式- 概念:由数字、字母和运算符号组成的式子。
- 代数式的运算:加减乘除、乘方、开方等。
二、方程(组)与不等式(组)2.1 方程- 概念:含有未知数的等式。
- 一元一次方程:形式为ax+b=0,解法:移项、合并同类项、化系数为1。
- 二元一次方程:形式为ax+by=c,解法:消元法、代入法、矩阵法等。
2.2 不等式- 概念:含有不等号的式子。
- 一元一次不等式:形式为ax+b>0或ax+bc或ax+by<c,解法:同二元一次方程。
2.3 方程(组)与不等式(组)的应用- 线性方程组的解法:代入法、消元法、矩阵法等。
- 不等式组的解法:同线性方程组。
三、函数3.1 一次函数- 概念:形式为y=kx+b(k、b为常数,k≠0)的函数。
- 图像:一条直线。
- 性质:随着x的增大,y的值会按照k的正负和大小变化。
3.2 二次函数- 概念:形式为y=ax²+bx+c(a、b、c为常数,a≠0)的函数。
- 图像:一个开口向上或向下的抛物线。
- 性质:开口方向由a的正负决定,顶点坐标为(-b/2a, c-b²/4a)。
四、几何4.1 平面几何- 点、线、面的基本概念。
- 线段的性质:长度、中点、垂直平分线等。
- 角的性质:度量、分类、补角、对顶角等。
- 三角形的基本性质:边长、角度、高、中线、角平分线等。
- 四边形的基本性质:边长、对角线、内角和等。
4.2 立体几何- 空间点、线、面的基本概念。
- 三角形、四边形、圆锥、球等立体图形的性质和计算。
八年级数学人教版下册各章知识点一、有理数的加减运算1. 有理数的概念有理数是整数和分数的统称,包括正数、负数和零。
2. 有理数的加法同号两数相加,异号两数相减,绝对值大的数的符号作为和的符号。
3. 有理数的减法减去一个数等于加上这个数的相反数,即a-b=a+(-b)。
4. 有理数加减混合运算的简便法则先加同号数,再加异号数,同时考虑有括号的运算。
5. 有理数的加减法则的应用例如,温度的变化、海拔的高低、海水深度等都可以用有理数表示,可以考虑使用加减法则进行运算。
二、有理数的乘除运算1. 有理数的乘法同号两数相乘为正,异号两数相乘为负。
2. 有理数的除法被除数和除数同号,商为正;被除数和除数异号,商为负。
除数不能为0。
3. 有理数乘除法综合运用例如,计算温度的变化率、质量比等都可以用有理数的乘除法进行运算。
三、平方根与实数1. 平方数和非平方数2. 平方根的概念3. 二次根式的简化和化简4. 平方根的运算法则乘方和除方的运算法则。
四、一次函数与线性方程组1. 一次函数的概念2. 点斜式和斜截式方程3. 一次函数的分类和性质4. 线性方程组及其解法高斯消元法、分离变量法、克莱姆法则、作图法等。
五、相似形与比例1. 相似形的概念2. 相似比的概念3. 相似形的性质4. 相似形的判定5. 应用:几何建模、图形变换等。
六、几何运算1. 直角三角形的概念和性质勾股定理、正弦定理和余弦定理等。
2. 平行四边形的概念和性质3. 正方形、长方形和平行四边形的关系4. 圆的概念和性质圆的面积和周长、弧度制和角度制等。
七、统计图及其分析1. 统计调查的概念和方法2. 数据的整理和组织方式3. 统计图的分类和意义柱形图、折线图、饼图、散点图等。
4. 统计图的读取和分析如何根据图形信息提取数据特征和规律。
八、概率的概念与计算1. 实验和随机事件的概念2. 概率的定义和性质3. 事件的互斥和独立性质4. 基本概率计算公式的应用5. 事件的总概率和条件概率的计算。
全】人教版初中数学八年级下册知识点总结一、二次根式二次根式是指形如a(a≥0)的式子。
其中,a被称为被开方数。
最简二次根式是指被开方数中不含开方开的尽的因数或因式,且不含分母的二次根式。
如果两个二次根式的被开方数相同,那么它们就是同类二次根式。
二次根式具有一些性质,如a(a>0)的平方根是a,a的平方根和-a的平方根相等。
二、勾股定理勾股定理指的是直角三角形的两直角边长分别为a,b,斜边长为c时,a²+b²=c²。
应用勾股定理可以求出直角三角形的第三边长,或者判断一个三角形是否为直角三角形。
勾股定理的逆定理是指如果三角形三边长a,b,c满足a²+b²=c²,那么这个三角形是直角三角形。
