机械设计基础 螺栓组受力分析的设计示例
- 格式:doc
- 大小:225.50 KB
- 文档页数:2
第六节螺栓组联接的设计第五节讲的是单个螺栓联接中,螺栓的强度问题,主要是螺栓杆的强度。
其中载荷是单个螺栓受到的轴向力或横向力。
实际中,螺栓联接往往是成组使用,而成组使用的螺栓联接(螺栓组)中,各个螺栓的受力往往是不一样的。
这就需要进行受力分析。
主要任务是:分析找出其中受力最大的螺栓及其所受的工作载荷。
(即F),(最终按此最大载荷计算螺栓强度)。
螺纹联接设计包括结构设计和参数设计。
一、螺栓组联接的结构设计1、联接接合面的几何形状应与机器的结构形状相适应。
一般都设计成轴对称的简单几何形状(图所示),便于加工制造,且使联接的接合面受力比较均匀。
2、螺栓的数目应取为易于分度的数目(如3、4、6、8、12等),以利于划线钻孔。
同一组螺栓的材料直径和长度应尽量相同,以简化结构和便于装配。
3、应有合理的钉距、边距和足够的板手空间。
4、被联接件上的支承面应做成凸台或沉头座,以免引起偏心载荷而削弱螺栓的强度。
二、螺栓组联接的受力分析 注意:螺栓组设计中:⎪⎩⎪⎨⎧。
的个数应便于等分圆周例如:圆周上均布螺栓③各螺栓应均匀布置。
一样)。
样(②各螺栓的预紧力均一性能等级应均取一致。
①各螺栓的尺寸规格、‘F 分析中假设:⎪⎩⎪⎨⎧围之内③螺栓的变形在弹性范②各螺栓的刚度相同变形①被联接件是刚体,不 1、 受横向力的螺栓组当采用普通螺栓联接时(图a ),靠联接预紧后在接合面间产生的摩擦力来抵抗横向载荷;当采用铰制孔用螺栓联接(图b ),靠螺杆受剪切和挤压来抵抗横向载荷。
普通螺栓(受拉)按预紧后接合面间所产生的最大摩擦力必须大于或等于横向载荷假设:各螺栓联接接合面的摩擦力相等并集中在螺栓中心处,则根据板的平衡条件得: ∑⋅≥⋅⋅⋅F k Z i F f s 0 ⇒所需预紧力 Zi f F k F s ⋅⋅⋅≥∑式中:f ——接合面的摩擦系数,见教材。
i —-接合面的数目 Z —-螺栓数s k —-可靠性系数,考虑摩擦力不稳定性铰制孔用螺栓(受剪)靠螺栓受剪切和螺栓与孔壁相互挤压传递载荷。
第十四章第三节螺栓组联接的设计与受力鼠标双击自动滚屏分析工程中螺栓皆成组使用,单个使用极少。
因此,必须研究栓组设计和受力分析。
它是单个螺栓计算基础和前提条件。
螺栓组联接设计的顺序——选布局、定数目、力分析、设计尺寸一、结构设计原则1、布局要尽量对称分布,栓组中心与联接结合面形心重合(有利于分度、划线、钻孔),以受力均匀2、受剪螺栓组(铰制孔螺栓联接)时,不要在外载作用方向布置8个以上,螺栓要使其受力均匀,以免受力太不均匀,但弯扭作用螺栓组,要适当靠接缝边缘布局,否则受力太不均3、合理间距,适当边距,以利用扳手装拆4、避免偏心载荷作用a)被联接件支承面不平突起b)表面与孔不垂直c)钩头螺栓联接防偏载措施:a)凸合;b)凹坑(鱼眼坑);c)斜垫片二、螺栓组联接受力分析目的:——求受力最大载荷的螺栓前提(假设):①被联接件为刚性不变形,只有地基变形。
②各螺栓材料、尺寸、拧紧力均相同③受力后材料变形在弹性范围内④接合面形心与螺栓组形心重合,受力后其接缝面仍保持平面1、受横向载荷的螺栓组联接特点:普通螺栓,铰制孔用螺栓皆可用,外载垂直于螺栓轴线 普 通 螺 栓 ——受拉伸作用铰制孔螺栓——受横向载荷剪切、挤压作用。
单个螺栓所承受的横向载荷相等靠摩擦传力靠剪切传力nm f F K F s Rf ='nmF F R s =5.11.1,-=--------f f s K K n m f 安全系数螺栓数目接合面对数接合面间磨擦系数式中2、受横向扭矩螺栓组联接靠底板间摩擦传力由静平衡条件∴联接件不产生相对滑动的条件为:则各个螺栓所需的预紧力为∑==+++⋅=niisfnsfrfTKrrrfKTF121)('靠螺杆受剪切传力=∑TTKTrFfrFfrFffnsss=≥+++'''21由底板平衡条件可知 由变形协调条件可知,各个螺栓的变形量和受力大小与其中心到接合面形心的距离成正比n sns s r F r F r F === 2211则螺栓所受的最大工作剪力为:∑=⋅=n i i s rr T 12max max F3、受轴向载荷螺栓组联接单个螺栓工作载荷为:F=P/ZP ——轴向外载Z ——螺栓个数Tr F r F r F n sn s s =+++ 2211上一节下一节四川机电职业技术学院机械工程系四川省攀枝花市(0812)6251577友情提示:本资料代表个人观点,如有帮助请下载,谢谢您的浏览!。
