小学数学教师解题能力竞赛试题
- 格式:pdf
- 大小:172.37 KB
- 文档页数:5
小学六年级数学竞赛试题及详细答案一、计算下面各题,并写出简要的运算过程共15分,每小题5分二、填空题共40分,每小题5分1.在下面的“□”中填上合适的运算符号,使等式成立:1□9□9□2×1□9□9□2×19□9□2=19922.一个等腰梯形有三条边的长分别是55厘米、25厘米、15厘米,并且它的下底是最长的一条边;那么,这个等腰梯形的周长是__厘米;3.一排长椅共有90个座位,其中一些座位已经有人就座了;这时,又来了一个人要坐在这排长椅上,有趣的是,他无论坐在哪个座位上都与已经就座的某个人相邻;原来至少有__人已经就座;4.用某自然数a去除1992,得到商是46,余数是r;a=__,r=__;5.“重阳节”那天,延龄茶社来了25位老人品茶;他们的年龄恰好是25个连续自然数,两年以后,这25位老人的年龄之和正好是2000;其中年龄最大的老人今年____岁;6.学校买来历史、文艺、科普三种图书若干本,每个学生从中任意借两本;那么,至少____个学生中一定有两人所借的图书属于同一种;7.五名选手在一次数学竞赛中共得404分,每人得分互不相等,并且其中得分最高的选手得90分;那么得分最少的选手至少得____分,至多得____分;每位选手的得分都是整数8.要把1米长的优质铜管锯成长38毫米和长90毫米两种规格的小铜管,每锯一次都要损耗1毫米铜管;那么,只有当锯得的38毫米的铜管为____段、90毫米的铜管为____段时,所损耗的铜管才能最少;三、解答下面的应用题要写出列式解答过程;列式时,可以分步列式,可以列综合算式,也可以列方程共20分,每小题5分1.甲乙两个工程队共同修筑一段长4200米的公路,乙工程队每天比甲工程队多修100米;现由甲工程队先修3天;余下的路段由甲、乙两队合修,正好花6天时间修完;问:甲、乙两个工程队每天各修路多少米2.一个人从县城骑车去乡办厂;他从县城骑车出发,用30分钟时间行完了一半路程,这时,他加快了速度,每分钟比原来多行50米;又骑了20分钟后,他从路旁的里程标志牌上知道,必须再骑2千米才能赶到乡办厂,求县城到乡办厂之间的总路程; 3.一个长方体的宽和高相等,并且都等于长的一半如图12;将这个长方体切成12个小长方体,这些小长方体的表面积之和为600平方分米;求这个大长方体的体积;4.某装订车间的三个工人要将一批书打包后送往邮局要求每个包内所多35本;第2次他们把剩下的书全部领来了,连同第一次多的零头一起,刚好又打11包;这批书共有多少本四、问答题共35分1.有1992粒钮扣,两人轮流从中取几粒,但每人至少取1粒,最多取4粒,谁取到最后一粒,就算谁输;问:保证一定获胜的对策是什么5分小学生数学报杯”少年数学文化传播活动六年级数学思维能力竞赛试卷时间:9:00~11:00总分120分一、填空题;每题5分,共60分1.计算:1/3×5+1/5×7+7×9++1/2001×2003=;2.计算:4×5+5×6+6×7++25×26+26×27=;3.已知a、b是两个自然数,并且a2=2b;如果b不超过100,那么a的最大值是;4.一个正方形的一条对角线长20厘米,这个正方形的面积是平方米;5.1111×9999的积里含有个奇数; 2006个l2006个96.从任意n个不同的整数中,一定可以找到两个数,它们的差是8的倍数,那么n的最小值是; 7.小明和爸爸同去靶场打靶,他们约定:每人各射击6次,每次打中靶的话,再追加射击2次;这样小明共射击了18次,小明没有射中靶的共有次;8.如图1,5×5的正方形内有25个方格,至少要涂黑个方格,才能使其中每一个3×3的正方形内正好都有4个黑格;9.把立方体的六个面分别涂上六种不同的颜色,并画上朵数不等的花,各面上的颜色与花的朵数对应情况如下表:颜色红黄蓝白紫绿l花的朵数l23456现将上述大小相等,颜色、花朵分布完全一样的四个立方体拼成一个水平放置的长方体如图2,从左往右第二个立方体的下底面有朵花;10.如图3,正方形ABCD的边长是20厘米,E、F分别是AB和BC的中点,那么,四边形BEGF 的面积是平方厘米;备课吧免费下载备课吧——课件,试卷,教案,图片,论文共30万多个资料供您免费下载11.将数字2,3,4,5组成没有重复数字的四位数,则所有这样的四位数的和是;12.将1~16这16个数分别填人图4中的16个小圆圈内,使每个正六边形顶点处6个数的和相等,那么,这个和最大是,最小是;二、应用题;每题9分,共18分1.计算机中的堆栈是一些连续的存储单元,在每个堆栈中数据的存入、取出,按照“先进后出”的原则;如图5,堆栈1的2个连续存储单元已依次存人数据b,a,取出数据的顺序是a,b;堆栈2的3个连续存储单元已依次存人数据e,d,c,取出数据的顺序则是c,d,e;现在要从这两个堆栈中取出这5个数据每次取出1个数据,那么不同顺序的取法共有多少种2.如图6,用一块边长是18厘米的正方形硬纸片,在四个角上截去4个相同的小正方形,然后把四边折合起来,做成一个没有盖的长方体纸盒;请你试算一下,截去的4个相同的小正方形的边长是多少厘米时,长方体纸盒容积最大最大容积是多少图6三、操作题;1.有一叠300张卡片,从上到下依次编号为1~300,从最上面的一张开始按如下的顺序进行操作:把最上面的第一张拿掉,把下一张卡片放在这一叠卡片的最下面;再把最上面的第一张原来的第三张拿掉,把下一张卡片放在这一叠卡片的最下面依次重复这样做,直到手中剩下一张卡片;那么剩下的这张卡片是原来300张卡片的第几张2、如图,方格纸的每一个小方格是边长为1的小正方形,A、B两点在小方格的顶点上;现在要在小方格的顶点上缺点一点C,连接AB、AC和BC后,三角形ABC的面积为2;请你找出5个符合条件的C点;在图中标出来四、问答题;1.甲、乙两地相距100米,大刚和小明两人同时从甲、乙两地出发,相向而行,分别到达两地后立即返回,不断在两地间往返行走;大刚每秒行米,小明每秒行米,在30分钟内两人相遇多少次2.图8是由10~10的小方格组成的大正方形,能否在每个小正方形中分别填上l,2,3这三个数之一,使得大正方形的每行、每列及对角线上的各个数的和互不相同为什么3.张大妈最近在医院动了一次手术,花去医药费25000元;张大妈参加了农村大病医疗保险,医药费具体报销办法是:全年累计医药费总额超过4000元4000元以下自理,凡4001元~10000元的部分报销50%,10001元~20000元的部分报销65%,20001元以上部分报销80%;参保对象属“三老”优抚对象的,其报销标准比普通5%;参保对象每年每人报销的最高金额不超过16000元;请问:张大妈作为“三老”优抚对象,实际需要支付的医药费是多少小学数学教师解题能力竞赛试题整理2010-4-3ByHandtalk填空部分:1、在1—100的自然数中,的约数个数最多;2、一个质数的3倍与另一个质数的2倍之和为100,这两个质数之和是;3、在1~600这600个自然数中,能被3或5整除的数有个;4、有42个苹果34个梨,平均分给若干人,结果多出4个梨,少3个苹果,则最多可以分给个人;5、甲、乙两人同时从A点背向出发沿400米环行跑道行走,甲每分钟走80米,乙每分钟走50米,这二人最少用分钟再在A点相遇;6、11时15分,时针和分针所夹的钝角是度;7、一个涂满颜色的正方体,每面等距离切若干刀后,切成若干小正方体块,其中两面涂色的有60块,那么一面涂色的有块;8、六一儿童节游艺活动中,老师让每位同学从一个装有许多玻璃球的口袋中摸两个球,这些球给人的手感相同,只有红、黄、白、蓝、绿五色之分摸时看不到颜色,结果发现总有两个人取的球相同,由此可知,参加取球的至少有人;9、一批机器零件,甲队独做需11小时完成,乙队独做需13小时完成,现在甲、乙两队合做,由于两人合作时相互有些干扰,每小时两队共少做28个,结果用了小时才完成;这批零件共有个;10、李然从常熟虞山下的言子墓以每分12米的速度跑上祖师山,然后以每分24米的速度原路返回,他往返平均每分行米;11、常熟市乒乓比赛中,共有32位选手参加比赛,如果采用循环赛,一共要进行场比赛;如果采用淘汰赛,共要进行场比赛;12、甲、乙、丙三人各拿出同样多的钱合买一种英语本,买回后甲和乙都比丙多要6本,因此,甲、乙分别给丙元钱,每本英语本