单片机实现红外接收解码
- 格式:doc
- 大小:144.50 KB
- 文档页数:8
/ 亲,此程序以经过测试,可直接使用!!!/#include <reg51.h>#define uchar unsigned char#define uint unsigned intvoid delay(uchar x);sbit IRIN = P3^2;uchar IRCOM[4];void main(){ IE = 0x81;TCON = 0x01;IRIN=1;/* 此处可以根据按键码自由编写程序/以下为3*7遥控按键码//(也可以应用与其他类型遥控,本程序只以3*7遥控为例)/ / 0x45 0x46 0x47 // 0x44 0x40 0x43 // 0x07 0x15 0x09 // 0x16 0x19 0x0d // 0x0c 0x18 0x5e // 0x08 0x1c 0x5a // 0x42 0x52 0x4a /例如:while(1){switch(IRCOM[2]){case 0x45: P2=0x7f; break;case 0x44: P2=0xbf; break;case 0x07: P2=0xdf; break;case 0x16: P2=0xef; break;case 0x0c: P2=0xf7; break;case 0x08: P2=0xfb; break;case 0x42: P2=0xfd; break;case 0x52: P2=0xfe; break;case 0x4a: P2=0xff; break;case 0x5a: P2=0x00; break;}} */while(1);} //end main/**********************************************************/ void IR_IN(void) interrupt 0 //外部中断服务程序{unsigned char j,k,N=0;EX0 = 0;delay(15);if (IRIN==1){ EX0 =1;return;}//确认IR信号出现while (!IRIN) //等IR变为高电平,跳过9ms的前导低电平信号。
单片机如何通过捕获来实现对红外遥控器解码一、内容提要上讲介绍并应用了单片机动态扫描驱动数码管,并给出了实例。
这一讲将重点介绍单片机如何通过捕获来实现对红外遥控器解码。
通过该讲,读者可以掌握红外遥控器的编码原理以及如何通过单片机对遥控器进行解码。
二、原理简介随着家用电器、视听产品的普及,红外线遥控器已被广泛使用在各种类型的家电产品上(如遥控开关、智能开关等)。
其具有体积小、抗干扰能力强、功耗低、功能强、成本低等特点,在工业设备中也得到广泛应用。
一般而言,一个通用的红外遥控系统由发射和接收两大部分组成,如图1 所示:图1 红外遥控系统框图其中发射部分主要包括键盘矩阵、编码调制、红外发射管;接收部分包括光、电信号的转换以及放大、解调、解码电路。
举例来说,通常我们家电遥控器信号的发射,就是将相应按键所对应的控制指令和系统码(由0 和1 组成的序列),调制在32~56kHz 范围内的载波上,然后经放大、驱动红外发射管将信号发射出去。
此外,现在流行的控制方法是应用编/ 解码专用集成电路芯片来实现(如下文提到的SAA3010 红外编码芯片和HS0038 红外接收头)。
不同公司的遥控芯片,采用的遥控码格式也不一样。
在此介绍目前广泛使用较普遍的两种,一种是NEC Protocol 的PWM(脉冲宽度调制)标准,一种是Philips RC-5 Protocol 的PPM(脉冲位置调制)标准。
NEC 标准:遥控载波的频率为38kHz(占空比为1:3);当某个按键按下时,系统首先发射一个完整的全码,然后经延时再发射一系列简码,直到按键松开即停止发射。
简码重复为延时108ms,即两个引导脉冲上升沿之间的间隔都是108ms。
一个完整的全码如图2所示。
单片机STM32F103C8T6的红外遥控器解码系统设计一、本文概述本文旨在详细阐述基于STM32F103C8T6单片机的红外遥控器解码系统的设计和实现过程。
随着科技的不断进步和智能化设备的普及,红外遥控器作为一种常见的遥控设备,已经广泛应用于家电、安防、玩具等多个领域。
然而,红外遥控器发出的红外信号往往需要通过解码器才能被设备正确识别和执行,因此,设计一款高效、稳定、可靠的红外遥控器解码系统具有重要意义。
本文将首先介绍红外遥控器的基本原理和信号特点,然后详细阐述STM32F103C8T6单片机的性能特点和在红外遥控器解码系统中的应用优势。
接着,将详细介绍红外遥控器解码系统的硬件设计,包括红外接收头的选择、电路设计和PCB制作等。
在软件设计部分,将详细阐述如何通过STM32F103C8T6单片机的编程实现红外信号的接收、解码和处理,以及如何将解码后的数据通过串口或其他通信方式发送给主控制器。
本文还将对红外遥控器解码系统的性能进行测试和分析,包括信号接收距离、解码速度和稳定性等方面的测试。
将总结本文的主要工作和创新点,并对未来的研究方向进行展望。
通过本文的研究和实现,旨在为红外遥控器解码系统的设计提供一种新的思路和方法,同时也为相关领域的研究人员提供有益的参考和借鉴。
二、红外遥控器基础知识红外遥控器是一种常见的无线遥控设备,它利用红外光作为信息载体,通过发射和接收红外光信号实现对设备的远程控制。
