直线的点斜式方程教学设计
- 格式:doc
- 大小:204.50 KB
- 文档页数:4
直线的点斜式方程教案示范三篇直线的点斜式方程教案1教材分析:本节课程涉及的教材主要有《数学》(人教版)高中数学必修一第四章、第五章。
教学目标:1. 理解点斜式方程的概念和含义;2. 掌握点斜式方程的求法;3. 熟练掌握点斜式方程的应用;4. 培养学生的逻辑思维能力和数学解决问题的能力。
教学重点:1. 点斜式方程的概念和求法;2. 点斜式方程的应用。
教学难点:1. 点斜式方程的应用;2. 解决实际问题时对点斜式方程的转化和运用。
学情分析:学生已经掌握了直线的斜率和截距方程,并对直线的一些基本概念有了一定的了解,但考虑到点斜式方程对于初学者而言相对较难,学生对此可能会存在一些困难。
教学策略:1. 强化基本概念:在本课中重点突出斜率和截距等基本概念的讲解,以帮助学生更加清楚地了解概念的含义和运用。
2. 分步讲解:采用分步讲解和逐步引导的方式,辅助学生理解点斜式方程的求法和应用。
3. 情境教学:能够让学生在实际问题中进行运用,并对不同情景进行思考。
教学方法:1. 教师讲解法:介绍点斜式方程的基本概念和求法。
2. 案例分析法:以实际案例为背景,引导学生掌握方法,并解决实际问题。
3. 课堂互动法:充分利用学生在课堂中的讨论和互动,加强对于点斜式方程的理解和应用。
直线的点斜式方程教案2一、导入环节(5分钟)教学内容:复习两点式和一般式方程。
引入点斜式方程的概念。
教学活动:1.老师出示两个点坐标,引导学生用两点式求出直线方程。
2.老师出示一个一般式方程,引导学生将其化为标准式或斜截式。
3.老师介绍点斜式方程的概念和公式。
4.老师出示例题,让学生尝试用点斜式求出直线方程。
二、课堂互动(35分钟)教学内容:点斜式方程的应用,如平行和垂直直线的计算。
教学活动:1.学生根据点斜式求出一些直线方程,并化简、分类讨论。
2.老师出示两条直线,引导学生求出它们的关系(平行或垂直)。
3.学生按照要求写出两条直线平行或垂直时的点斜式方程。
直线的点斜式方程教案示范教学目标:1.理解直线的点斜式方程的概念;2.学会根据直线的斜率和一点确定直线的点斜式方程;3.能够应用点斜式方程求解相关问题。
教学重点:1.点斜式方程的概念和原理;2.如何根据直线的斜率和一点确定点斜式方程;3.点斜式方程的应用。
教学难点:1.根据已知的斜率和一点确定点斜式方程;2.进一步应用点斜式方程解决相关问题。
教学准备:白板、黑板笔、教学材料。
教学过程:一、导入(5分钟)教师简单介绍点斜式方程的概念,并提示学生回顾斜率的定义和求斜率的方法。
二、讲授点斜式方程(20分钟)1.教师通过示例引入点斜式方程的定义和原理,并与一般式方程进行比较与对照,解释为何点斜式方程更简洁和直观。
2.教师引导学生讨论点斜式方程中的各部分含义:-斜率:表示直线的倾斜程度;-点坐标:表示直线上的一点。
3.教师提供多组示例,引导学生根据直线的斜率和一点确定直线的点斜式方程,帮助学生掌握该方法。
三、练习与演示(30分钟)1.学生在教师的指导下进行练习,根据给定的斜率和一点确定直线的点斜式方程,反复演练以加深理解。
2.教师选择一些学生进行演示,检查学生对点斜式方程的掌握情况,并纠正他们可能存在的错误。
同时,帮助学生培养解题的思路和方法。
四、巩固与拓展(20分钟)1.学生独立完成一些与点斜式方程相关的问题,例如求直线上的其他点坐标、判断两条直线是否平行或垂直等,通过这些问题巩固对点斜式方程的理解和运用,提高解题能力。