勾股数是指能够构成直角三角形的三边长的三个正整数,常见的勾股数有3,4,5;6,8,10;5,12,13;7,24,25等。
直角三角形还有一些其他的性质,需要我们认真研究和掌握。
1.直角三角形的两个锐角互余,即∠A+∠B=90°。
2.在直角三角形中,30°角所对的直角边等于斜边的一半,即BC=AB/2.3.直角三角形斜边上的中线等于斜边的一半,即CD=AB=BD=AD,其中D为AB的中点。
4.三角形面积公式为AB•CD=AC•BC。
5.直角三角形的判定有三种:有一个角是直角的三角形是直角三角形;如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形;勾股定理的逆定理也可以判定直角三角形。
6.命题是对某件事情做出判断的完整句子,分为真命题和假命题。
7.定理是用推理的方法判断为正确的命题,证明是判断命题正确性的推理过程。
8.证明命题的一般步骤是根据题意画出图形,写出已知和求证,找出由已知推出求证的途径并写出证明过程。
9.三角形的中位线平行于第三边,并且等于它的一半,有多种作用和常用结论。
10.数学口诀有助于记忆和理解数学知识,如“勾股三角形,斜边是对角线”等。
新人教版八年级下册数学学问点归纳二次根式【学问回忆】1.二次根式:式子a 〔a ≥0〕叫做二次根式。
2.最简二次根式:必需同时满意以下条件:⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。
3.同类二次根式:二次根式化成最简二次根式后,假设被开方数一样,那么这几个二次根式就是同类二次根式。
4.二次根式的性质:〔1〕〔a 〕2=a 〔a ≥0〕; 〔2〕 5.二次根式的运算:〔1〕因式的外移和内移:假如被开方数中有的因式可以开得尽方,那么,就可以用它的算术根代替而移到根号外面;假如被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.〔2〕二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式. 〔3〕二次根式的乘除法:二次根式相乘〔除〕,将被开方数相乘〔除〕,所得的积〔商〕仍作积〔商〕的被开方数并将运算结果化为最简二次根式.a 〔a >0〕==a a 2a -〔a <0〕0 〔a =0〕;ab =a ·b 〔a≥0,b≥0〕;b ba a=〔b≥0,a>0〕. 〔4〕有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的安排律以及多项式的乘法公式,都适用于二次根式的运算.【典型例题】例3、 在根式1)222;2);3);4)275xa b x xy abc +-,最简二次根式是〔 〕 A .1) 2) B .3) 4) C .1) 3) D .1) 4) 例5、数a ,b ,假设2()a b -=b -a ,那么 ( )A. a>bB. a<bC. a≥bD. a≤b 2、二次根式的化简及计算 例1. 将根号外的a 移到根号内,得 ( )A. ;B. -;C. -;D.例2. 把〔a -b 〕-1a -b 化成最简二次根式例4、先化简,再求值:11()ba b b a a b ++++,其中51+,51-.例5、如图,实数a 、b 在数轴上的位置,化简 222()a b a b -4、比较数值 〔1〕、根式变形法当0,0a b >>时,①假如a b >>a b <<例1、比较的大小。
人教版初二数学下册知识点人教版初二数学下册知识点概述一、实数1. 实数的概念:实数包括有理数和无理数,是有理数的扩展。
2. 算术平方根:了解算术平方根的定义,掌握开平方的方法。
3. 立方根:理解立方根的定义,能够计算一个数的立方根。
4. 无理数:认识无理数,了解无理数与有理数的区别。
5. 实数的运算:掌握实数的加、减、乘、除运算规则。
二、代数式1. 代数式的基本概念:理解代数式的定义,区分单项式和多项式。
2. 单项式与多项式:掌握单项式的系数、次数,多项式的项数、次数。
3. 同类项与合并同类项:理解同类项的概念,学会合并同类项。
