一元一次方程章末练习卷(Word版 含解析)
- 格式:doc
- 大小:816.00 KB
- 文档页数:11
一、初一数学一元一次方程解答题压轴题精选(难)
1.同学们都知道,|4﹣(﹣2)|表示4与﹣2的差的绝对值,实际上也可理解为4与﹣2两数在数轴上所对应的两点之间的距离;同理|x﹣3|也可理解为x与3两数在数轴上所对应的两点之间的距离.试探索:
(1)|4﹣(﹣2)|的值.
(2)若|x﹣2|=5,求x的值是多少?
(3)同理|x﹣4|+|x+2|=6表示数轴上有理数x所对应的点到4和﹣2所对应的两点距离之和,请你找出所有符合条件的整数x,使得|x﹣4|+|x+2|=6,写出求解的过程.
【答案】 (1)解:∵4与﹣2两数在数轴上所对应的两点之间的距离是6,
∴|4﹣(﹣2)|=6.
(2)解:|x﹣2|=5表示x与2两数在数轴上所对应的两点之间的距离是5,
∵﹣3或7与2两数在数轴上所对应的两点之间的距离是5,
∴若|x﹣2|=5,则x=﹣3或7.
(3)解:∵4与﹣2两数在数轴上所对应的两点之间的距离是6,
∴使得|x﹣4|+|x+2|=6成立的整数是﹣2和4之间的所有整数(包括﹣2和4),
∴这样的整数是﹣2、﹣1、0、1、2、3、4.
【解析】【分析】(1)根据4与-2两数在数轴上所对应的两点之间的距离是6,可得|4-(-2)|=6.(2)根据|x-2|=5表示x与2两数在数轴上所对应的两点之间的距离是5,可得x=-3或7.(3)因为4与-2两数在数轴上所对应的两点之间的距离是6,所以使得|x-4|+|x+2|=6成立的整数是-2和4之间的所有整数(包括-2和4),据此求出这样的整数有哪些即可.
2.如图,数轴上有 、 、 、 四个点,分别对应 , , , 四个数,其中
, , 与 互为相反数,
(1)求 , 的值;
(2)若线段 以每秒3个单位的速度,向右匀速运动,当 ________时,点 与点
重合,当 ________时,点 与点 重合;
(3)若线段 以每秒3个单位的速度向右匀速运动的同时,线段 以每秒2个单位的速度向左匀速运动,则线段 从开始运动到完全通过 所需时间多少秒?
(4)在(3)的条件下,当点 运动到点 的右侧时,是否存在时间 ,使点 与点 的距离是点 与点 的距离的4倍?若存在,请求出 值,若不存在,请说明理由.
【答案】 (1)解:由题意得:
∵
∴ ,
∴ ,
(2)8;
(3)解: 秒后, 点表示的数为 , 点表示的数为
∵
重合
∴
解得 .
∴线段 从开始运动到完全通过 所需要的时间是6秒
(4)解:①当点 在
的左侧时
∵
∴
解得
②当点 在 的右侧时
∵
∴
解得:
所以当 或 时,
【解析】【解答】(2)若线段 以每秒3个单位的速度,
则A点表示为-10+3t, B点表示为-8+3t,
点 与点 重合时,-10+3t=14
解得t=8
点 与点 重合时,-8+3t=20
解得t=
故填:8;
;
【分析】(1)由 与|d−20|互为相反数,求出c与d的值;(2)用含t的式子表示A,B两点,根据题意即可列出方程求解;(2)用含t的式子表示A,D两点,根据题意即可列出方程求解;(3)分两种情况,①当点 在 的左侧时②当点 在 的右侧时,然后分别表示出BC、AD的长度,建立方程,求解即可.
3.对于任意有理数,我们规定 =ad-bc. 例如 =1×4-2×3=-2
(1)按照这个规定,当a=3时,请你计算
(2)按照这个规定,若 =1,求x的值。
【答案】 (1)解:当a=3时,
=2a×5a-3×4
=10a2-12
=10×32-12
=90-12
=78
(2)解:∵ =1
∴4(x+2)-3(2x-1)=1
去括号,可得:4x+8-6x+3=1
移项,合并同类项,可得:2x=10,
解得x=5
【解析】【分析】(1)根据规定先求出 的表达式,再化简,然后把a=3代入求值即可;
(2)根据新定义的规定把 =1的右式化成整式,然后去括号、移项、合并同类项,x项系数化为1即可解出x.
4.某商场经销甲、乙两种商品,甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元.
(1)若该商场同时购进甲、乙两种商品共100件,恰好用去2700元,求能购进甲、乙两种商品各多少件?
(2)按规定,甲种商品的进货不超过50件,甲、乙两种商品共100件的总利润不超过
760元,请你通过计算求出该商场所有的进货方案;
(3)在“五一”黄金周期间,该商场对甲、乙两种商品进行如下优惠促销活动:
打折前一次性购物总金额 优惠措施
不超过300元 不优惠
超过300元且不超过400元 售价打九折
超过400元 售价打八折
按上述优惠条件,若贝贝第一天只购买甲种商品一次性付款200元,第二天只购买乙种商品打折后一次性付款324元,那么这两天他在该商场购买甲、乙两种商品各多少件?