2.针对学生容易混淆的地方,教师进行针对性讲解,解决学生的疑惑,并进一步拓展点斜式方程的应用领域,如与两点式方程的相互转化。
五、总结与小结(5分钟)教师总结本节课的重点内容,强调点斜式方程的概念和应用,并鼓励学生通过练习和自主学习进一步巩固该知识点。
六、作业布置(5分钟)布置相应的作业,要求学生再次复习和练习点斜式方程的知识,巩固所学。
教学延伸:1.引入截距式方程和一般式方程的概念,与点斜式方程进行比较,帮助学生更全面地理解这些方程的含义和特点。
《直线的方程点斜式》优质课比赛教案第一章:课程导入1.1 教学目标让学生了解直线方程的定义和重要性。
引导学生通过实际问题引入直线的点斜式方程。
1.2 教学内容直线方程的定义直线的点斜式方程1.3 教学步骤1.3.1 导入通过展示实际问题,例如“已知一条直线上的两个点,如何表示这条直线的方程?”引导学生思考并讨论可能的解决方案。
1.3.2 直线方程的定义给出直线方程的定义,即直线上任意一点的坐标满足特定的数学关系。
解释直线方程的重要性,例如在解析几何中的应用。
1.3.3 直线的点斜式方程引入点斜式方程的概念,即直线上任意一点和斜率确定直线的方程。
给出点斜式方程的一般形式,并解释其含义。
第二章:点斜式方程的应用2.1 教学目标让学生掌握点斜式方程的求解方法。
培养学生运用点斜式方程解决实际问题的能力。
2.2 教学内容点斜式方程的求解方法点斜式方程在实际问题中的应用2.3 教学步骤2.3.1 点斜式方程的求解方法引导学生通过已知直线上两点坐标和斜率,求解直线的点斜式方程。
解释求解过程中的关键步骤,例如确定常数项。
2.3.2 点斜式方程在实际问题中的应用提供实际问题,例如“已知某直线上的两个点坐标和斜率,求该直线的方程”。
引导学生运用点斜式方程解决实际问题,并解释结果的意义。
第三章:点斜式方程的性质3.1 教学目标让学生了解点斜式方程的性质。
培养学生运用点斜式方程解决相关问题的能力。
3.2 教学内容点斜式方程的性质3.3 教学步骤3.3.1 点斜式方程的性质引导学生探讨点斜式方程的性质,例如斜率与直线的倾斜程度的关系。
解释点斜式方程的性质对于解决直线相关问题的重要性。
3.3.2 运用点斜式方程解决相关问题提供相关问题,例如“已知直线的斜率和一个点,求该直线的方程”。
引导学生运用点斜式方程的性质解决相关问题,并解释结果的意义。
第四章:巩固练习4.1 教学目标让学生巩固对直线的点斜式方程的理解和应用。
4.2 教学内容巩固直线的点斜式方程的知识。
《直线的方程点斜式》优质课比赛教案第一章:教学目标1.1 知识与技能(1)理解直线的点斜式的定义和几何意义;(2)学会用点斜式求直线的方程;(3)能够运用点斜式解决实际问题。
1.2 过程与方法(1)通过实例直观感知直线的点斜式;(2)利用数学软件或图形计算器验证点斜式的正确性;(3)通过合作交流,探索点斜式的应用。
1.3 情感、态度与价值观(1)培养学生的逻辑思维能力和创新能力;(2)培养学生合作交流的团队精神;(3)激发学生对数学的兴趣,感受数学的美。
第二章:教学重难点2.1 教学重点(1)直线的点斜式的定义和几何意义;(2)用点斜式求直线的方程;(3)点斜式在实际问题中的应用。
2.2 教学难点(1)理解直线的点斜式的推导过程;(2)灵活运用点斜式解决实际问题。
第三章:教学准备3.1 教具准备(1)黑板、粉笔;(2)数学软件或图形计算器;(3)直角坐标系模型。
3.2 学具准备(1)笔记本;(2)直尺、圆规;(3)练习题。