4. 代数式的加减运算:掌握代数式加减的运算法则。
5. 代数式的乘除运算:理解并掌握单项式与多项式相乘的方法。
三、方程与不等式1. 一元一次方程:复习一元一次方程的解法,理解方程的解和解方程的概念。
2. 一元一次不等式:学习一元一次不等式的解法,掌握不等式的解集表示。
3. 一元一次方程与不等式的综合应用:能够将方程和不等式应用于实际问题中。
4. 二元一次方程组:学习二元一次方程组的解法,包括代入法和消元法。
5. 一元二次方程:了解一元二次方程的基本概念,掌握求解方法,如直接开平方法、配方法、公式法和因式分解法。
四、几何1. 平行线的性质:理解平行线的性质,掌握同位角、内错角、同旁内角的概念。
2. 三角形的基础知识:学习三角形的分类,包括等边三角形、等腰三角形和直角三角形。
3. 三角形的内角和:掌握三角形内角和定理。
4. 特殊三角形的性质:学习等腰三角形和等边三角形的性质。
5. 平行四边形:了解平行四边形的性质和判定条件。
6. 圆的基本性质:学习圆的基本性质,包括圆心、半径、直径、弦、弧等概念。
7. 圆周角:理解圆周角定理,包括同弧圆周角相等、直径所对圆周角是直角等。
8. 圆的面积和周长:掌握圆的面积和周长的计算公式。
五、统计与概率1. 统计的基本概念:了解数据的收集、整理、描述和分析过程。
人教版八年级下册数学知识点总结(一)勾股定理1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。
2.勾股定理逆定理:如果三角形三边长a,b,c满足a2+b2=c2。
,那么这个三角形是直角三角形。
3.经过证明被确认正确的命题叫做定理。
我们把题设、结论正好相反的两个命题叫做互逆命题。
如果把其中一个叫做原命题,那么另一个叫做它的逆命题。
(例:勾股定理与勾股定理逆定理) 第十九章四边形平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。
平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等。
平行四边形的对角线互相平分。
平行四边形的判定1.两组对边分别相等的四边形是平行四边形2.对角线互相平分的四边形是平行四边形;3.两组对角分别相等的四边形是平行四边形;4.一组对边平行且相等的四边形是平行四边形。
三角形的中位线平行于三角形的第三边,且等于第三边的一半。
直角三角形斜边上的中线等于斜边的一半。
矩形的定义:有一个角是直角的平行四边形。
矩形的性质:矩形的四个角都是直角;矩形的对角线平分且相等。
矩形判定定理: 1.有一个角是直角的平行四边形叫做矩形。
2.对角线相等的平行四边形是矩形。
3.有三个角是直角的四边形是矩形。
菱形的定义:邻边相等的平行四边形。
菱形的性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。
人教版八年级下册数学知识点总结(二)数据的分析1.加权平均数:加权平均数的计算公式。
权的理解:反映了某个数据在整个数据中的重要程度。
学会权没有直接给出数量,而是以比的或百分比的形式出现及频数分布表求加权平均数的方法。
2.将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。
3.一组数据中出现次数最多的数据就是这组数据的众数(mode)。
2024年八年级下册数学知识点总结归纳一、实数的认识与运算1. 数轴及实数的表示- 数轴的绘制及利用- 实数的表示及其在数轴上的位置2. 实数的相关性质- 加法运算的性质- 减法运算的性质- 乘法运算的性质- 除法运算的性质3. 实数的运算规则- 加法的运算法则- 减法的运算法则- 乘法的运算法则- 除法的运算法则4. 实数的逆运算- 加法逆元和减法逆元- 乘法逆元和除法逆元5. 有理数的认识与运算- 有理数的表示及其分类- 有理数的加法与减法- 有理数的乘法与除法6. 无理数的认识与运算- 无理数的表示及其性质- 无理数与有理数的关系7. 实数的运算律及运算顺序- 混合运算的顺序和运算律二、线性方程与不等式1. 