元;13、一个表面都涂上红色的正方体,最少要切刀,才能得到100个各面都不是红色的正方体;14、果园收购一批苹果,按质量分为三等,最好的苹果为一等,每千克售价元;其次是二等苹果,每千克售价元;最次的是三等苹果每千克售价元;这三种苹果的数量之比为2:3:1;若将这三种苹果混在一起出售,每千克定价元比较适宜;15、在一次晚会上男宾与每一个人握手但他的妻子除外,女宾不与女宾握手,如果有8对夫妻参加晚会,那么这16人共握手次;16、百米赛跑,假定各自的速度不变,甲比乙早到5米,甲比丙早到10米;那么乙比丙早到米;17、一件工作,甲独干8天后,乙又独干13天,还剩下这件工作的1/6;已知甲乙合干这件工作要12天,甲单独完成这件工作要天;18、小华有2枚5分硬币,5枚2分硬币,10枚1分硬币,他要取出1角钱,共有种不同的取法;19、一个正方体,它的表面积是20平方厘米,现在把它切割成8个完全相同的小正方体;这些小正方体的表面积之和是;20、小明从家到学校有两条一样长的路,一条是平路,另一条的一半是上坡路,一半是下坡路;小明上学两条路所用的时间一样,已知下坡的速度是平路的3/2,那么上坡的速度是平路速度的;21、9点整时,时针与分针组成的角是角,此后时针与分针再成这种角是9时分;22、五1班全班45人选中队长,每人投一票,现已统计到李辰已得票16票,王莹得票18票,王莹至少再得票就能保证当选得票多者当选23、自然数A的所有约数两两求和,又得到若干个自然数;在这些和中,最小的是4,最大的是500,那么A=24、甲、乙、丙三个电台,分别有4、4、3人,新年中彼此祝贺,每两个电台的人都彼此一一通话,那么他们一共要通话次;;解决问题部分:1、六1班男、女人数之比为5:3;体育课上,老师按每3个男生、2个女生分成一组进行游戏;这样,当女生分完时男生还剩4人;求这个班女生一共有多少人2、常熟市举行小学生“百科知识竞赛”,大约有381~450名学生参加,测试结果是全体学生的平均分是76分,男生平均分是79分,女生平均分是71分;求参加测试的男生和女生至少各有多少人;3、中国古代算书张丘建算经中有个“百鸡问题”:今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一;凡百钱,买鸡百只;问鸡翁、母、雏各几何4、在AB一段公路上,甲骑自行车从A往B,乙骑摩托车从B往A,他们同时出发,经过80分钟两人相遇,乙到A后马上折回,在第一次相遇后40分钟追上甲,乙到B地后马上返回,再过多少时间甲与乙再相遇5、两辆汽车从甲乙两地同时相向而行,在距乙地95千米处相遇,相遇后两车又继续前进,它们各自到达甲乙后又立即返回,两车在距甲地25千米处相遇;假设两车的速度不变,甲乙两地的距离是多少千米6、百货公司委托运输公司运送1000只花瓶,双方商定每只的运费为元,如打破一只,这只花瓶不但不计运费,还要赔偿元;结果运输公司共得到了1456元运费;问运输过程中打破了几只花瓶7、用长72米的篱笆靠墙围成一个长方形;长和宽各多少时围成的面积最大面积是多少8、甲乙丙三人合作完成一件工程,共得报酬1800元;三人完成这项工作的情况是:甲乙合作8天完成工程的13;接着乙丙又合作2天,完成余下的14;以后三人合作5天完成了这项工程;按劳付酬,各人应得报酬多少元9、甲、乙两车分别从A、B两站同时相向开出,已知甲车速度是乙车速度的倍,甲车到达途中C站的时刻为凌晨5:00,乙车到达途中C站的时刻为同一天的下午3:00,问这两车相遇是什么时刻10、蓄水池有甲、丙两条进水管,和乙、丁两条排水管;要灌满一池水,单开甲管需要3小时,单开丙管需要5小时;要排光一池水,单开乙管需要4小时,单开丁管需要6小时;现在池内有61池水,如果按甲、乙、丙、丁、甲、乙的顺序,轮流各开一小时,多少时间后水开始溢出水池11、某地收取电费的标准是:每月用电不超过50度,每度收5角;如果超过50度,超出部分按每度8角收费;某月甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少度电12、小轿车、面包车和大客车的速度分别为60千米/小时、48千米/小时和42千米/小时,小轿车和大客车从甲地、面包车从乙地同时相向出发,面包车遇到小轿车后30分钟又遇到大客车;甲、乙两地相距多远13、制作一个玩具熊,甲需5分钟,乙需6分钟,丙需分钟;现在将制作555个玩具熊的任务交给他们,要求他们三人在相同时间内完成任务,那么每人各应加工多少个14、用丰商场从批发部购进100副手套和80个帽子,共花去2800元;商场零售时,每副手套加价5%,每个帽子加价10%,这样卖出后共收入3020元,原来1副手套和1个帽子一共多少元15、某风景区门票的票价如下:50人以下每张12元,51-100人每张10元,100人以上每张8元;现在有甲、乙两个旅游团,若分开购票,两个旅游团总共需门票费1142元;若两个旅游团合在一起作为一个团体购票,总共只需付门票864元;这两个旅游团各有多少人16、有两条纸带,一条长21厘米,一条长13厘米,把两条纸带都剪下同样的一段后,发现长纸带剩下的长度是短纸带剩下的长度的2倍;请问:剪下的一段有多长17、小星有48块巧克力,小强有36块巧克力;如果每次小星给小强8块,同时小强又给小星4块,经过多少次这样的交换后,小强的块数是小星的2倍18、袋里有若干个球,小明每次拿出其中的一半再放回一个球,这样共操作了3次,袋中还有6个球;请问:袋中原有多少个球19、有一根长180厘米的绳子,从一端开始,每3厘米作一个记号,每4厘米也作一记号;然后将标有记号的地方剪断,绳子共被剪成多少段20、某班学生排队,如果每排3人,就多1人;如果每排5人,就多3人,如果每排7人,就多2人,这个班级至少有多少人21、学校一次选拔考试,参加的男生与女生之比是4:3,结果录取91人,其中男女生人数之比是8:5,在未被录取的学生中,男女生人数之比是3:4,那么,参加这次考试共有多少名学生22、甲、乙两人各做一项工程;如果全是晴天,甲需12天,乙需15天完成;雨天甲的工作效率比晴天低40%,乙降低10%;两人同时开工,恰好同时完成;问工作中有多少个雨天23、甲、乙两车往返于相距270千米的A、B两地,甲车先从A地出发,12分钟后,乙车也从A地出发,并在距A地90千米的C地追上甲车;乙车到B地后立即按原速返回,甲车到B地休息5分钟后加快速度,向A地返回,在C地又将乙车追上;最后甲车比乙车早几分钟到达A地24、甲乙两人分别从相距130千米的AB两地同时沿笔直的公路乘车相向而行,各自前往B 地、A地;甲每小时行28千米,乙每小时行32千米;甲乙各有一个对讲机,当他们之间的距离不大于10千米时,两人可用对讲机联络;问:1两人出发后多久可以用对讲机联络2他们能用对讲机联络多长时间25、某市居民自来水收费标准如下:每户每月用水4吨以下,每吨元;当超过4吨时,超过部分每吨3元;某月甲、乙两户用水量之比为5:3,共缴水费元;问甲、乙两户各应缴水费多少元26、某服装公司第一季度销售一批服装,单件成本为400元,售价510元;卖完后公司的有关部门作市场调查,决定第二季度降低成本,同时把售价降低4%,结果第二季度销量增加了10%,总利润提高了5%;问第二季度的每件成本是多少元27、某火车站的检票口,在检票开始前已经有一些人排队等待检票;检票开始后每分钟有10人前来排队检票,一个检票口每分钟能让25人检票进站;如果只有一个检票口,检票开始8分钟就没有人排队检票,如果有两个检票口,检票开始后分钟就没有人排队检票28、一列快车和一列慢车从A、B两地同时相向而行,6小时相遇,相遇后两车又继续行驶2小时,这时快车距B地还差全程的20%,慢车共行了400千米,A、B两地之间的路程共多少千米29、某班学习小组有12人,一次数学测验只有10人参加,平均分是分;后来,缺考的李明和张红进行了补考,李明补考成绩比原10人平均分少分,而张红的补考成绩却比12人的平均分多分,张红考了多少分30、火车站的检票口前已经有一些人排队等候检票进站,假如每分钟前来检票口排队检票的人数一定,那么当开一个检票口时,需要20分钟可以检完;当开两个检票口时,8分钟就可以无人排队;如果开三个检票口时,需要多少分钟可以检完教师解题能力竞赛试题参考答案个人整理,仅供参考填空部分:1、60;约数中尽量含有2、3、5,