第四章:教学过程4.1 导入新课(1)利用实例引导学生直观感知直线的点斜式;(2)提出问题,激发学生思考:如何用点斜式表示直线?4.2 探究新知(1)引导学生通过合作交流,探索直线的点斜式;(2)讲解直线的点斜式的定义和几何意义;(3)演示直线的点斜式的推导过程;(4)引导学生学会用点斜式求直线的方程。
4.3 巩固练习(1)利用数学软件或图形计算器验证点斜式的正确性;(2)完成练习题,巩固所学知识。
4.4 拓展与应用(1)引导学生运用点斜式解决实际问题;(2)学生展示成果,互相评价。
第五章:教学反思5.1 课堂效果评价(1)学生对直线的点斜式的理解和运用程度;(2)学生合作交流的能力;(3)学生对数学的兴趣和积极性。
5.2 教学方法改进(1)针对学生的实际情况,调整教学方法;(2)注重个体差异,关注学生的成长;(3)不断反思,提高自身教学水平。
第六章:教学评价6.1 评价目标(1)学生能理解直线的点斜式方程的定义和应用;(2)学生能运用点斜式方程解决实际问题;(3)学生能够通过合作交流,提高分析和解决问题的能力。
直线的点斜式方程一、教学目标:1.掌握由一点和斜率导出直线方程的方法;2.掌握直线方程的点斜式和斜截式的求法以及之间的联系;3.通过学生经历直线方程的发现过程,培养学生化归数学问题的能力;4.揭示“数”与“形”的内在联系,体会数形的统一美,激发学生学习数学的兴趣.二、教学重点:直线方程点斜式的推导和应用;教学难点:直线与方程的对应关系.三、教学用具:投影仪或多媒体四、教学过程:(一)导入新课(教师活动)设置一组问题来复习旧知识.[提问1]什么叫直线的倾斜角和倾率?[提问2]已知直线l 上有不同两点),(),,(11y x Q y x P ,则这条直线l 的斜率._________=k[提问3]什么叫做直线的方程和方程的直线?以一次函数为例加以说明. [提问4]一个条件能否确定一条直线?举例说明.[提问5]确定一条直线需要具备几个独立条件?(学生活动)思考、回答.[小结] 确定一条直线需要知道直线l 经过两个已知点;确定一条直线需要知道直线经过一个已知点及方向(即斜率)等等.教师指出,根据以上条件,可以分别推导出直线方程的两点式和点斜式,我们今天研究“已知直线斜率及经过一已知点,求直线方程”的问题,板书课题“直线的点斜式方程”. 设计意图:本环节的设计考虑了初、高中数学相关知识点的衔接教学,以适应高二学生的心理特征及认知规律.另外,本环节从研究确定一条直线需具备的条件这个熟悉的问题背景出发,引入新课,以激发学生已有的学习欲望.(二)新课讲授【尝试探索,获取新知】(教师活动)设置三个问题让学生探求解答,并注意分析引导,与学生一起讨论、交流. [问题1]已知直线l 经过点),(111y x P ,且斜率为k ,如何求直线l 的方程? (学生活动)尝试探索,讨论、交流.此问题难度较小,可由学生自行推导,得出结论:之后,请同学们集思广益,给这个方程取一个贴切、易记的名字.(根据直线的几何特征,确定命名为直线方程的点斜式,)[问题2]平面上的所有直线是否都可以用点斜式表示?(不能,例如k 不存在时,经过),(111y x P 的直线方程为1x x =)注意,在学生推导直线方程的点斜式时,教师可帮助启发学生作下述分析:(1)建立点斜式的主要依据是,经过直线上一个定点与这条直线上任意一点的直线是惟一的,其斜率都等于k ;(2)在得出方程k x x y y =--11后,要把它变成方程)(11x x k y y -=-.因为前者表示的直线上缺少一个1P 点,而后者才是整条直线的方程;(3)直线的斜率0=k 时,直线方程为1y y =;当直线的斜率k 不存在时,不能用点斜式求它的方程,这时的直线方程为1x x =。