一元一次方程- 一元一次方程的解的概念- 一元一次方程的解的判断- 一元一次方程的解的求法2. 一元一次方程的应用- 应用问题的方程建立- 使用方程解决实际问题3. 一元一次不等式- 一元一次不等式的解的概念- 一元一次不等式的解的判断- 一元一次不等式的解的求法4. 一元一次不等式的应用- 应用问题的不等式建立- 使用不等式解决实际问题三、平面图形与立体图形1. 平面图形的性质与判断- 五角星和六角星的性质- 四边形的性质- 三角形的性质- 直角三角形的性质2. 平面图形的分类与应用- 三角形的分类- 几何图形的应用3. 立体图形的认识与分类- 立体图形的基本概念- 空间几何图形的识别和分类4. 立体图形的体积与表面积- 直方体和正方体的体积和表面积- 柱体和锥体的体积和表面积四、统计与概率1. 数据的汇总与处理- 数据的收集和整理- 数据的图表表示2. 参数与统计量- 参数的含义与计算- 统计量的含义与计算3. 概率与事件- 概率的概念与性质- 事件与概率的计算4. 概率的应用- 简单事件的计算- 互斥事件的计算- 包含事件的计算五、函数与图像1. 函数的概念与表示- 函数的定义与表示- 函数的自变量和因变量2. 函数的性质与运算- 函数的奇偶性- 函数的增减性- 函数的周期性3. 函数的图像与应用- 函数的图像的绘制- 函数的应用问题解决4. 解析几何的初步认识- 直线的性质与方程- 圆的性质与方程总结:以上是____年八年级下册数学的知识点总结归纳,主要涵盖了实数的认识与运算、线性方程与不等式、平面图形与立体图形、统计与概率、函数与图像等重要内容。
新人教版数学八年级下册知识点汇总本文档汇总了新人教版数学八年级下册的知识点。
第一章函数与线性方程1. 函数的概念与性质2. 线性方程与函数3. 一次函数4. 函数图像与线性方程的解5. 函数关系与线性方程的解6. 函数的运算第二章四边形1. 任意四边形2. 平行四边形3. 矩形4. 正方形5. 菱形6. 梯形7. 三角形的面积第三章几何变换1. 平移与错切2. 原点对称与轴对称3. 尺规作图第四章图形的相似与尺寸1. 相似的概念与性质2. 相似三角形的判定3. 相似三角形与相似比例4. 对应边成比例与对应角相等第五章数据及其概率1. 数列的概念与表示2. 等差数列3. 概率的概念与计算第六章方程1. 方程的解2. 一元一次方程3. 一元一次方程的应用4. 两个变量的线性方程组5. 二次方程的概念与解法第七章平面直角坐标系中的图形1. 直角坐标系2. 线段的中点3. 相交线与平分线4. 解析几何中的实线和虚线5. 圆第八章有理数和实数1. 有理数2. 实数的简介第九章三角形1. 三角形的元素及其关系2. 三角形的相似判定3. 中线、垂线与高线4. 全等三角形及其判定5. 合同三角形的性质第十章配方法等式1. 用配方法解方程2. 一元二次方程第十一章平面图形的性质1. 线段的垂直平分线2. 过点作圆3. 正多边形4. 螺旋线第十二章多边形的面积1. 平行四边形的面积2. 三角形的面积3. 高度与四边形的面积第十三章浓度和密度1. 浓度与密度的计算第十四章投影与视图1. 平行投影2. 视图第十五章集合1. 集合的概念与表示2. 集合间的关系以上是数学八年级下册的知识点汇总。
请根据具体需求查阅相关章节,以帮助研究和复。
(此文档内容仅适用于新人教版数学八年级下册,不包含其他版本的内容)。
人教版八年级下册数学各单元知识点归纳总结第一章算法初步- 整数、质数、合数、因数、倍数的概念- 分解因数,最大公因数,最小公倍数- 带余除法,求模运算,同余方程- 算术基本定理,一元一次方程,解方程的步骤第二章分数- 分数的基本概念,分数的大小比较- 分数的加减乘除,分数的化简- 分数的整数运算,带分数的简单四则运算- 分数运算的应用第三章代数式- 代数式的基本概念,同类项的概念- 代数式的加减乘除,开平方- 代数式乘法公式,因式分解- 代数式的应用第四章方程式初步- 方程组的基本概念- 二元一次方程组,三元一次方程组- 解方程组的方法- 方程的应用第五章图形初步- 轴对称图形,中心对称图形,旋转图形- 面积的应用- 三角形的分类,特殊的三角形- 四边形的分类,判断各种四边形第六章数据的收集与统计- 数据的收集,数据的整理,数据的描述- 中心值,散布度,直方图- 规律的总结,归纳,样本容量的选择- 无偏性,可靠性,误差分析第七章立体图形的计算- 立体图形的基本概念,正方体,长方体- 表面积,体积的计算- 圆锥、圆柱、金字塔、棱锥的表面积、体积的计算- 建立立体图形的模型第八章概率初步- 随机事件,样本空间的概念- 频率与概率,事件的独立性- 树形图与概率,基本统计数量- 离散型随机变量的分布总结本篇文章总结了人教版八年级下册数学各单元的知识点。