由此可以判断出可能是30、60、90其中的一个;2、49;3a+2b=100,由于2b是偶数,所以3a也是偶数,即a是偶数,又是质数,所以a=2,从而求出b=47,a+b=493、280;600÷3=200;600÷5=120;600÷15=40,200+120-40=2804、15;34-4=30;42+3=45;30和45的最大公约数是155、40;甲、乙跑一圈分别是5分钟和8分钟,5和8的最小公倍数是406、;30×4-30/4=7、150;60÷12=5,5×5×6=1508、16;摸两个球,有5+4+3+2+1=15种情况,所以要16人才能保证至少有2人相同;9、3575;28÷24/143-4/25;24/143表示甲乙工作效率和,4/25表示甲乙相互干扰后的工作效率和;10、16;设路程为1,2/1/12+1/24=1611、496和31;单循环赛:1+2+3+31=496;淘汰赛:比赛一场淘汰1人,决出冠军意味着要淘汰掉31人,所以比赛31场;12、元;+÷6+6÷3=13、17;首先要切6刀把表皮切掉,底面切成25个小正方形:4+4刀,然后竖着再切3刀,就是100个了;也就是6+8+3=1714、;×2+×3+×1÷2+3+1=15、84;无限制两人握手16×15÷2=120次,去掉女士相互握手8×7÷2=28次,去掉夫妻握手8次,最后求出:120-38-8=8416、100/19米;甲跑100米,乙跑95米,丙跑90米,他们跑的路程成正比,95:90=100:X,X=1800/19;100-1800/19=100/1917、20;1/12-5/6-1/12×8÷13-818、10种;用列举法得出;19、40;大正方形每个面分成4块,所以表面积为4×6=24块,当拆开后,表面积为6×8块,面积增加1倍;20、;因为距离和时间都相同,所以平均速度也相同,又因为上坡和下坡路各一半也相同,设距离是1份,时间是1份,则下坡时间==1/3,上坡时间=1-1/3=2/3,上坡速度=1/2/2/3=3/4=21、直、360/11;分针每小时可以追上时针330o,追上180o需要180÷330时=360/11分22、5;王莹得到23票超过半数就能当选,只要再得23-18=5票;23、375;4=3+1;500÷4×3=37524、40次;4×4+4×3+4×3=40次25、0;因为1—99有189个数字;100—699有300×解决问题部分1、思路点拨:男女学生分的组数相同;设男女生都分成了a组,列方程得:3a+4/2a=5/3;a=12;男生人数:3a+4=40;女生人数:2a=24;2、思路点拨:求出男女生人数的比例;设男生a人,女生b人,列方程得:79a+71b/a+b=76,整理后得3a=5b,即a:b=5:3,也就是总人数a+b是8的倍数;381÷8=475,所以总人数至少是48×8=388人,从而求出男生人数为388×5/8=240人;女生人数为388-240=144人;3、思路点拨:“百鸡问题”可以通过列出不定方程解出其中两种鸡的数量关系,再利用鸡的取值范围和数的整除性解出得数;设:鸡翁、母、雏各有a、b、c只;列方程得:a+b+c=100①;5a+3b+1/3c=100②,将②两边乘3得15a+9b+c=300③,用③-①得14a+8b=200,整理后得b=25-7a/4④;可以看出a必定是4的倍数,并且a小于15,所以a可能是4、8、12分别代入④,最终得出3种不同结果;即鸡翁、鸡母、鸡雏的只数分别是12、4、84或8、11、81或4、18、78;4、思路点拨:⑴可以先求出甲乙的速度比;⑵可以从整体上考虑:三个全程时间240分钟-第一次相遇时间80分钟一追上时间40分钟=追上后第二次相遇时间120分钟;方法一:假设甲的速度是X,乙的速度是Y;那么80X+80Y=AB,考虑到80分钟第一次相遇后40分钟又相遇了,说明甲还没有走道B点就被乙追到了,所以120Y-120X=AB;80X+80Y=120Y-120X;5X=Y;乙的速度是甲的5倍,这样可以推理到第三次相遇时,甲还是没有走到B点,再假设第三次相遇的时间为m,那么mX+mY=3AB,套用80X+80Y=AB,m=240分钟;最后用三个全程时间240分钟-第一次相遇时间80分钟一追上时间40分钟=追上后第二次相遇时间120分钟;方法二:不需要求出甲乙的速度比;甲、乙共走一个全程AB需80分钟,整体上考虑,从同时出发到最后第二次相遇,甲、乙共走了三个全程AB,总时间是80×3=240分钟;三个全程时间240分钟-第一次相遇时间80分钟一追上时间40分钟=追上后第二次相遇时间120分钟;方法三:设AB一段公路为x,乙骑摩托车在第一次相遇后40分钟追上甲,说明行进速度是自行车5倍这句话想要理解的话需要花费一点时间的;从第一次相遇后40分钟甲实际仅仅走了摩托车8分钟的路程;也就是距B地还有80-8=72分钟的摩托车路程,也就是乙骑摩托车还需要72分钟才到b地能返回;此时甲骑自行车距b地还有72-72/5=分钟的路程;到再相遇即分钟/=48分钟+72分钟=120分钟;其中表示1+1/55、思路点拨:当甲乙两车第二次相遇时,两车一共行驶的距离正好是甲乙全程距离的3倍;首先要作图分析图略第一次相遇,乙行驶了95千米,第二次相遇,由于是双方一共行驶了甲乙全程距离的3倍,所以乙一共行驶了95×3=285千米;又因为第二次相遇时,乙行驶了一个甲乙的全程再加上25米,所以甲乙两地的距离等于95×3-25=260千米;6、思路点拨:可以列出二元一次方程解出或者采用假设法;假设法:假设所有的花瓶都没有打破,应该得到的运费是1500元,实际只得了1456元运费,少得了44元,这是因为把打破的花瓶看出成了没有打碎的花瓶;没有打破得元运费,打破了要陪元,两者相差+=11元,也就是每打破一个花瓶,一来一去要少得11元的运费;44÷11=4个,所以打破了4个;7、思路点拨:要注意这道题是靠墙围的长方形,最大面积不是正方形;其实靠墙围出的最大面积的长方形正好是半个大正方形假设围墙的另一面也有半个大正方形,也就是长是宽的2倍; 方法一:设长方形宽a米,长72-2a,面积是72-2aa=2a36-a,当a=36-a时,面积最大,也就是a=18;长方形的长36米,宽18米,面积是648平方米;方法二:长方形的长是宽的2倍,把宽看成1倍,长就是2倍;72÷1+1+2=18,18×2=368、思路点拨:分别求出甲乙丙的工作效率,然后根据甲乙丙工作占的比例求出各自的报酬;根据“甲乙合作8天完成工程的1/3”求出甲乙合作完成需要24天;根据“乙丙又合作2天,完成余下的1/4”求出乙丙合作完成需要:2÷2/3×1/4=12天;根据“以后三人合作5天完成了这项工程”求出甲乙丙三人合作完成需要:5÷1-1/3-1/6=10天;所以丙的工作效率=1/10-1/24=7/120;甲的工作效率=1/10-1/12=1/60;乙的工作效率=1/24-1/60=1/40;整个工程,甲做了13天,占了总量的13/60;乙做了15天,占了总量的15/40即3/8;丙做了7天,占了总量的49/120;甲的报酬=1800×13/60=390元;乙的报酬=1800×3/8=675元;丙的报酬=1800×49/120=735元;9、思路点拨:当未知量很多时,通常把其中的一个或几个量设成1;设甲、乙两车的速度分别是和1,当甲到达C站时,乙还需要10小时才能到达C站,这时两车的距离等于10×1=10,相遇的时间=10÷1+=4小时,5+4=9时上午9时;10、思路点拨:同上解法一:设水池容量为1,设甲乙丙丁四个水管每小时进出水量分别为a、b、c、d,则有a=1/3,b=1/4;c=1/5;d=1/6;易知甲乙丙丁循环一次的总进水量为7/60,本题的关键是动态的考虑水池的剩余容量,5/6-a=1/2,而7/60×4<1/2,故经过4×4=16小时是不会溢出的,再经过两小时的剩余容量=5/6-28/60-a-b=17/60>c,所以再过两小时也不会溢出,至此经过20小时,剩余容量=1/4<a,需要1/4÷a=3/4小时,所以小时后溢出;列式解答方法同解法一:61+31=21先通过甲管放进31水,现在水池一共有水211-21=21还需要进水21。
2017年江门市小学数学教师能力比赛专业基础知识测试(满分100分,考试时长90分钟)一、填空题。