直线的点斜式方程与斜截式方程教案(一)教案:直线的点斜式方程与斜截式方程一、概述本节课主要介绍直线的点斜式方程与斜截式方程的概念及求解方法,以及如何在坐标平面中绘制直线。
二、学习目标1.了解直线的点斜式方程与斜截式方程的含义及公式;2.能够根据给定的直线上的一点和斜率求解直线的点斜式方程;3.能够根据给定的直线在坐标轴上的截距求解直线的斜截式方程;4.能够在坐标平面中用点斜式方程和斜截式方程绘制直线。
三、教学内容及步骤1.直线的点斜式方程–点斜式方程的定义:y−y1=k(x−x1),其中(x1,y1)为直线上的一点,k为直线的斜率。
–求解步骤:•已知直线上的一点(x1,y1)和斜率k;•代入点斜式方程,得到直线的方程。
2.直线的斜截式方程–斜截式方程的定义:y=kx+b,其中k为直线的斜率,b 为直线在纵轴上的截距。
–求解步骤:•已知直线的斜率k和截距b;•将斜率k和截距b代入斜截式方程,得到直线的方程。
3.绘制直线–使用点斜式方程:•确定一点(x1,y1)和斜率k;•选取适当的x值,计算对应的y值;•将得到的点(x,y)连接起来,绘制直线。
–使用斜截式方程:•确定斜率k和截距b;•选取适当的x值,计算对应的y值;•将得到的点(x,y)连接起来,绘制直线。
四、教学示例给定直线上一点A(2, 3)和斜率k=2,求直线的点斜式方程和斜截式方程,并在坐标平面上绘制该直线。
1.点斜式方程的求解:–点斜式方程:y−y1=k(x−x1)–将点A(2, 3)和斜率k=2代入,得到方程:y−3=2(x−2)–化简得到点斜式方程:y−3=2x−4–整理得到点斜式方程:y=2x−12.斜截式方程的求解:–斜截式方程:y=kx+b–已知斜率k=2和点A(2, 3),代入得到方程:3=2(2)+b–求解得到截距b= -1–整理得到斜截式方程:y=2x−13.绘制直线:–表示直线的点对:(0, -1), (1, 1), (2, 3), (3, 5), (4,7)等;–将这些点用直线连接起来,得到一条斜率为2的直线。
高中数学《直线的点斜式方程》教案一、教学目标1. 知识与技能:(1)理解直线的点斜式方程的概念;(2)学会运用点斜式方程求直线方程;(3)能够将直线方程转化为点斜式方程。
2. 过程与方法:(1)通过观察直线图形,引导学生发现直线的点斜式方程;(2)利用实例讲解点斜式方程的求法;(3)通过练习,提高学生运用点斜式方程解决问题的能力。
3. 情感态度与价值观:(1)培养学生对数学的兴趣和好奇心;(2)培养学生积极参与、合作探究的学习态度;(3)培养学生解决问题的能力和创新精神。
二、教学重点与难点1. 教学重点:(1)直线的点斜式方程的概念;(2)运用点斜式方程求直线方程;(3)将直线方程转化为点斜式方程。
2. 教学难点:(1)点斜式方程的推导过程;(2)运用点斜式方程解决实际问题。
三、教学过程1. 导入:(1)复习已学的直线方程知识,如斜截式方程;(2)引导学生思考:如何用一条已知的直线方程来描述另一条直线?2. 新课讲解:(1)介绍直线的点斜式方程的概念;(2)讲解点斜式方程的推导过程;(3)举例说明如何运用点斜式方程求直线方程;(4)讲解如何将直线方程转化为点斜式方程。
3. 课堂练习:(1)布置几个练习题,让学生运用点斜式方程解决问题;(2)引导学生互相讨论,共同解决问题。
四、课后作业(1)经过点(2,3),斜率为1的直线;(2)经过点(0,-2),斜率为2的直线。
(1)y=2x+1;(2)x-y+3=0。