每章节都包括基本概念、计算方法和应用场景等内容。
阅读本文可以使学生更好地掌握知识点,提高学习效率,为考试打下基础。
人教版八年级下册数学知识点归纳人教版八年级下册数学教材包含了许多重要的数学知识点,本文将对这些知识点进行归纳总结,帮助学生更好地掌握数学知识。
一、代数运算1. 整式的加减运算:将同类项相加或相减,并保持式子的基本结构稳定。
2. 分配率与合并同类项:运用分配率简化式子,并合并同类项。
3. 方程的基本性质:等式两边同时加(减)或乘(除)同一个数仍然相等。
4. 一元一次方程与解的性质:利用等式的性质求解一元一次方程。
二、平面图形与立体图形1. 平面图形的分类:点、线、角以及常见的三角形、四边形等。
2. 直角三角形与勾股定理:利用勾股定理求解与直角三角形相关的问题。
3. 平行线与三角形:根据平行线与三角形的性质求解与线段长度、角度大小有关的问题。
4. 等腰三角形与等边三角形:利用等腰三角形和等边三角形的性质求解问题。
5. 空间几何体的特征:了解立体图形的特征及常见的几何体如立方体、圆柱体、球体等。
6. 空间坐标系:学会使用三维坐标系表示空间中的点的位置。
三、数据与概率1. 数据的整理与综合:对收集到的数据进行整理、分类和综合,作出相关的统计图表。
2. 概率实验与样本空间:通过进行概率实验,了解样本空间、事件的概念,并计算事件的概率。
3. 互斥事件与对立事件:理解互斥事件和对立事件的概念,并计算其概率。
4. 事件间的关系与概率计算:根据事件间的关系,利用概率进行计算,包括事件的和、差、积和商等。
四、函数与图像1. 平面直角坐标系:了解直角坐标系的概念与性质,能够描绘简单的函数图像。
2. 函数的概念与自变量、函数值的关系:通过数表、图象和图象像等表示函数的特征。
3. 函数的表示与求函数值:利用函数图象、函数的解析式等求函数值。
4. 线性函数与比例函数:认识线性函数和比例函数的特征与性质,并能够利用函数的特征解决实际问题。
五、数与式1. 数的性质:正数、负数、零的性质及其运算规则。
2. 分数的加减与乘除:理解分数的加减乘除运算,能够将分数化简为最简形式。
人教版八年级下册数学知识点总结归纳八班级下册数学重点学问点1一次函数学问点(一)一般地,形如y=kx+b(k,b是常数,且k≠0)的函数,叫做一次函数,其中x是自变量。
当b=0时,一次函数y=kx,又叫做正比例函数。
(二)一次函数的图像及性质1.在一次函数上的任意一点P(x,y),都满意等式:y=kx+b。
2.一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)。
3.正比例函数的图像总是过原点。
4.k,b与函数图像所在象限的关系:当k0时,y随x的增大而增大;当k0时,y随x的增大而减小。
当k0,b0时,直线通过一、二、三象限;当k0,b0时,直线通过一、三、四象限;当k0,b0时,直线通过一、二、四象限;当k0,b0时,直线通过二、三、四象限;当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k0时,直线只通过一、三象限;当k0时,直线只通过二、四象限。
2分解因式一、公式:1、ma+mb+mc=m(a+b+c);2、a2-b2=(a+b)(a-b);3、a22ab+b2=(ab)2。
二、把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式。
1、把几个整式的积化成一个多项式的形式,是乘法运算。
2、把一个多项式化成几个整式的积的形式,是因式分解。