(把正确答案填在括号里,每题2分,共20分。
)1.一种商品,甲超市比乙商店进价便宜10%,甲超市按20%的利润定价,乙商店按15% 的利润定价,结果甲超市的定价比乙商店的定价便宜0.14元。
那么乙商店的进价是( )元。
2.若a 和b 都是正整数,a ÷b=6,则a 和b 的最大公因数是( )。
3.在各学段中,数学课程标准安排了四个方面的课程内容:数与代数、图形与几何、( )、( )。
4.不等腰三角形ABC 是两条高的长度分别为4和12,若第三条高也为整数,那么它可能 是( )。
5.学生学习了A ×B=B ×A 后,得出3×5=5×3的结果,这属于( )迁移。
6.已知:A ÷B ÷C=6,A ÷B-C=6,A-B=62则A=( )。
7.甲、乙、丙三人实弹射击,甲3发2中,乙4发3中,丙5发4中,已知三人打的子弹数相同,共击中931发,乙打中了( )发。
8.甲、乙两人同时从A 地到B 地,12分钟后甲到达B 地立即返回,又过了3分钟与乙相 遇,则甲与乙的速度比为( )。
9.若一个整数除以84的余数是46,则它分别除以3,4,7所得的三个余数之和是( )。
10.《数学课程标准(2011版)》将过去的“双基”拓展为“四基”,增加了( ) 和( )。
二、选择题。
(请选择正确的序号,每题2分,共20分。
)1.最早使用割圆术计算圆的周长、面积以及圆周率的中国古代数学家是( )。
A.刘徽B.祖暅C.杨辉D.徐光启 2.按照四舍五入法,近似数为6.32的三位小数有( )。
A.20个 B.10个 C.9个 D.5个3.一口锅,每次最多能烙2张饼,两面都要烙,每面3分钟,如果要烙5张饼, 最少需要的时间是( )。
A.12分钟B.15分钟C.18分钟D.20分钟 4.把一个较大的正方体切成8个小正方体,这些小正方体的表面积之和是较大 正方体表面积的( )倍。
兴庆区第十小学数学教师解题能力赛试题一、姓名: 得分: 课标填空(20分):1、在各学段中安排了四部分的课程内容, 分别是:()、()、()和()。
2.学生学习应该是一个()、()和()的过程。
3.《数学课程标准》中所提出的“四基”是指()、()、()、()。
4.《数学课程标准》中所提出的“四能”是指()、()、()、()。
5、有效的教学活动是学生学与()的统一, 学生是学习的(), 教师是学习的()、()、()。
二、填空题(30分)1.按规律填空: 8、15.10、13.12.11.()、()。
1.4.16.64.()、()。
2.1根绳子对折, 再对折, 然后从中间剪断, 共剪成()段。
3.小明在计算除法时, 把除数780末尾的“0”漏写了, 结果得到商是80, 正确的商应该是()4.10个队进行循环赛, 需要比赛()场。
如果进行淘汰赛, 最后决赛出冠军, 共要比赛()场。
5、我是兴庆区第十小学教师我是兴庆区第十小学教师我是…………依次排列,第2015个字是()其中有()个师字。
6.在1~600这600个自然数中, 能被3或5整除的数有()个。
7、对于谁能得到四年级六个班文艺大奖赛的金牌,小明、小光、小玲、小红四个小朋友争论不休。
小明说: 得金牌的不是一班就是二班。
小玲说: 得金牌的决不是三班。
小光说: 四、五、六班都不可能是冠军。
小红说: 得金牌的可能是四、五、六班中一个, 比赛后发现这四个人中只有一个人猜对了, ()班是冠军。
8、果园收购一批苹果, 按质量分为三等, 最好的苹果为一等, 每千克售价3.6元;其次是二等苹果, 每千克售价2.8元;最次的是三等苹果每千克售价2.1元。
这三种苹果的数量之比为2: 3: 1。
若将这三种苹果混在一起出售, 每千克定价()元比较适宜。
9、一个正方体, 它的表面积是20平方厘米, 现在把它切割成8个完全相同的小正方体。
这些小正方体的表面积之和是()。
10、12个形状相同的小球, 其中一个比较轻, 用天平称, 至少()次才能保证找到这个较轻的小球。
小学数学教师解题能力竞赛试题小学教师解题能力竞赛数学试卷成绩一、填空。
(25%)1、一个九位数,最高位上是只有3个约数的奇数,最低位上是只有三个约数的偶数,百万位上的数只有1个约数,千位上是既是偶数又是质数的数,其余各位上都是,这个九位数号是(),读作()。
2、12和18的最大公约数是(),用这三个数组成的最小的带分数中有()个。
3、15米增加它的3/5后,再增加3/5米,结果是()米。
4、找规律填数:0.5、2/5、37.5%、4/11、5/14、()〔填分数〕、()〔填百分数〕……5、甲、乙两数的和是30,甲数的小数点向左移动一位后等于乙数的一半,那么甲数是()。
6、等腰三角形的底边长8厘米,两边长度之比是3∶4,这个等腰三角形的周长应为()。
7、一个圆柱体的底面周长是12.56分米,它的底面半径和另一个正方体的棱长相等,他们的高也相等。
这两个形体的表面积之和是()。
(π≈3.14)8、某人在一次选举中,需全部选票的2/3才能当选,计算全部选票的3/4后,他得到的选票已达到当选选票数的5/6,他还需要得到剩下选票的()才能当选。
9、长方形的长和宽的比是7∶3,如果将长减少12厘米,宽增加16厘米,就变成一个正方形。
原来长方形的面积是()平方厘米。
10、一个圆锥体和圆柱体的底面半径之比是3∶2,体积之比是3∶4,那么他们的高之比是()。
11、如图,在大长方形中放置了11个大小、形状都一模一样的小长方形,图中阴影部分面积是()。
12、百米赛跑,假定各自的速度不变,甲比乙早到5米,甲比丙早到10米。
那么乙比丙早到()米。
13、右图中的长方形的长和宽分别是6厘米和4厘米,阴影部分的总面积是10平方厘米,四边形ABCD的面积是()平方厘米。
14、果园收购一批苹果,按质量分为三等,最好的苹果为一等,每千克售价3.6元;其次是二等苹果,每千克售价2.8元;最次的是三等苹果每千克售价2.1元。
这三种苹果的数量之比为2:3:1.若将这三种苹果混在一起出售,每千克定价()元比较适宜。
一、填空題(30分)1、按規律填空:8、15、10、13、12、11、( 14 )、(9 )。
1、4、16、64、( 256 )、( 1024 )。
2、1根繩子對折,再對折,然後從中間剪斷,共剪成( 5 )段。
3、小明在計算除法時,把除數780末尾の“0”漏寫了,結果得到商是80,正確の商應該是( 8 )4、10個隊進行循環賽,需要比賽( 45 )場。
如果進行淘汰賽,最後決賽出冠軍,共要比賽( 9 )場。
5、我是巨化一小教師我是巨化一小教師我是…………依次排列,第2006個字是(小)其中有( 250 )個師字。
6、如圖,迷宮の兩個入口處各有一個正方形機器人和一個圓形機器人,甲の邊長和乙の直徑都等於迷宮入口の寬度,甲和乙の速度相同,同時出發,則首先到達迷宮中心(“☆”處)の是(乙)。
7、對於誰能得到四年級六個班文藝大獎賽の金牌,小明、小光、小玲、小紅四個小朋友爭論不休。
小明說:得金牌の不是一班就是二班。
小玲說:得金牌の決不是三班。
小光說:四、五、六班都不可能是冠軍。
小紅說:得金牌の可能是四、五、六班中一個,比賽後發現這四個人中只有一個人猜對了,你判斷是(三班)冠軍。
8、考試作弊(猜數學名詞)(假分數) 3.4(猜一成語)(不三不四)老爺爺參加賽跑(打數學家名)(祖沖之)72小時(打一漢字)(晶)9、現在把珠子一個一個地如下圖按順序往返不斷投入A、B、C、D、E、F洞中。
問第2006粒珠子投在( F )洞中。
二、選擇題(20分)1、池塘裏の睡蓮の面積每天長大一倍,若經13天就可長滿整個池塘,則這些睡蓮長滿半個池塘需要の天數為( D )A、6B、7C、10 D 、122 、如果a= ,b= ,則a與bの關系( B )A、a﹥bB、a﹤bC、a=bD、無法確定3 、一條直線可以將一個長方形分成兩部分,則所分成の兩部分不可能是(C )。
A、兩個長方形B、兩個梯形C、一個長方形和一個梯形D、一個三角形和一個梯形4、小剛與小勇進行50米賽跑,結果:當小剛到達終點時,小勇還落後小剛10米;第二次賽跑,小剛の起跑線退後10米,兩人仍按第一次の速度跑,比賽結果將是( B )。
常熟市小学数学把握学科能力竞赛试卷(120分钟完成) 一、填空题。