五、教学反思本节课通过引导学生观察直线图形,让学生发现直线的点斜式方程,并通过实例讲解点斜式方程的求法。
学生在课堂练习中能够运用点斜式方程解决问题,但在课后作业中,部分学生对将直线方程转化为点斜式方程还存在一定的困难。
在今后的教学中,应加强对学生的引导和辅导,提高学生运用点斜式方程解决问题的能力。
注意激发学生的学习兴趣,培养学生的合作探究精神。
六、教学策略1. 案例教学:通过具体的直线图形,让学生观察并发现直线的点斜式方程。
《直线的点斜式方程》教学设计与反思一.教学内容直线的点斜式方程是普通高中课程标准实验教科书(人教版)高一年级数学必修2第三章第二节中的内容。
本节课是在学习直线的倾斜角和斜率的基础上,引导学生根据已知一个点和斜率求直线方程的方法和途径。
在求直线的方程中,直线方程的点斜式是最基本的,直线方程的斜截式、两点式都是由点斜式推出的。
在推导直线方程的点斜式时,根据直线这一结论,先猜想确定一条直线的条件,再根据猜想得到的条件求出直线的方程。
二.教学目标1) 知识与技能理解直线方程的点斜式、斜截式的形式特点和适用范围;能正确利用直线的点斜式、斜截式公式求直线方程,体会直线的斜截式方程与一次函数的关系.2)过程与方法在已知直角坐标系内确定一条直线的几何要素——直线上的一点和直线的倾斜角的基础上,通过师生探讨,得出直线的点斜式方程;学生通过对比理解“截距”与“距离”的区别。
3)情感、态度与价值观通过让学生体会直线的斜截式方程与一次函数的关系,进一步培养学生数形结合的思想,渗透数学中普遍存在相互联系、相互转化等观点,使学生能用联系的观点看问题。
三.教学重难点1.教学重点:直线的点斜式方程和斜截式方程的推导和应用.2.教学难点:能根据实际情况选择正确的直线方程,理解“截距”与“距离”的区别。
四.教学过程(一)创设情境1、在直角坐标系内确定一条直线,应知道哪些条件?设计意图:使学生在已有知识和经验的基础上,探索新知。
师生活动:学生回顾,并回答。
然后教师指出,直线的方程,就是直线上任意一点的坐标),(y x 满足的关系式。
(二)探究新知2、直线l 经过点),(000y x P ,且斜率为k 。
设点),(y x P 是直线l 上的任意一点,请建立y x ,与00,,y x k 之间的关系。
设计意图:培养学生自主探索的能力,并体会直线的方程,就是直线上任意一点的坐标),(y x 满足的关系式,从而掌握根据条件求直线方程的方法。
人教版高中数学直线的点斜式方程教案一、教学目标1. 让学生理解直线的点斜式方程的含义和意义。
2. 让学生掌握直线的点斜式方程的求法和应用。
3. 培养学生的逻辑思维能力和解决问题的能力。
二、教学重点1. 直线的点斜式方程的含义。
2. 直线的点斜式方程的求法。
三、教学难点1. 直线的点斜式方程的推导过程。
2. 直线的点斜式方程在实际问题中的应用。
四、教学准备1. 教师准备PPT和教学案例。
2. 学生准备笔记本和笔。
五、教学过程1. 导入:教师通过一个实际问题引入直线的点斜式方程的概念,例如:已知直线上一点A(x1, y1)和斜率k,求直线的方程。
2. 讲解:教师讲解直线的点斜式方程的含义,即直线上任意一点(x, y)与点A(x1, y1)的连线的斜率等于直线的斜率k。
教师给出直线的点斜式方程的求法,即直线的方程可以表示为y y1 =k(x x1)。
3. 案例分析:教师展示一个案例,引导学生运用直线的点斜式方程求解直线的方程。
4. 练习:学生独立完成一些练习题,巩固直线的点斜式方程的知识。