3、ma+mb+mcm(a+b+c)4、因式分解与整式乘法是相反方向的变形。
三、把多项式的各项都含有的相同因式,叫做这个多项式的各项的公因式.提公因式法分解因式就是把一个多项式化成单项式与多项式相乘的形式.找公因式的一般步骤:(1)若各项系数是整系数,取系数的最大公约数;(2)取相同的字母,字母的指数取较低的;(3)取相同的多项式,多项式的指数取较低的.(4)全部这些因式的乘积即为公因式.四、分解因式的一般步骤为:(1)若有-先提取-,若多项式各项有公因式,则再提取公因式.(2)若多项式各项没有公因式,则依据多项式特点,选用平方差公式或完全平方公式.(3)每一个多项式都要分解到不能再分解为止.五、形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式.分解因式的方法:1、提公因式法.2、运用公式法。
最新人教部编版初中八年级数学下册全册
知识点总结
本文档总结了最新人教部编版初中八年级数学下册全册的知识点。
下面是每个单元的主要内容:
第一单元:一元一次方程与应用
- 了解一元一次方程的基本概念和求解方法
- 掌握利用一元一次方程解决实际问题的方法
第二单元:不等式与应用
- 掌握不等式的基本概念和性质
- 学会利用不等式解决实际问题
第三单元:平面图形的认识
- 研究平面图形的基本概念
- 掌握平面图形的性质和判定方法
第四单元:图形的相似与尺寸
- 了解相似图形的定义和性质
- 学会应用相似图形解决问题
第五单元:三角形的面积
- 掌握计算三角形面积的方法
- 研究应用三角形的面积解决实际问题
第六单元:整式与分式
- 理解整式和分式的概念和性质
- 掌握整式和分式的运算方法
第七单元:统计与概率
- 了解统计学的基本概念和统计图表的绘制方法- 研究概率的基本理论和计算方法
第八单元:函数的认识
- 研究函数的定义和基本性质
- 掌握函数的图像和函数关系的表示方法
第九单元:一元二次方程
- 了解一元二次方程的定义和性质
- 学会利用一元二次方程解决实际问题
每个单元的知识点总结包括了基本概念、性质、解题方法和应用等方面的内容。
希望这份文档能帮助您更好地理解和应用八年级数学下册的知识点。
人教版八年级数学下册知识点归纳总结温馨提示:文档内容仅供参考以下是人教版八年级数学下册的知识点归纳总结:一、函数1.函数的概念和表示方法;2.函数的性质:奇偶性、单调性、周期性;3.函数的图像及其特征:零点、最值、拐点、对称轴、渐近线;4.一次函数、二次函数、指数函数、对数函数、三角函数等基本函数的图像及其性质;5.函数的运算:加减、乘除、复合运算等。
二、立体几何1.空间几何图形的基本概念:点、线、面、角、平行、垂直、相交等;2.空间几何图形的投影及其性质;3.空间几何图形的计算:体积、表面积、侧面积等;4.立体几何图形的相似性及其应用;5.空间几何图形的位置关系:平面与平面的位置关系、直线与平面的位置关系、直线与直线的位置关系等。
三、数据的处理1.统计图表的制作与分析:条形图、折线图、饼图、散点图等;2.统计分析中的基本概念:频率、频率分布、平均数、中位数、众数、极差等;3.统计分析中的常见应用:正态分布、抽样等;4.概率的基本概念:样本空间、事件、概率等;5.概率的计算方法:古典概型、几何概型、条件概率等;6.概率的应用:排列组合问题、随机事件的分布等。
四、三角形1.三角形的基本概念:角度、边长、高、中线、中位线、角平分线等;2.三角形的相似性及其应用;3.三角形的面积公式及其应用;4.三角形的角度关系:内角和、外角和、同旁内角等;5.三角形的角度平分线定理、海伦公式等。
五、数系和代数式1.有理数的概念及其运算;2.实数的概念及其运算;3.代数式的概念及其基本性质;4.代数式的加减、乘除、合并同类项、提公因数等运算;5.解一元一次方程、一元二次方程及其应用;6.解一元一次不等式及其应用。
以上是人教版八年级数学下册的主要知识点,希望对您有所帮助。
整理版人教版八年级下册数学全册知识点
大全
本文档整理了人教版八年级下册数学全册的知识点,帮助学生
和老师更好地研究和教授数学课程。
以下是该文档的主要内容:
1. 整数运算: 包括整数的概念、整数的加减乘除运算规则、整
数的大小比较等。
2. 分数运算: 包括分数的基本概念、分数的相加、相减、相乘、相除运算规则等。
3. 小数运算: 包括小数的概念、小数的四则运算、小数的大小
比较等。
4. 代数式和方程: 包括代数式的概念、代数式的加减乘除运算、一元一次方程等。
5. 平面图形: 包括平面图形的基本概念、各种图形的性质、图
形的面积、周长计算等。
6. 空间与图形: 包括立体图形的基本概念、各种立体图形的性质、体积和表面积计算等。
7. 数据与统计: 包括数据的收集和整理、图表的制作和分析、概率的计算等。
8. 几何变换: 包括平移、旋转、翻转等基本变换,以及变换后的图形性质。
9. 计算器的使用: 包括计算器的基本使用方法,如加减乘除、分数运算等。
这份文档旨在为学生和老师提供一个全面且易于理解的数学知识点参考,帮助大家更好地掌握八年级下册数学课程。
请注意,本文档只是知识点的整理,具体的教学内容和例题请参考人教版八年级下册数学教材。
人教版八年级下册数学知识点概述第一章:二次根式
1.1 二次根式的概念与性质
- 二次根式的定义
- 二次根式的性质
1.2 二次根式的运算
- 二次根式的乘法
- 二次根式的除法
- 二次根式的加法和减法
1.3 二次根式在实际问题中的应用
- 利用二次根式求解实际问题
第二章:实数
2.1 实数的概念与分类
- 有理数
- 无理数
- 实数
2.2 实数的运算
- 实数的加法
- 实数的减法
- 实数的乘法
- 实数的除法
2.3 实数与方程
- 线性方程
- 一元二次方程
第三章:平行四边形
3.1 平行四边形的基本性质- 定义与性质
- 平行四边形的判定
3.2 平行四边形的面积
- 平行四边形面积的计算
3.3 平行四边形的应用
- 利用平行四边形解决实际问题第四章:概率初步
4.1 概率的基本概念
- 随机事件
- 必然事件
- 不可能事件
4.2 概率的计算
- 古典概型
- 几何概型
4.3 概率在实际问题中的应用- 利用概率解决实际问题
以上是对人教版八年级下册数学知识点的概述,每个章节都涵盖了基本概念、运算规则、实际应用等方面,帮助学生全面掌握数学知识。
八年级下册知识点归纳
第十六章 二次根式
1、二次根式: 形如)0(≥a a 的式子。
二次根式必须满足: ①含有二次根号“”;②被开方数a 必须是非负数;③非负性
2、最简二次根式满足的条件:
①被开方数不含分母或小数;
②被开方数中不含能开得尽方的因数或因式的二次根式。
3、化最简二次根式的方法和步骤:
(1)如果被开方数含分母,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。
(2)如果被开方数含能开得尽方的因数或因式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。
3、二次根式有关公式
(1)
)0()(2≥=a a a (2)⎪⎩
⎪⎨⎧===)<()()>(0a a -0a 00a a 2a a (3)乘法公式)0,0(≥≥•=b a b a ab
(4)除法公式)0,0(φb a b a b a ≥=
4、二次根式的加减法则:先将二次根式化为最简二次根式,再将被开方数相同的二次根式进行合并。
5、二次根式混合运算顺序:先乘方,再乘除,最后加减,有括号的先算括号里的。
第十七章 勾股定理
1. 勾股定理:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么222c b a =+.
2.勾股定理逆定理:如果三角形三边长a,b,c 满足222c b a =+。
,那么这个三角形是直角三角形。
3. 互逆命题:题设、结论正好相反的两个命题。
如果把其中一个叫做原命题,那么另一个叫做它的逆命题。
(例:勾股定理与勾股定理逆定理)
4.直角三角形的性质
(1)直角三角形的两个锐角互余。
(2)在直角三角形中,30的角所对的直角边等于斜边的一半。
(3)如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么 222c b a =+.