【答案】 (1)解:设:购进甲商品x件,购进乙商品(100-x)件。
由已知得15x+35(100-x)=2700
解得x=40
答:购进甲商品40件,乙商品60件。
(2)解:设:购进甲商品x件,购进乙商品(100-x)件。
利润W=5x+10(100-x)
根据题意可得5x+10(100-x)≤760和x≤50;
解得48≤x≤50,
∴进货方案有三种
①甲48件,乙52件,
②甲49件,乙51件
③甲50件,乙50件
(3)解:第一天:没有打折,故购买甲种商品:200÷20=10(件)
第二天:打折,
打九折,324÷0.9=360(元) 购买乙种商品:360÷45=8(件)
打八折,324÷0.8=405(元) 购买乙种商品:405÷45=9(件)
答:购买甲商品10件,乙商品8件或者9件。
【解析】【分析】(1)设购进甲商品x件,则购进乙商品(100-x)件,根据总进价为2700元,列方程求解即可;(2)甲种商品的进货不超过50件,甲、乙两种商品共100件的总利润不超过760元,列出不等式求出x的取值即可(3)根据购买甲种商品付款200元可求出甲商品的个数,根据乙商品打九折或八折付款324元,求出乙商品的个数即可
5.已知:如图所示,O为数轴的原点,A,B分别为数轴上的两点,A点对应的数为﹣30,B点对应的数为100.
(1)A、B的中点C对应的数是________;
(2)若点D数轴上A、B之间的点,D到B的距离是D到A的距离的3倍,求D对应的
数.(提示:数轴上右边的点对应的数减去左边对应的数等于这两点间的距离);
(3)若P点和Q点是数轴上的两个动点,当P点从B点出发,以6个单位长度/秒的速度向左运动时,Q点也从A点出发,以4个单位长度/秒的速度向右运动,设两点在数轴上的E点处相遇,那么E点对应的数是多少?
【答案】 (1)35
(2)解:设点D对应的数是x,则由题意,
得100﹣x=3[x﹣(﹣30)]
解得,x=2.5
所以点D对应的数是2.5.
(3)解:设t秒后相遇,
由题意,4t+6t=130,
解得,t=13,
BE=100﹣6t=78,
100﹣78=22
答:E点对应的数是22.
【解析】【解答】解:(1)点A表示的数是﹣30,点B表示的数是100,
所以AB=100﹣(﹣30)=130
因为点C是AB的中点,
∴AC=BC= =65
A、B的中点C对应的数是100﹣65=35.
故答案为:35.
【分析】(1)根据点A和点B的坐标,求出AB之间的距离,取其中点,找出C点对应的数字即可。
(2)根据题意,可以设点D对应的数为x,根据其与AB两点之间的距离关系,列出方程解出x的值,即可得到D点对应的坐标。
(3)根据题意设二者相遇的时间为t,根据二者运动的距离之和为线段AB的长度列出方程,解出t的值,即可得到E点对应的数。
6.阅读下列例题,并按要求回答问题:
例:解方程 .
解:①当 时, ,解得 ;
②当 时, ,解得 .
所以原方程的解是 或 .
(1)以上解方程的方法采用的数学思想是________.
(2)请你模仿上面例题的解法,解方程: .
【答案】 (1)分类讨论
(2)解:①当 时,
,
解得 ,
②当 时, ,
解得 ,
∴原方程的解是 或 .
【解析】【分析】(1)材料中是分①、②两种情况来解答题目,明确的体现了“分类讨论”的数学思想;(2)模仿例题,分两种情况分别求解即可.
7.在一条不完整的数轴上从左到右有点A,B,D,C,其中AB=2,BD=3,DC=1,如图所示,设点A,B,D,C所对应数的和是p.
(1)若以B为原点.写出点A,D,C所对应的数,并计算p的值;
(2)①若原点O在图中数轴上点C的右边,且CO=x,p=﹣71,求x.
②此时,若数轴上存在一点E,使得AE=2CE,求点E所对应的数(直接写出答案)。
【答案】 (1)解:∵B为原点,AB=2,则A点对应的数为-2;BD=3,则D点对应的数为3;DC=1,则C点对应的数为3+1=4,则P=-2+3+4=5.
(2)解: ①∵CO=x, 则C点表示的数为x, D点表示的数为x-1, B点表示的数为x-1-3=x-4, A点表示的数为x-4-2=x-6,
∴p=x+x-1+x-4+x-6=-71,
移项得4x=60,
解得x=15.
②由上题知:A表示的数为15-6=9, C点表示的数为15,
设E点表示的数为x, ∵ AE=2CE,
1)当E在AC之间时,
∴x-9=2(15-x),
解得x=13;
2)当E在C的右边时,
x-9=2(x-15),
解得x=21.
【解析】【分析】(1)因为B为原点,根据数轴上两点间距离公式分别求出点A,D,C所对应的数,然后再求这三个数之和即可.
(2) ① 由原点O在数轴上点C的右边,且CO=x,得出C表示的数为x, 再根据其他