(15、16题每空2分,其余每空1分,共22分)1. 甲数的23 等于乙数的45 ,甲乙两数的最简整数比是( )。
如果甲数是30,那么乙数是( )。
2.某班学生要去买语文书、数学书和英语书。
有买一本的、两本的,也有三本的,每种书最多买一本。
至少要去( )位学生才能保证一定有两位同学买到的书相同。
3.一个长方体,如果长增加2厘米,则体积增加40立方厘米;如果宽增加3厘米,则体积增加90立方厘米;如果高增加4厘米,则体积增加96立方厘米。
原长方体的表面积是( )平方厘米。
4.用1、2、3、0可组成( )个三位数,其中没有重复数字的三位数有( )个。
5.一件工作两队合做15小时完成。
如果甲队工作12小时后,乙队加入共同工作6小时,而后,乙再接着干8小时,就可以将工作全部做完。
这件工作如果甲单独干,需要( )小时完成。
6.将一个分数的分母减去2得45 。
如果将它的分母加上1,则得23 。
这个分数是( )。
7.两个相同的瓶子装满酒精溶液。
一个瓶中酒精与水的体积之比是3:1,另一个瓶中酒精与水体积之比是4:1。
如果把两瓶酒精混合,混合液中酒精和水的体积比是( )。
8.有甲、乙两堆煤,甲堆煤比乙堆多260吨。
当甲堆运出58 ,乙堆运出49后,这时两堆煤剩下的刚好相等。
甲乙两堆煤各有( )吨和( )吨。
9.把一个体积为400立方厘米的正方体,削成一个最大的圆柱体,这个圆柱体的体积是( )立方厘米。
10.一个五位数用“四舍五入”法省略万后面的尾数以后写作5万,这样的五位数一共有( )个。
11.王芳阅读一本252页的小说,已读的页数的57等于未读页数的2.5倍。
那么王芳已读了( )页书。
12.有一群猴子分一筐桃。
第1只猴子分了这筐桃子的19 ,第2只猴分了剩下桃子的18 ,第3只猴子分了这时剩下桃子的17 ……第8只猴分了第7只猴剩下的12 ,第9只猴分了最后的9只桃子。
210.六(1)班的男生有m 人,女生有n 人。
一次数学测验,男生的平均分是84分,女生的平均分是86分。
请你用一个式子表示这次测验全班的平均分是( )分。
11.下图的纸片折成一个正方体,相交于同一个顶点的三个面上的数字之和最大是( )。
12.下图有一些大小相同的正方体木块堆成一堆,从上往下看是图1,从前往后看是图2,从左往右看是图3,这堆木块共有( )块。
13.15个相同的正方形,周长总和是240厘米,把他们拼成一个长方形,这个长方形的周长最多是( )厘米。
14. 6点整时针与分针反向成一条线,当下一次时针与分针反向成一条线时,经过了( )分。
15. 新馨商店从外地购进360个玻璃制品,运输时损坏了40个,剩下的按进价的117%售出,商店可盈利( )%。
二.选择题(10分)1.2013年的5月18日是星期六,那么2020年的7月1日是( )。
A 、星期二B 、星期六C 、 星期日D 、 星期三2.下列说法正确的是( )。
A 、ab -8=12.25,则a 和b 不成比例。
B 、把5克盐放入100克水中配成盐水,盐水的含盐率是5%。
C 、两条不相交的直线叫做平行线。
D 、一个合数至少有三个约数。
1 2 3 4 56 第11题图 图1 图2 图3 第12题图33.在一次投票选举中,甲给其中41的人投了赞成票,乙给其中3人投了赞成票,两人都赞成的人数占候选总人数的61,候选人有( )人。
A 、 12 B 、 24 C 、 36 D 、 484. 如图是小明在物理实验课上用量筒和水测量铁块A 的体积实验,小明在匀速向上将铁块提起,直至铁块完全露出水面一定高度的过程中,则下图能反映液面高度h 与铁块被提起的时间t 之间的函数关系的大致图象是 ( )。
5. 将一个长30厘米、宽20厘米、高10厘米的长方体木块分割成四个完全相同的小长方体,表面积最多增加( )平方厘米。
A 、1800B 、1000C 、3600D 、1200三.计算题(能简便运算的要简算)(12分)1997×2003 85×5.3+5.7×85-0.6254(1+21)×(1-21)×(1+31)×(1-31)…×(1+1001)×(1-1001)若2@=2×3,3@=3×4×5,5@=5×6×7×8×9…… 按此规则计算 @6@4四. 图形计算与操作(8分)1.下图中,等腰直角三角形的一腰的长是8厘米,以它的两腰为直径分别画了两个半圆,那么,阴影部分的面积共有多少平方厘米。
1. 熟悉鸡兔同笼的“砍足法”和“假设法”.2. 利用鸡兔同笼的方法解决一些实际问题,需要把多个对象进行恰当组合以转化成两个对象.一、鸡兔同笼这个问题,是我国古代著名趣题之一.大约在1500年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗? 二、解鸡兔同笼的基本步骤解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”.这样,鸡和兔的脚的总数就由94只变成了47只;如果笼子里有一只兔子,则脚的总数就比头的总数多1.因此,脚的总只数47与总头数35的差,就是兔子的只数,即473512-=(只).显然,鸡的只数就是351223-=(只)了.这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已.除此之外,“鸡兔同笼”问题的经典思路“假设法”.假设法顺口溜:鸡兔同笼很奥妙,用假设法能做到,假设里面全是鸡,算出共有几只脚,和脚总数做比较,做差除二兔找到.解鸡兔同笼问题的基本关系式是:如果假设全是兔,那么则有:数=(每只兔子脚数×鸡兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数) 兔数=鸡兔总数-鸡数如果假设全是鸡,那么就有:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡的脚数) 鸡数=鸡兔总数-兔数 当头数一样时,脚的关系:兔子是鸡的2倍 当脚数一样时,头的关系:鸡是兔子的2倍在学习的过程中,注重假设法的运用,渗透假设法的重要性,在以后的专题中,如工程,行程,方程等专题中也都会接触到假设法两个量的“鸡兔同笼”问题——变例【例 1】 某次数学竞赛,共有20道题,每道题做对得5分,没做或做错都要扣2分,小聪得了79分,他做对了多少道题?【考点】鸡兔同笼问题 【难度】3星 【题型】解答 【关键词】假设思想方法 【解析】 做错(52079 ) (52)3⨯-÷+= (道),因此,做对的20317-= (道). 【答案】17道【巩固】 数学竞赛共有20道题,规定做对一道得5分,做错或不做倒扣3分,赵天在这次数学竞赛中得了60分,他做对了几道题?例题精讲知识精讲教学目标6-1-9.鸡兔同笼问题(二)【考点】鸡兔同笼问题【难度】3星【题型】解答【关键词】假设思想方法【解析】假设他将所有题全部做对了,则可得100分,实际上只得了60分,比假设少了40分,做错一题要少得8分,少得的40分中,有多少个8分,就是他做错的题的数量,则知他做对了15道.【答案】15道【巩固】东湖路小学三年级举行数学竞赛,共20道试题.做对一题得5分,没有做一题或做错一题都要倒扣2分.刘钢得了86分,问他做对了几道题?【考点】鸡兔同笼问题【难度】3星【题型】解答【关键词】假设思想方法【解析】这道题也类似于“鸡兔同笼”问题.假设刘钢20道题全对,可得分520100⨯=(分),但他实际上只得86分,少了1008614-=(分),因此他没做或做错了一些题.由于做对一道题得5分,没做或做错一道题倒扣2分,所以没做或做错一道题比做对一道题要少527+=(分).14分中含有多少个7,就是刘钢没做或做错多少道题.所以,刘钢没做或做错题为1472-=÷=(道),做对题为20218(道).【答案】18道【巩固】某次数学竞赛,试题共有10道,每做对一题得6分,每做错一题倒扣2分。
教学目标定义新运算这类题目是在考验我们的适应能力,我们大家都习惯四则运算,定义新运算就打破了运算规则,要求我们要严格按照题目的规定做题.新定义的运算符号,常见的如△ 、◎、※等等,这些特殊的运算符号,表示特定的意义,是人为设定的.解答这类题目的关键是理解新定义,严格按照新定义的式子代入数值,把定义的新运算转化成我们所熟悉的四则运算。