(4)、直角三角形斜边上的中线等于斜边的一半
5、摄影定理:在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项。
①
BD AD CD •=2 ②AB AD AC •=2③
AB BD BC •=2 6、常用关系式
由三角形面积公式可得:AB •CD=AC •BC
第十八章 平行四边形
1、平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。
2、平行四边形的性质:
⑴平行四边形的对边相等;
⑵平行四边形的对角相等;
⑶平行四边形的对角线互相平分。
A B D
3、平行四边形的判定:
⑴两组对边分别相等的四边形是平行四边形;
⑵对角线互相平分的四边形是平行四边形;
⑶两组对角分别相等的四边形是平行四边形;
⑷一组对边平行且相等的四边形是平行四边形。
4、矩形的定义:有一个角是直角的平行四边形。
5、矩形的性质:
⑴矩形的四个角都是直角;
⑵矩形的对角线相等。
6、矩形判定定理:
⑴ 有三个角是直角的四边形是矩形;
⑵对角线相等的平行四边形是矩形。
7、中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半。
直角三角形斜边上的中线等于斜边的一半。
(连接三角形两边中点的线段叫做三角形的中位线。
)
8、菱形的定义 :有一组邻边相等的平行四边形。
9、菱形的性质:
⑴菱形的四条边都相等;
⑵菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。
S 菱形=ab 2
1(a 、b 为两条对角线长) 10、菱形的判定定理:
⑴四条边相等的四边形是菱形。
⑵对角线互相垂直的平行四边形是菱形。
11、正方形定义:一个角是直角的菱形或邻边相等的矩形。
12正方形判定定理:
⑴ 邻边相等的矩形是正方形。
⑵有一个角是直角的菱形是正方形。
(矩形+菱形=正方形)
()()()32100
0.0k ⎪⎩⎪⎨⎧<=>>b b b ()()()32100
0.0k ⎪⎩⎪⎨⎧<=><b b b 第十九章 一次函数
1.变量与常量:在一个变化过程中,数值发生变化的为变量,数值不变的是常量。
2.函数:在一个变化过程中,如果有两个变量x 与y ,并且对于想x 的每一个确定的值,y 都有唯一确定的值与其对应,则x 自变量,y 是x 的函数。
3.函数解析式:用关于自变量的数学式子表示函数与自变量之间的关系的式子。
4.描述函数的方法:解析式法、列表法、图像法。
5画函数图象的一般步骤:
①列表:一次函数只要列出两个点即可,其他函数一般需要列出5个以上的点,所列点是自变量与其对应的函数值
②描点:在直角坐标系中,以自变量的值为横坐标,相应函数的值为纵坐标,描出表格中的个点,一般画一次函数只用两点③连线:依次用平滑曲线连接各点。
6.正比列函数:形如y=kx (k ≠0)的函数,k 是比例系数。
7.正比列函数的图像性质:
⑴ y=kx (k ≠0)的图象是一条经过原点的直线;
⑵增减性:①当k>0时,直线y=kx 经过第一、三象限,y 随x 的增大而增
②当k<0时,直线y=kx 经过第二、四象限,y 随x 的增大而减小,
8.一次函数:形如y=kx+b(k ≠0)的函数,则称y 是x 的一次函数。
当b=0时,称y 是x 的正比例函数。
9. 一次函数的图像性质: ⑴图象是一条直线;⑵增减性:①当k>0时, y 随 x 的增大而增大;②当k<0时, y 随x 的增大而减小。
])()()[(1222212
x x x x x x n S n -++-+-=Λk
k k f f f f x f x f x x ΛΛ+++++=
21221110.待定系数法求函数解析式:⑴设函数解析式为一般式;(2)把两点带入函数一般式列出方程组,求出待定系数;(3)把待定系数值再带入函数一般式,得到函数解析式
11.一次函数与方程、不等式的关系:会从函数图象上找到一元一次方程的解(既与x 轴的交点坐标横坐标值),一元一次不等式的解集,二元一次方程组的解(既两函数直线交点坐标值)
第二十章 数据的分析
1.加权平均数: 权的理解:反映了某个数据在整个数据中的重要程度。
学会权没有直接给出数量,而是以比的或百分比的形式出现及频数分布表求加权平均数的方法。
2.中位数:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。
3.众数:一组数据中出现次数最多的数据就是这组数据的众数。
4.极差:一组数据中的最大数据与最小数据的差叫做这组数据的极差。
5.方差:
方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定。
6.方差规律: x1,x2,x3,…,xn 的方差为m ,则ax1,ax2,…,axn 的方差是a2 m; x1+b , x2+b ,x3+b ,…,xn+b 的方差是m
7. 反映数据集中趋势的量:平均数计算量大,容易受极端值的影响;众数不受极端值的影响,一般是人们关注的量;中位数和数据的顺序有关,计算很少不受极端值的影响。
8.数据的收集与整理的步骤:1.收集数据 2.整理数据 3.
描述数据 4.分析数据 5.撰写调查报告 6.交流。