5. 总结:教师引导学生总结直线的点斜式方程的含义和求法。
6. 作业布置:教师布置一些相关的作业题,巩固学生的学习成果。
六、教学拓展1. 教师引导学生思考:直线的点斜式方程是否唯一?2. 学生通过思考和讨论,得出结论:直线的点斜式方程不唯一,因为直线上任意一点都可以作为点A,从而得到不同的点斜式方程。
3. 教师进一步提问:如何判断两个点斜式方程是否表示同一直线?4. 学生通过思考和讨论,得出结论:两个点斜式方程表示同一直线当且仅当它们的斜率和截距相等。
七、应用举例1. 教师展示一个实际问题:已知直线过点(2, 3)且斜率为1/2,求直线的方程。
2. 学生运用直线的点斜式方程求解,得出直线的方程为y 3 = 1/2(x 2)。
3. 教师引导学生思考:如果已知直线过点(2, 3)且斜率为-1/2,求直线的方程。
4. 学生运用直线的点斜式方程求解,得出直线的方程为y 3 = -1/2(x2)。
3.2.1直线的点斜式方程
一、教学目的
在已知直角坐标系内确定一条直线的几何要素——直线上的一点和直线的倾斜角的基础上,通过师生探讨,得出直线的点斜式方程;通过直线的点斜式方程向斜截式方程的过渡训练学生由一般到特殊的处理问题方法;通过直线的方程特征观察直线的位置特征,培养学生的数形结合能力. 二、教学目标
目标:理解和掌握直线的点斜式方程及其求法
直线l 经过点),(000y x P ,且斜率为k ,则直线l 的方程为:)(00x x k y y -=- 该方程叫做直线的点斜式方程。
三、问题诊断与分析
这节内容是在学习直线方程的概念与直线的斜率基础上,具体地研究直线方程的几种形式,而这几种形式都是以点斜式方程为基础进行推导的.因此,在推导点斜式方程时,要使学生理解:已知直线的斜率和直线上的一个点,这条直线就确定了,进而直线方程也就确定了.求直线方程就是把直线上任一点用斜率和直线上已知点来表示,这样由两点的斜率公式即可推出直线的点斜式方程. 四、教学设计 (一)温故知新
1、确定直线的几何要素:直线上一点和直线的倾斜角(斜率)。
2、已知直线上两点的斜率公式:
3、一次函数及其图象:函数y=kx +b (k ≠0)称为一次函数,其图象是一条直线,该直线的斜率为k ,与y 轴的交点为 . 1.探究:直线的点斜式方程
问题一:什么是直线的点斜式方程?直线的点斜式方程是怎样得到的? 设计意图:让学生知道明确研究方向(用点斜式方程表示直线) 小问题1:直线l 经过点),(000y x P ,且斜率为k 。
设点),(y x P 是直线l 上的任意一点,请根据斜率公式建立y x ,与00,,y x k 之间的关系。
设计意图:让学生根据斜率公式,可以得到,当
x x ≠时,
x x y y k --=
,即
)(00x x k y y -=-,明确研究方向。
小问题2:(1)由),(000y x P ,斜率k 确定的直线l 上的任意点),(y x P 都满足方程(1)吗?
(2)满足方程(1)的点的坐标都在经过),(000y x P ,斜率为k 的直线l 上吗?
设计意图:让学生知道该直线方程由直线上一定点及其斜率确定,所以叫做直线的点斜式方
程,简称点斜式.
问题二:直线的点斜式方程能否表示坐标平面上的所有直线呢? 设计意图:使学生理解点斜式方程的适用范围。
追问:(1)x 轴所在直线的方程是什么?y 轴所在直线的方程是什么?
(2)经过点000(,)P x y 且平行于x 轴(即垂直于y 轴)的直线方程是什么? (3)经过点000(,)P x y 且平行于y 轴(即垂直于x 轴)的直线方程是什么?