这种遥控方式因其简单、低成本和无需视线连接等优点,在各类消费电子产品中得到了广泛应用,如电视机、空调、音响等。
红外遥控器的工作原理主要基于红外辐射和光电器件的检测。
遥控器内部通常包含一个或多个红外发射管,当按下按键时,发射管会发射出特定频率和编码的红外光信号。
接收端则配备有红外接收头,该接收头内部有一个光敏元件(如硅光敏三极管或光敏二极管),用于检测红外光信号并将其转换为电信号。
为了区分不同的按键操作,红外遥控器通常采用特定的编码方式对按键信号进行编码。
单片机做红外遥控解码器你家里是否有一个电视机遥控器或者空调机遥控器呢?你是否也想让它遥控其他的电器甚至让它遥控您的电脑呢?那好,跟我一起做这个“遥控”。
该小制作所需要的元件很少:TA89C2051一只,RS232接口电平与TTL 电平转换心片MAX232CPE一只,红外接收管一只,晶振11.0592MHz,电解10uF4只,10uF一只,1K1个,300欧姆左右1个,瓷片电容30P2个。
发光8个。
价钱不足20元。
原理介绍:主控制单元是单片机AT89C2051,中断口INT0跟红外接受管U1相连,接收红外信号的脉冲,8个作为显示解码输出(也可以用来扩展接其他控制电路),U3是跟电脑串行口RS232相连时的电平转换心片,9、10脚分离与单片机的1、2脚相连,(1脚为串行接收,2脚为串行发送),MAX232CPE的7、8脚分离接电脑串行口的2(接收)脚、3(发送脚)。
晶振采纳11.0592MHz,这样才干使得通讯的波特率达到9600b/s,电脑普通默认值是9600b/s、8位数据位、1位停止位、无校验位。
电路就这么容易了,现在分析详细的编程过程吧。
开头位是以3.6ms低电平然后是3.6ms高电平,然后数据表示形式是0.9ms低电平0.9ms高电平周期为1.8ms表示“0”,0.9ms低电平2.4ms 高电平周期为3.3ms表示“1”,编写程序时,以大于3.4ms小于3.8ms 高电平为起始位,以大于2.2ms小于2.7ms高电平表示“1”,大于0.84ms小于1.11ms高电平表示“0”。
因此,我们主要用单片机测量高电平的长短来确定是“1”还是“0”即可。
定时器0的工作方式设置为方式1:movtmod,09h,这样设置定时器0即是把GATE置1,16位计数器,最大计数值为2的16次方个机器周期,此方式由外中断INT0控制,即INT0为高时才允许计数器计数。
比如:jnbp3.2,$jbp3.2,$clrtr0这3条命令就可以测量一个高电平,接下来读取计数值TH0,TL0就可以辨别是起始位还是“1”或“0”。
用单片机解码红外遥控器遥控器使用方便,功能多.目前已广泛应用在电视机、VCD、DVD、空调等各种家用电器中,且价格便宜,市场上非常容易买到。
如果能将遥控器上许多的按键解码出来.用作单片机系统的输入.则解决了常规矩阵键盘线路板过大、布线复杂、占用I/O口过多的弊病。
而且通过使用遥控器,操作时可实现人与设备的分离,从而更加方便使用。
下面以TC9012编码芯片的遥控器为例。
谈谈如何用常用的51系统单片机进行遥控的解码。
一、编码格式1、0和1的编码遥控器发射的信号由一串O和1的二进制代码组成.不同的芯片对0和1的编码有所不同。
通常有曼彻斯特编码和脉冲宽度编码。
TC9012的O和1采用PWM方法编码,即脉冲宽度调制,其O码和1码如图1所示(以遥控接收输出的波形为例)。
O码由O.56ms低电平和0.56ms高电平组合而成.脉冲宽度为1.12ms.1码由0.56ms低电平和1.69ms高电平组合而成.脉冲宽度为2.25ms。
在编写解码程序时.通过判断脉冲的宽度,即可得到0或1。
2、按键的编码当我们按下遥控器的按键时,遥控器将发出如图2的一串二进制代码,我们称它为一帧数据。
根据各部分的功能。
可将它们分为5部分,分别为引导码、地址码、地址码、数据码、数据反码。
遥控器发射代码时.均是低位在前。
高位在后。
由图2分析可以得到.引导码高电平为4.5ms,低电平为4.5ms。
当接收到此码时.表示一帧数据的开始。
单片机可以准备接收下面的数据。
地址码由8位二进制组成,共256种.图中地址码重发了一次。
主要是加强遥控器的可靠性.如果两次地址码不相同.则说明本帧数据有错.应丢弃。
不同的设备可以拥有不同的地址码.因此。
同种编码的遥控器只要设置地址码不同,也不会相互干扰。
图中的地址码为十六进制的0EH(注意低位在前)。
在同一个遥控器中.所有按键发出的地址码都是相同的。
数据码为8位,可编码256种状态,代表实际所按下的键。
数据反码是数据码的各位求反,通过比较数据码与数据反码.可判断接收到的数据是否正确。
单片机红外接受解码程序成功版1、效果图2、发射码格式3、38KH载波发射(完整的发射图)4、 0 与 1的区别5、载波6、小结7、代码发射码格式38KH载波发射(完整的发射)0与1的区别载波小结1、发射端发射出来的是高电平。
但是接收到的是低电平。