知识点拨一定义新运算基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。
基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。
关键问题:正确理解定义的运算符号的意义。
注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。
②每个新定义的运算符号只能在本题中使用。
我们学过的常用运算有:+、-、×、÷等.如:2+3=5 2×3=6都是2 和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×,”“÷运”算不相同.二定义新运算分类1.直接运算型2.反解未知数型3.观察规律型4.其他类型综合例题精讲模块一、直接运算型【例1】若 A* B 表示A 3B A B ,求 5*7 的值。
【考点】定义新运算之直接运算【难度】2 星【题型】计算【解析】A* B是这样结果这样计算出来:先计算A+3B的结果,再计算A+B 的结果,最后两个结果求乘积。
由A*B=(A+3B)×(A+B)可知:5*7=(5+3×7)×(5+7)=(5+21)×12 =26×12 =312【答案】 312巩固】定义新运算为 a △b =( a + 1) ÷b ,求的值。
小学数学教师解题能力大赛试题及答案时间:2小时1、有45个苹果和34个梨,平均分给几个幼儿园的小朋友,结果多出两个梨,而少3个苹果,则最多分给了几个小朋友4分答案:16个2、一架天平有1克、2克、4克和8克的砝码各一个,用这四个砝码在天平上能称出多少种不同重量的物体 4分答案:15种3、兰州拉面的制作步骤是:将一个面团先搓成圆柱形面棍,长1.5米,然后对折拉长到1.5米,再对折拉长到1.5米…照这样继续下去,最后拉出的面棍粗细仅有原来面棍的1/8,那么最后面条师傅拉出的这些面条的总长度有多少米 4分答案:96米4、如图,平行四边形AC边长为10厘米,现沿对角线对折,此时,图中影阴部分是原平行四边形面积的1/5。
AB长多少厘米 4分答案:6厘米5、一个正方体木块放在桌面上,每一面都有一个数,位于对面的两个数字之和都是12,小平能看到顶面和两个相邻的侧面,看到的三个数之和为15;小刚能看到顶面和另外两个相邻的侧面,看到的三个数之和为21。
那么贴着桌子的那个面上的数是多少 4分答案:66、一张长方形纸的长为20厘米,两只小虫分别从对角顶点D和B出发,甲虫P 从B行到C,每秒行3厘米,乙虫Q从D行到A,每秒2厘米。
两虫同时出发,经过多长时间后两虫之间距离最短 5分用算术方法解答答案:4秒7、某次羽毛球公开赛上,一共有21名选手参加。
组委会将他们分成两组,甲组11人,乙组10人。
各组都进行单循环赛,然后各组选出前2名,一共4名选手再进行单循环赛,决出冠亚军,一共要进行多少场比赛 4分答案:106场8、有黑、白棋子一堆,黑子个数是白子个数的2倍,现从这堆棋子中每次取出黑子4个,白子3个,待到若干次后,白子已经取尽,而黑子还有16个。
求黑、白棋子各有多少个用算术方法解答 5分答案:黑子48个,白子24个9、能不能在正方体上切一刀,使切面成一个正六边形如果能,在图中画出这个正六边形,并作简要说明。
如果不能,请说出理由。
小学教育联盟数学教师专业理论考试试题姓名:成绩:第一部分:数学课程标准基础知识(20分)一、填空题。
(以修订稿为标准)(1’×20=20’)1、数学是研究()和()的科学。
2、义务教育阶段的数学课程面向全体学生,适应学生个性发展需要,人人都能获得()的数学教育,不同的人在数学上得到不同的发展。
4、课程内容的组织要处理好()与结果的关系,直观与()的关系,直接经验和()的关系。
5、除()学习外,()、()和合作交流也是学生学习数学的重要方式。
6、教师教学应该以学生的()和()为基础,面向全体学生,注重启发式和因材施教。
教师要发挥主导作用,处理好讲授与()的关系。
7、在各个学段中,《数学课程标准标准》安排了四个方面的课程内容:数学与代数、()、()、()。
8、《数学课程标准标准》明确了义务教育阶段数学课程的总目标,并从知识技能、()、()、()等四个方面做出了进一步的阐述。
9、评价的主要目的是为了全面了解学生的数学学习历程,激励学生的的学习和改进()。
第二部分:学科基础知识(100分)一、填空(20分)(1)2008年5月12日,我国四川省汶川县遭受了特大地震灾害,给当地人民带来了巨大的生命财产损失。
地震发生后,全国人民发扬“一方有难,八方支援”的精神,纷纷捐款捐物,截止到6月5日,我国民政部共收到国内捐款437.64亿元,把这个数改写成用“1”作单位的数是(),改写后读作()。
(2)3.02立方米=( )立方米()立方分米;34时=()分。
(4)12和18的最大公因数是(),最小公倍数是()。
(6)在一次数学考试中,10名学生得分如下:65、80、85、85、90、85、95、85、92、95,这组数据的众数是( ),中位数是( ),平均数是( ),其中能较好反映10名学生的成绩是( )。
(7)某潜艇A在水下30米记作“-30米”,另一潜艇B的位置记作“-16米”表示B在A的 ( )方(填上或下) ( )米处。
小学数学教师基本功大赛试题一、选择题(2×10=20分)1.下列图形中,对称轴只有一条的是( )A .长方形B .等边三角形C .等腰直角三角形D .圆2.一个长方体和一个圆锥体的底面积和高分别相等,长方体体积是圆锥体体积的( ) A.3倍 B.2/3 C.2倍 D.无法确定3.一个比的前项是4,当它增加8时,要使比值不变,后项必须( ) A.增加8 B.扩大2倍 C.乘以3 D.扩大8倍4.一条直线把一个正方形分成完全一样的两部分,有( )种分法 A.2种 B.4种 C.8种 D.无数种5.“终身学习”是现代社会中劳动者生存和发展的迫切需要,因此,数学教育的重要课题之一是( )A .学会解题B .学会计算C .学会使用计算器D .学会思考 6.师傅加工零件个数比徒弟多1/7,则徒弟加工零件个数比师傅少( ) A .1/7 B .6/7 C .1/8 D .7/87.若“*”是一个对于1和0的新运算符号,且运算规则如下:1*1=0,1*0=0,0*1=1,0*0=0.则下列四个运算结果中是正确的是( )A .(1*1)*0=1 B.(1*0)*1=0 C.(0*1)*1=0 D.(1*1)*1=08.在国家倡导的“阳光体育”活动中,老师给小明30元钱,让他买三样体育用品:大绳、小绳、毽子,其中大绳至多买两条.若大绳每条10元,小绳每条3元,毽子每个1元.在把钱都用尽的条件下,买法共有( )A .6种B .7种C .8种D .9种9.如图,一个正方形只有一种形式;两个同样大小的正方形拼接起来,使一边公共,也只有一种形式;三个这样的正方形拼接起来,便有两种形式, 类似的,同样大小的四个正方形拼接起来,应有( )形式.(注意:两种拼接结果,如果经过平移、旋转、翻折,能够重叠在一起,便认为是同一种形式)A .4 B .5 C .6 D .710.小明拿一张矩形纸(如图),沿虚线对折一次如图甲,再将对角两顶点重合折叠得图乙,按图丙沿折痕中点与重合顶点的连线剪开,得到三个图形,这三个图形是( )A.都是等腰三角形 B.都是直角三角形C.两个直角三角形,一个等腰三角形 D .两个直角三角形,一个等腰梯形甲 乙 丙二、填空题(2×10=20分)11.新课程强调学习方式多样化,重视自主探索、操作实践和合作交流等学习方式的运用。
1. 运用各种方法解决行程内综合问题。
2. 发现一些综合问题中,行程与其它模块的联系,并解决奥数综合问题。
行程问题是奥数中的一个难点,内容多而杂。
而在行程问题中,还有一些尤其复杂的综合问题。
它们大致可以分为两类:一、 行程内综合,把行程问题中的一些零散的知识点综合在一道题目中,这就是一道行程内综合题目。
例如把环形跑道和猎狗追兔结合在一起,把流水行船和发车间隔结合起来等等。
二、 学科内综合,这种问题就不只是行程问题了,把行程问题和其它知识模块里的思想方法结合在一起,这种综合性题目的难度也很大,比如行程与策略综合等等。
本讲内容主要就是针对这种综合性题目。
虽然题目难度偏大,但是这种题目在杯赛和小升初试题中是很受“偏爱”的。