螺栓组受力分析与计算前言螺栓组是机械结构中常用的连接元件,常见于机器零件和设备中。
在机械结构中,螺栓组的受力分析和计算是非常重要的。
其中,螺栓组受力的大小和方向,不仅决定了螺栓的抗拉强度,还决定了整个机械结构的稳定性和可靠性。
在本文中,我们将介绍螺栓组的受力分析和计算,包括螺栓组的受力特点、受力方向、计算公式和实际案例。
螺栓组受力特点螺栓组是由若干个螺栓组成的一种连接结构。
在受到外力作用时,螺栓组的受力特点主要表现为:1.拉力:螺栓组一般是在拉伸状态下进行工作的,拉力是螺栓组受力的主要形式。
2.压力:螺栓组在受到工作装置的压力时,螺栓头和垫圈会承受一定的压力。
3.剪力:螺栓组在受到横向力或剪切力时,螺栓会发生剪切变形。
4.扭矩:螺栓组在受到扭矩力时,螺栓会扭转变形。
螺栓组受力方向螺栓组的受力方向可以分为两种类型:轴向力和剪力。
轴向力轴向力是螺栓组最常见的受力形式,是指沿着螺栓中心线方向的受力。
当受到轴向拉力和压力时,螺栓组会发生轴向变形,通过计算轴向力和剪力的大小和方向,可以确定螺栓组的破坏形式。
剪力剪力是指横向力或者剪切力在螺栓组上的作用。
当受到横向力或者剪切力时,螺栓组会承受剪切变形,通过计算剪力和轴向力的大小和方向,可以确定螺栓组的破坏形式。
螺栓组的计算公式为了确定螺栓组的受力方向和大小,可以使用材料力学的基本公式进行计算。
下面是螺栓组的计算公式。
轴向力的计算公式轴向拉力的计算公式如下:F = A * σ其中,F表示轴向拉力;A表示螺栓的截面积;σ表示螺栓材料的拉伸强度。
轴向压力的计算公式如下:F = A * σ其中,F表示轴向压力;A表示螺栓的截面积;σ表示螺栓材料的压缩强度。
剪力的计算公式剪力的计算公式如下:F = A * τ其中,F表示剪切力;A表示螺栓的截面积;τ表示螺栓材料的剪切强度。
实例分析螺栓组的实际应用非常广泛,下面介绍几个实际案例。
案例1:车轮螺栓的受力分析和计算车轮螺栓是汽车结构中常见的连接元件,其受力情况如下图所示:在这个情况下,车轮螺栓的轴向拉力如下所示:F = A * σ = 3.14 * (12.52/2)^2 * 780 = 23161.3 N其中,A表示螺栓的截面积;σ表示螺栓材料的拉伸强度。
松螺栓连接紧螺栓连接1、受横向工作载荷(1)当普通螺栓联结承受横向载荷时,由于预紧力的作用,将在接合面间产生摩擦力来抵抗工作载荷(如图),这时螺栓仅承受预紧力的作用,而且预紧力不受工作载荷的影响,在联结承受工作载荷后仍保持不变。
预紧力F0的大小,根据接合面不产生滑移的条件确定。
假设为保证接合面不产生滑移所需要的预紧力为F0,则结合面间的摩擦力与横向外载荷平衡的条件是:(2)螺栓除受预紧力的拉伸而产生拉伸应力外,还受拧紧螺纹时,因螺纹摩擦力矩而产生的扭转切应力,使螺栓处于拉伸与扭转的复合应力状态下。
因此在进行强度计算时,应综合考虑拉伸应力和扭转切应力的作用。
螺栓危险截面的拉伸应力为:预紧螺栓时由螺纹力矩T 产生的扭转剪切应力: 1.3:系数将外载荷提高30%,以考虑螺纹力矩对螺栓联接强度的影响,这样把拉扭的复合应力状态简化为纯拉伸来处理,大大简化了计算手续,故又称简化计算法2、受轴向工作载荷松螺栓连接装配时螺母不需拧紧,故在承受工作载荷之前螺栓不受力。
这种连接应用范围有限,主要用于拉杆、起重吊钩等连接方面。