(接收到的数据与发射的相反)2、我这里用的外部下降沿触发的中断3、使用12M的晶振完4、整源码下载地址:代码#include <reg51.h>sbit IR=P3^2; //红外接口标志sbit dm = P2^2; //段码sbit wm = P2^3; //位码unsigned char hc[8]; //数码管显示缓存unsigned char DM[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0 x7c,0x39,0x5e,0x79,0x71};// 显示段码值0~Funsigned char WM[]={0xfe,0xfd,0xfb,0xf7,0xef,0xdf,0xbf,0x7f}; //位码。
显示的位置unsigned char sj[33]; //接收脉冲时间数组char w=0; //数码管显示缓存指针(0~7)unsigned char i; //脉冲个数记录unsigned char mcsj; //脉冲时间(大于0.56ms小于1.125ms为0,大于1.125ms小于2.25ms)bit MC=0; //接收红外脉冲开始标志(0:脉冲已经结束,1:脉冲刚开始)bit JS=0; //脉冲接收结束标志位(1标志接收结束)bit JM=0; //解码完成标志位(1:解码完成)void Delay(unsigned char f);void dsq_0() interrupt 1 using 1 //定时器T0中断服务函数{mcsj++; //256}void wbzd_0() interrupt 0 //外部中断服务函数{if(MC){if(mcsj>32) //判断是不是引导码。
#include <reg51.h>#define c(x) (x*120000/120000)sbit Ir_Pin=P3^3;//接红外sbit beep=P3^6;unsigned char code Led_Tab[]={0xC0,0xF9,0xA4,0xB0,0x99,0x92,0x82,0xf8,0x80,0x90,0x88,0x83,0xC6,0xA1,0x86,0x8E}; //共阳极数码显示码0-F.unsigned char code Led_Sel[]={0x00,0x01,0x02,0x03};unsigned char Led_Buf[4]; //显示缓冲区char Led_Index;//位选unsigned char Ir_Buf[4]; //用于保存解码结果void delay_50ms(unsigned int t){unsigned int j;for(;t>0;t--)for(j=6245;j>0;j--){;}}//==============================================================//数码管扫描timer0() interrupt 1 using 1{TL0=65536-1000;TH0=(65536-1000)/256; //定时器0设定约1000us中断一次,用于数码管扫描P0=0xff;P2=Led_Sel[Led_Index]; //位选P0=Led_Tab[Led_Buf[Led_Index]]; //段选if(++Led_Index>3) Led_Index=0; //四个扫描完了,到第一个数码管}//============================================================== unsigned int Ir_Get_Low(){TL1=0;TH1=0;TR1=1;while(!Ir_Pin && (TH1&0x80)==0);TR1=0;return TH1*256+TL1;}//============================================================= unsigned int Ir_Get_High(){TL1=0;TH1=0;TR1=1;while(Ir_Pin && (TH1&0x80)==0);TR1=0;return TH1*256+TL1;}//============================================================== main(){unsigned int temp;char i,j;Led_Index=1;TMOD=0x11;TL0=65536-1000;TH0=(65536-1000)/256; //定时器0设定约1000us中断一次,用于数码管扫描EA=1;ET0=1;TR0=1;Led_Buf[0]=0;Led_Buf[1]=0;Led_Buf[2]=0;Led_Buf[3]=0; //显示区设成0do{ restart:while(Ir_Pin);temp=Ir_Get_Low();if(temp<c(8500) || temp>c(9500)) continue;//引导脉冲低电平9000temp=Ir_Get_High();if(temp<c(4000) || temp>c(5000)) continue;//引导脉冲高电平4500for(i=0;i<4;i++) //4个字节for(j=0;j<8;j++) //每个字节8位{temp=Ir_Get_Low();if(temp<c(200) || temp>c(800)) goto restart;temp=Ir_Get_High();if(temp<c(200) || temp>c(2000)) goto restart;Ir_Buf[i]>>=1;if(temp>c(1120)) Ir_Buf[i]|=0x80;}Led_Buf[0]=Ir_Buf[2]&0xf;Led_Buf[1]=(Ir_Buf[2]/16)&0xf;Led_Buf[2]=Ir_Buf[3]&0xf;Led_Buf[3]=(Ir_Buf[3]/16)&0xf; //显示结果P1=Ir_Buf[2];beep=0;delay_50ms(2);beep=1;}while(1);}。