所以很重要。
模块一、行程内综合【例 1】 邮递员早晨7时出发送一份邮件到对面山里,从邮局开始要走12千米上坡路,8千米下坡路。
他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地停留1小时以后,又从原路返回,邮递员什么时候可以回到邮局?【考点】变速问题与走停问题 【难度】2星 【题型】解答【解析】 法一:先求出去的时间,再求出返回的时间,最后转化为时刻。
①邮递员到达对面山里需时间:12÷4+8÷5=4.6(小时);②邮递员返回到邮局共用时间:8÷4+12÷5+1+4.6 =2+2.4+1+4.6 = l 0(小时)③邮递员回到邮局时的时刻是:7+10-12=5(时).邮递员是下午5时回到邮局的。
法二:从整体上考虑,邮递员走了(12+8)千米的上坡路,走了(12+8)千米的下坡路,所以共用时间为:(12+8)÷4+(12+8)÷5+1=10(小时),邮递员是下午7+10-12=5(时) 回到邮局的。
【答案】5时【例 2】 小红上山时每走30分钟休息10分钟,下山时每走30分钟休息5分钟.已知小红下山的速度是上山速度的1.5倍,如果上山用了3小时50分,那么下山用了多少时间?【考点】变速问题与走停问题 【难度】2星 【题型】解答【解析】 上山用了3小时50分,即60350230⨯+=(分),由2303010530÷+=L (),得到上山休息了5次,走了230105180-⨯=(分).因为下山的速度是上山的1.5倍,所以下山走了180 1.5120÷= (分).由120304÷=知,下山途中休息了3次,所以下山共用12053135+⨯=(分)2=小时15分.【答案】2小时15分【例 3】 已知猫跑5步的路程与狗跑3步的路程相同;猫跑7步的路程与兔跑5步的路程相同.而猫跑3步的时间与狗跑5步的时间相同;猫跑5步的时间与兔跑7步的时间相同,猫、狗、兔沿着周长为300米的圆形跑道,同时同向同地出发.问当它们出发后第一次相遇时各跑了多少路程?行程综合问题知识精讲 教学目标【考点】环形跑道与猎狗追兔 【难度】5星 【题型】解答【解析】 方法一:由题意,猫与狗的速度之比为9:25,猫与兔的速度之比为25:49.设单位时间内猫跑1米,则狗跑259米,兔跑4925米. 狗追上猫一圈需25675300194⎛⎫÷-= ⎪⎝⎭单位时间, 兔追上猫一圈需496253001252⎛⎫÷-= ⎪⎝⎭单位时间. 猫、狗、兔再次相遇的时间,应既是6754的整数倍,又是6252的整数倍. 6754与6252的最小公倍数等于两个分数中,分子的最小公倍数除以分母的最大公约数,即]()675,62567562516875,8437.5424,22⎡⎡⎤⎣===⎢⎥⎣⎦. 上式表明,经过8437.5个单位时间,猫、狗、兔第一次相遇.此时,猫跑了8437.5米,狗跑了258437.523437.59⨯=米,兔跑了498437.516537.525⨯=米. 方法二:根据题意,猫跑35步的路程与狗跑21步的路程、兔跑25步的路程相等;而猫跑15步的时间与狗跑25步、兔跑21步的时间相同. 所以猫、狗、兔的速度比为152521::352125,它们的最大公约数为 ()[]15,25,211525211,,35212535,21,253557⎛⎫== ⎪⨯⨯⨯⎝⎭, 即设猫的速度为151225353557÷=⨯⨯⨯,那么狗的速度为251625213557÷=⨯⨯⨯,则兔的速度为211441253557÷=⨯⨯⨯. 于是狗每跑3300(625225)4÷-=单位时追上猫; 兔每跑25300(441225)18÷-=单位时追上猫. 而[]()3,2532575,4184,182⎡⎤==⎢⎥⎣⎦,所以猫、狗、兔跑了752单位时,三者相遇. 猫跑了752258437.52⨯=米,狗跑了7562523437.52⨯=米,兔跑了7544116537.52⨯=米. 【答案】16537.5米【例 4】 甲、乙两人沿 400 米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去。
小学数学教师解题能力竞赛题填空部分:1、在1—100的自然数中,()的约数个数最多。
2、一个质数的3倍与另一个质数的2倍之和为100,这两个质数之和是()。
3、在1~600这600个自然数中,能被3或5整除的数有()个。
4、有42个苹果34个梨,平均分给若干人,结果多出4个梨,少3个苹果,则最多可以分给()个人。
5、甲、乙两人同时从A点背向出发沿400米环行跑道行走,甲每分钟走80米,乙每分钟走50米,这二人最少用()分钟再在A 点相遇。
6、11时15分,时针和分针所夹的钝角是()度。
7、一个涂满颜色的正方体,每面等距离切若干刀后,切成若干小正方体块,其中两面涂色的有60块,那么一面涂色的有()块。
8、六一儿童节游艺活动中,老师让每位同学从一个装有许多玻璃球的口袋中摸两个球,这些球给人的手感相同,只有红、黄、白、蓝、绿五色之分(摸时看不到颜色),结果发现总有两个人取的球相同,由此可知,参加取球的至少有()人。
9、一批机器零件,甲队独做需11小时完成,乙队独做需13小时完成,现在甲、乙两队合做,由于两人合作时相互有些干扰,每小时两队共少做28个,结果用了 6.25小时才完成。
这批零件共有()个。
10、李然从常熟虞山下的言子墓以每分12米的速度跑上祖师山,然后以每分24米的速度原路返回,他往返平均每分行()米。
11、常熟市乒乓比赛中,共有32位选手参加比赛,如果采用循环赛,一共要进行()场比赛;如果采用淘汰赛,共要进行()场比赛。
12、甲、乙、丙三人各拿出同样多的钱合买一种英语本,买回后甲和乙都比丙多要6本,因此,甲、乙分别给丙1.5元钱,每本英语本()元。
13、一个表面都涂上红色的正方体,最少要切()刀,才能得到100个各面都不是红色的正方体。
14、果园收购一批苹果,按质量分为三等,最好的苹果为一等,每千克售价3.6元;其次是二等苹果,每千克售价2.8元;最次的是三等苹果每千克售价2.1元。
这三种苹果的数量之比为2:3:1。
小学数学教师解题能力竞赛试题填空部分:1、在1—100的自然数中,()的约数个数最多。
2、一个质数的3倍与另一个质数的2倍之和为100,这两个质数之和是()。
3、在1~600这600个自然数中,能被3或5整除的数有()个。
4、有42个苹果34个梨,平均分给若干人,结果多出4个梨,少3个苹果,则最多可以分给()个人。
5、甲乙两人同时从A点背向出发沿400米环行跑道行走,甲每分钟走80米,乙每分钟走50米,这二人最少用()分钟再在A点相遇。
6、11时15分,时针和分针所夹的钝角是()度。
7、一个涂满颜色的正方体,每面等距离切若干刀后,切成若干小正方体块,其中两面涂色的有60块,那么一面涂色的有()块。
8、六一儿童节游艺活动中,老师让每位同学从一个装有许多玻璃球的口袋中摸两个球,这些球给人的手感相同,只有红、黄、白、蓝、绿五色之分(摸时看不到颜色),结果发现总有两个人取的球相同,由此可知,参加取球的至少有()人。
9、一批机器零件,甲队独做需11小时完成,乙队独做需13小时完成,现在甲、乙两队合做,由于两人合作时相互有些干扰,每小时两队共少做28个,结果用了6.25小时才完成。
这批零件共有()个。
10、李然从常熟虞山下的言子墓以每分12米的速度跑上祖师山,然后以每分24米的速度原路返回,他往返平均每分行()米。
11、常熟市乒乓比赛中,共有32位选手参加比赛,如果采用循环赛,一共要进行()场比赛;如果采用淘汰赛,共要进行()场比赛。
12、甲、乙、丙三人各拿出同样多的钱合买一种英语本,买回后甲和乙都比丙多要6本,因此,甲、乙分别给丙1.5元钱,每本英语本()元。
13、一个表面都涂上红色的正方体,最少要切()刀,才能得到100个各面都不是红色的正方体。
14、果园收购一批苹果,按质量分为三等,最好的苹果为一等,每千克售价3.6元;其次是二等苹果,每千克售价2.8元;最次的是三等苹果每千克售价2.1元。
这三种苹果的数量之比为2:3:1。
若将这三种苹果混在一起出售,每千克定价()元比较适宜。
15、在一次晚会上男宾与每一个人握手(但他的妻子除外),女宾不与女宾握手,如果有8对夫妻参加晚会,那么这16人共握手()次。