设计意图:进一步使学生理解直线的点斜式方程的适用范围,掌握特殊直线方程的表示形式。
说明:经过点),(000y x P 的直线有无数条,可分为两类:
(1)斜率存在的直线:方程为)(00x x k y y -=-。
(2)斜率不存在的直线:方程为0x x =
应用1
例1 直线l 经过点P 0(-2,3),且倾斜角α=45,求直线l 的点斜式方程,并画出直线l 变式训练:(1)过点(-1,2),倾斜角为135°的直线方程为 。
(2)过点(2,1)且平行于x 轴的直线方程为 ,
过点(2,1)且平行于y 轴的直线方程为 , 过点(2,1)且过原点的直线方程为 ,
练习
1.写出下列直线的点斜式方程:
(1) 经过A (3,-1)
(2) 经过B
(2),倾斜角是30°
(3) 经过C (0,3),倾斜角是0° (4) 经过D (-4,-2),倾斜角是120° 2.填空:
(1)已知直线的点斜式方程是y-2=x-1,那么此直线的斜率是 ,倾斜角是 ;
(2) 已知直线的点斜式方程是
y+2=(x+1),那么此直线的斜率是 ,倾斜角是 ;
(3) 已知直线的点斜式方程是y=-3,那么此直线的斜率是 ,倾斜角是 ; 2.探究:直线的斜截式方程
问题三:已知直线l 的斜率为k ,且与y 轴的交点为(0,)b ,求直线l 的方程。
设计意图:引入斜截式方程,让学生懂得斜截式方程源于点斜式方程,是点斜式方程的一种特殊情形。
师生活动:学生独立求出直线l 的方程:
b kx y += (2)
在此基础上,教师给出截距的概念,引导学生分析方程(2)由哪两个条件确定,让学生理解斜截式方程概念的内涵。
追问1:观察方程b kx y
+=与)(00x x k y y -=-,它们有什么联系?
设计意图:让学生知道斜截式是点斜式的特殊情况 追问2:直线b kx y
+=在x 轴上的截距是什么?
设计意图:使学生理解“截距”与“距离”两个概念的区别。
追问3: 你如何从直线方程的角度认识一次函数b kx y
+=?一次函数中k 和b 的几何意
义是什么?你能说出一次函数3,3,12+-==-=x y x y x y
图象的特点吗?
设计意图:体会直线的斜截式方程与一次函数的关系.
追问4:任何直线都能用斜截式表示吗? 应用2
例2 已知直线l 1:y=k 1x+b 1,l 2:y=k 2x+b 2,试讨论:(1)l 1∥l 2的条件是什么?
(2)l 1⊥l 2的条件是什么? 变式训练:(1)写出斜率为-2,且在y 轴上的截距为t 的直线的方程。
(2)当t 为何值时,直线通过点(4,-3)?并作出该直线的图象。
练习
3.写出下列直线的斜截式方程:
(1,在y 轴上的截距是-2 (2)斜率是-2,在y 轴上的截距是4 4.判断下列各对直线是否平行或垂直:
(1) l 1:y=
12x+3,l 2: y=1
2x-2 (2) l 1:y=53x, l 2:y=3
x 5
-
(3) l 1:y=3, l 2 x=0 五、课堂小结:
1.由直线上一定点及其斜率确定的直线方程叫做直线的___________方程;
2.点斜式方程:
若直线l 过点),(00y x P ,斜率为k ,则其方程为________________________. 3.斜截式方程:111:b x k y l +=
若直线l 的斜率为k ,且在y 轴上的截距为b,则其方程为___________________. 4.特殊直线:
(1)点斜式与斜截式方程不能表示______________的直线;
(2)过点),(00y x P 且平行于x 轴的直线l 倾斜角为_______,斜率______,方程是 (3)过点),(00y x P 且平行于y 轴的直线l 倾斜角为_______,斜率______,方程是 六. 布置作业 95页练习。