螺栓所受拉力=工作载荷d1:螺栓小径F:螺栓总拉力[σ]:许用拉应力σs:螺栓屈服强度S S :安全系数,一般取1.2-1.7z.f.F0≥KF z:结合面数目f-结合面的摩擦系数,K-防滑系数,K=1.1-1.3F —横向载荷σs:螺栓屈服强度S S :安全系数,一般取1.2-1.7受轴向工作载荷时,螺栓所受的总拉力:F2 = F1+ FF2 : 总拉力F1 : 残余预紧力F:工作载荷16/311d T πτ=][41σπF d ≥[]S ss σσ=[]S s s σσ=MPad F ca ][4/3.13.1212σπσσ≤==3、铰制孔螺栓(螺栓承受剪切力)螺栓杆与孔壁之间无间隙,接触表面受挤压;在连接接合面处,螺栓杆则受剪切。
因此,应分别按挤压及剪切强度条件计算。
螺栓组受力螺纹联接设计:螺栓组联接的受力分析螺栓联接多为成组使用,设计时,常根据被联接件的结构和联接的载荷来确定联接的传力方式、螺栓的数目和布置。
螺栓组联接受力分析的任务是求出联接中各螺栓受力的大小,特别是其中受力最大的螺栓及其载荷。
分析时,通常做以下假设:①被联接件为刚性;②各螺栓的拉伸刚度或剪切刚度(即各螺栓的材料、直径和长度)及预紧力都相同;③螺栓的应变没有超出弹性范围。
下面介绍几种典型螺栓组受力分析的方法。
1. 受轴向力Fz的螺栓组联接图15.5所示为气缸盖螺栓组联接,其载荷通过螺栓组形心,因此各螺栓分担的工作载荷F相等。
设螺栓数目为z,则F=Fz/z (15-19)此外螺栓还受预紧力,其总拉力的求法见本章第15.2.1节。
2. 受横向载荷FR的螺栓组联接图15.10为受横向力的螺栓组联接,螺栓沿载荷方向布置,载荷可通过两种不同方式传递。
图15.10(1) 用受拉螺栓联接螺栓只受预紧力F` ,靠接合面间的摩擦来传递载荷。
假设各螺栓联接接合面的摩擦力相等并集中在中心处,则根据板的平衡条件得或(15-20)式中μs--接合面摩擦系数,对于钢铁零件,当接合面干燥时,μs =0.10~0.16;当接合面沾有油时,μs=0.06~0.10;m--接合面数目;z--螺栓数目;kf--考虑摩擦传力的可靠系数,kf=1.1~1.5。
若z=1,m=1,并取μs=0.15,kf=1.2,则F`=8FR。
由此可见,这种联接的主要缺点是所需的预紧力很大,为横向载荷的很多倍。
(2) 用受剪螺栓联接时,靠螺栓受剪和螺栓与被联接件相互挤压时的变形来传递载荷。
联接中的预紧力和摩擦力一般忽略不计。
假设各螺栓受均匀载荷Fs,则根据板的静力平衡条件得zF S= F R或F S=F R/z(15-21)3. 受旋转力矩T的螺栓组联接图15.11图15.11为底座承受旋转力矩T的作用,有绕螺栓组形心的轴线O-O旋转的趋势,载荷也可通过两种方式传递。
例题11—1 如图11—14 所示,矩形钢板用4个螺栓固定在铸铁支架上。
受悬臂载荷=∑F 12000N ,接合面间的摩擦系数=f 0.15,可靠性系数=f K 1.2,=l 400mm ,=a 100mm 。
试求:
(1)用铰制孔螺栓连接时,受载最大的螺栓所受的横向剪切力;(2)普通螺栓连接时,螺栓所需的预紧力。
解题分析 本题螺栓组连接受横向载荷和旋转力矩共同作用。
解题时,首先要将作用于钢板上的外载荷向螺栓组连接的接合面形心简化,得出该螺栓组连接受横向载荷和旋转力矩两种简单载荷作用的结论。
然后将这两种简单载荷分配给各螺栓,找出受力最大的螺栓,利用力的叠加原理求出合成载荷,如图11—15所示。
若螺栓组采用铰制孔螺栓,则通过挤压传递横向载荷。
若采用普通螺栓连接,则采用连接面上足够的摩擦力来传递横向载荷。
此时,应按螺栓所需的横向载荷,求出预紧力。
具体受力分析步骤见表11—4。
图11—14 托架螺栓组连接图 图11—15 托架螺栓组连接的受力分析
表11—4 螺栓组连接的受力分析步骤
设计项目
计算内容和依据
计算结果
1. 将载荷简化
将载荷∑F 向螺栓组连接的接合面形心O 点简化,则有
=∑F 12000 N
=⨯=∑l F T 12000×4006108.4⨯=N ·mm
12000N F ∑=
6
4.810T =⨯
N ·mm。