16、百米赛跑,假定各自的速度不变,甲比乙早到5米,甲比丙早到10米。
那么乙比丙早到()米。
17、一件工作,甲独干8天后,乙又独干13天,还剩下这件工作的1/6。
已知甲乙合干这件工作要12天,甲单独完成这件工作要()天。
18、小华有2枚5分硬币,5枚2分硬币,10枚1分硬币,他要取出1角钱,共有()种不同的取法。
19、一个正方体,它的表面积是20平方厘米,现在把它切割成8个完全相同的小正方体。
这些小正方体的表面积之和是()。
20、小明从家到学校有两条一样长的路,一条是平路,另一条的一半是上坡路,一半是下坡路。
小明上学两条路所用的时间一样,已知下坡的速度是平路的3/2,那么上坡的速度是平路速度的()。
21、9点整时,时针与分针组成的角是()角,此后时针与分针再成这种角是9时()分。
22、五(1)班全班45人选中队长,每人投一票,现已统计到李辰已得票16票,王莹得票18票,王莹至少再得()票就能保证当选(得票多者当选)23、自然数A的所有约数两两求和,又得到若干个自然数。
在这些和中,最小的是4,最大的是500,那么A=()24、甲、乙、丙三个电台,分别有4、4、3人,新年中彼此祝贺,每两个电台的人都彼此一一通话,那么他们一共要通话()次。
25、如果把1到999这些自然数按照从小到大的顺序排成一排,这样就组成了一个多位数:12345678910111213…996997998999。
那么在这个数里,从左到右的第2000个数字是( )。
解决问题部分:1、六(1)班男、女人数之比为5:3。
体育课上,老师按每3个男生、2个女生分成一组进行游戏。
这样,当女生分完时男生还剩4人。
求这个班女生一共有多少人?2、常熟市举行小学生“百科知识竞赛”,大约有381~450名学生参加,测试结果是全体学生的平均分是76分,男生平均分是79分,女生平均分是71分。
求参加测试的男生和女生至少各有多少人。
3、中国古代算书《张丘建算经》中有个“百鸡问题”:今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一。
凡百钱,买鸡百只。
问鸡翁、母、雏各几何?4、在AB一段公路上,甲骑自行车从A往B,乙骑摩托车从B往A,他们同时出发,经过80分钟两人相遇,乙到A后马上折回,在第一次相遇后40分钟追上甲,乙到B地后马上返回,再过多少时间甲与乙再相遇?5、两辆汽车从甲、乙两地同时相向而行,在距乙地95千米处相遇,相遇后两车又继续前进,它们各自到达甲乙后又立即返回,两车在距甲地25千米处相遇。
假设两车的速度不变,甲乙两地的距离是多少千米?6、百货公司委托运输公司运送1000只花瓶,双方商定每只的运费为1.5元,如打破一只,这只花瓶不但不计运费,还要赔偿9.5元。
结果运输公司共得到了1456元运费。
问运输过程中打破了几只花瓶?7、用长72米的篱笆靠墙围成一个长方形。
长和宽各多少时围成的面积最大?面积是多少?8、甲乙丙三人合作完成一件工程,共得报酬1800元。
三人完成这项工作的情况是:甲乙合作8天完成工程的1/3;接着乙丙又合作2天,完成余下的1/4;以后三人合作5天完成了这项工程。
按劳付酬,各人应得报酬多少元?9、甲、乙两车分别从A、B两站同时相向开出,已知甲车速度是乙车速度的1.5倍,甲车到达途中C站的时刻为凌晨5:00,乙车到达途中C站的时刻为同一天的下午3:00,问这两车相遇是什么时刻?10、蓄水池有甲、丙两条进水管,和乙、丁两条排水管。
要灌满一池水,单开甲管需要3小时,单开丙管需要5小时;要排光一池水,单开乙管需要4小时,单开丁管需要6小时。
现在池内有1/6池水,如果按甲、乙、丙、丁、甲、乙……的顺序,轮流各开一小时,多少时间后水开始溢出水池?11、某地收取电费的标准是:每月用电不超过50度,每度收5角;如果超过50度,超出部分按每度8角收费。
某月甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少度电?12、小轿车、面包车和大客车的速度分别为60千米/小时、48千米/小时和42千米/小时,小轿车和大客车从甲地、面包车从乙地同时相向出发,面包车遇到小轿车后30分钟又遇到大客车。
甲、乙两地相距多远?13、制作一个玩具熊,甲需5分钟,乙需6分钟,丙需7.5分钟。
现在将制作555个玩具熊的任务交给他们,要求他们三人在相同时间内完成任务,那么每人各应加工多少个?14、用丰商场从批发部购进100副手套和80个帽子,共花去2800元。
商场零售时,每副手套加价5%,每个帽子加价10%,这样卖出后一共收入3020元,原来1副手套和1个帽子一共多少元?15、某风景区门票的票价如下:50人以下每张12元,51-100人每张10元,100人以上每张8元。
现在有甲、乙两个旅游团,若分开购票,两个旅游团总共需门票费1142元;若两个旅游团合在一起作为一个团体购票,总共只需付门票864元。
这两个旅游团各有多少人?16、有两条纸带,一条长21厘米,一条长13厘米,把两条纸带都剪下同样的一段后,发现长纸带剩下的长度是短纸带剩下的长度的2倍。
请问:剪下的一段有多长?17、小星有48块巧克力,小强有36块巧克力。
如果每次小星给小强8块,同时小强又给小星4块,经过多少次这样的交换后,小强的块数是小星的2倍?18、袋里有若干个球,小明每次拿出其中的一半再放回一个球,这样共操作了3次,袋中还有6个球。
请问:袋中原有多少个球?19、有一根长180厘米的绳子,从一端开始,每3厘米作一个记号,每4厘米也作一记号。
然后将标有记号的地方剪断,绳子共被剪成多少段?20、某班学生排队,如果每排3人,就多1人;如果每排5人,就多3人,如果每排7人,就多2人,这个班级至少有多少人?21、学校一次选拔考试,参加的男生与女生之比是4:3,结果录取91人,其中男女生人数之比是8:5,在未被录取的学生中,男女生人数之比是3:4,那么,参加这次考试共有多少名学生?22、甲、乙两人各做一项工程。
如果全是晴天,甲需12天,乙需15天完成。
雨天甲的工作效率比晴天低40%,乙降低10%。
两人同时开工,恰好同时完成。
问工作中有多少个雨天?23、甲乙两车往返于相距270千米的A、B两地,甲车先从A地出发,12分钟后,乙车也从A地出发,并在距A地90千米的C地追上甲车。
乙车到B地后立即按原速返回,甲车到B地休息5分钟后加快速度,向A地返回,在C地又将乙车追上。
最后甲车比乙车早几分钟到达A地?24、甲乙两人分别从相距130千米的AB两地同时沿笔直的公路乘车相向而行,各自前往B地、A地。
甲每小时行28千米,乙每小时行32千米。
甲乙各有一个对讲机,当他们之间的距离不大于10千米时,两人可用对讲机联络。
问:(1)两人出发后多久可以用对讲机联络?(2)他们能用对讲机联络多长时间?25、某市居民自来水收费标准如下:每户每月用水4吨以下,每吨1.8元。
当超过4吨时,超过部分每吨3元。
某月甲、乙两户用水量之比为5:3,共缴水费26.4元。
问甲、乙两户各应缴水费多少元?26、某服装公司第一季度销售一批服装,单件成本为400元,售价510元。
卖完后公司的有关部门作市场调查,决定第二季度降低成本,同时把售价降低4%,结果第二季度销量增加了10%,总利润提高了5%。
问第二季度的每件成本是多少元?27、某火车站的检票口,在检票开始前已经有一些人排队等待检票。
检票开始后每分钟有10人前来排队检票,一个检票口每分钟能让25人检票进站。
如果只有一个检票口,检票开始8分钟就没有人排队检票,如果有两个检票口,检票开始后分钟就没有人排队检票?28、一列快车和一列慢车从A、B两地同时相向而行,6小时相遇,相遇后两车又继续行驶2小时,这时快车距B地还差全程的20%,慢车共行了400千米,A、B两地之间的路程共多少千米?29、某班学习小组有12人,一次数学测验只有10人参加,平均分是81.5分。
后来,缺考的李明和张红进行了补考,李明补考成绩比原10人平均分少1.5分,而张红的补考成绩却比12人的平均分多12.5分,张红考了多少分?30、火车站的检票口前已经有一些人排队等候检票进站,假如每分钟前来检票口排队检票的人数一定,那么当开一个检票口时,需要20分钟可以检完;当开两个检票口时,8分钟就可以无人排队。
如果开三个检票口时,需要多少分钟可以检完?。