51单片机红外接收解码程序(C51)接收以S52单片机作为接收系统。
以S52的P3.3口作为接收端口,该端口是外部中断1。
这个接受程序是以XC866作为红外发送控制系统,接收程序如下:#include; //头文件#include;#define uchar unsigned char //宏定义#define uint unsigned intsbit HWRx=P3^3; //位声明code uchar Table[]= //共阴数码管 0-9 a-f - 表{0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6 f,0x77,0x7c,0x39,0x5e,0x79,0x71,0x40};uchar Table_Data[8]={0,0,0,0,0,0,0,0};//用于显示的数组uchar Table_Rx[67];//用于存储判断接收是1或0的参数void Delay();//延时子函数void Display(uchar *lp,uchar lc)//显示{uchar i; //定义变量P2=0; //端口2为输出,关闭P1=P1&0xF8; //将P1口的前3位输出0,对应138译门输入脚,全0为第一位数码管for(i=0;i;0x7f)P2+=0x80;Delay(); //延时P2=0; //清0端口,准备显示下位if(i==7) //检测显示完8位否,完成直接退出,不让P1口再加1,否则进位影响到第四位数据break;P1++; //点亮下一位数码管}}void main() //主函数{EA=1; //首先开启总中断EX1=1; //开启外部中断 1IT1=1; //设置成下降沿触发方式while(1) //一直显示,其它由中断处理{Display(Table_Data,8);}}void Delay() //延时时间大约为31us,晶振12M {uchar i=13;while(i)i--;}void Delay_ms(uint z) //延时时间约为 1ms*X 晶振为12M{uint x=0,y=0;for(x=z;x>;0;x--)for(y=54;y>;0;y--);}void hongwai() interrupt 2 //外部中断 1 ,INT1(P3^3)连接红外线接收IC数据脚{uchar i,j,tmp;EX1=0; //关闭中断j=33; //传送一组数包括引导码1位,4个八位数据,总共33位i=0; //从第一维数组开始Delay_ms(10);if(HWRx){ //然后再检测红线接收脚是有数据招收,有继续,没有则退出EX1=1;return;}while(j--){ //循环接收33位数据,为何我们用到66位数组,我们可以不接收高电平时间常数,只接低电平常数就//可以判断1或0了,在这里我们都接收,还有一点要知道,接收波形是反向,在没有接收时端口为高电平tmp=0;Table_Rx[i]=1; //时间量从1开始while(!HWRx) //检测高低电平的变化,这里检测的是高电平{Table_Rx[i]++; //没变继续加1Delay(); //家一个延时防止,计数值一下子就加满了tmp++; //加1if(tmp==250)break;}i++;tmp=0;Table_Rx[i]=1; //时间量从1开始while(HWRx) //检测高低电平的变化,这里检测的是低电平{Table_Rx[i]++; //没变继续加1Delay(); //同上tmp++; //加1,用于判断是1还是0的,低电平来了if(tmp==250)break;}i++;}P1=0xf8;i=200; //加入循环延时,抗干扰while(i) //在有接收数据的时候显示一个H{tmp=255;while(tmp){tmp--;P2=0x76;}i--;}tmp=0;for(i=3;i;>;=1; //右移一位,接收低位在前if(Table_Rx[i]>;30) //检测低电平时间超过30就确认为1tmp+=0x80;}Table_Data[0]=tmp/16; //分开2位以16进制显示,用显示发送的数据Table_Data[1]=tmp%16;tmp=0;for(i=19;i;>;=1;if(Table_Rx[i]>;30)tmp+=0x80;}Table_Data[2]=tmp/16;Table_Data[3]=tmp%16;tmp=0;for(i=35;i;>;=1;if(Table_Rx[i]>;30)tmp+=0x80;}Table_Data[4]=tmp/16;Table_Data[5]=tmp%16;tmp=0;for(i=51;i;>;=1;if(Table_Rx[i]>;30)tmp+=0x80;}Table_Data[6]=tmp/16;Table_Data[7]=tmp%16;EX1=1; //刚进中断时关闭了分控,现在要打开}。