纳米纤维非织造布过滤材料
- 格式:pdf
- 大小:2.56 MB
- 文档页数:7
纳米增强非织造布的性能研究一、引言非织造布,作为一种新型的纺织材料,在众多领域都有着广泛的应用,如医疗卫生、过滤材料、土工布、服装等。
随着科技的不断进步和人们对材料性能要求的日益提高,纳米技术的引入为非织造布的性能提升带来了新的机遇。
纳米增强非织造布凭借其独特的性能,成为了当前材料领域的研究热点之一。
二、纳米增强非织造布的制备方法纳米增强非织造布的制备方法多种多样,常见的有以下几种:(一)原位聚合原位聚合是将纳米粒子在非织造布的制备过程中直接引入到聚合物体系中,通过聚合反应使纳米粒子均匀分散在纤维中。
这种方法可以有效地避免纳米粒子的团聚,提高纳米粒子与纤维之间的结合力。
(二)表面涂层表面涂层是将纳米材料通过涂覆、浸渍等方式附着在非织造布的表面。
这种方法操作简单,但纳米材料与非织造布之间的结合力相对较弱,容易在使用过程中脱落。
(三)共混纺丝共混纺丝是将纳米粒子与聚合物共混后进行纺丝,制备出含有纳米粒子的纤维,再通过非织造工艺制成非织造布。
这种方法可以使纳米粒子在纤维内部均匀分布,但对纳米粒子的分散性要求较高。
三、纳米增强非织造布的性能特点(一)力学性能纳米粒子的加入可以显著提高非织造布的力学性能,如拉伸强度、撕裂强度和顶破强度等。
这是由于纳米粒子与纤维之间的相互作用增强了纤维的强度和韧性。
(二)过滤性能纳米增强非织造布在过滤领域表现出优异的性能。
纳米粒子的小尺寸效应和表面效应可以增加纤维的比表面积,提高对微小颗粒的捕获能力,从而提高过滤效率和精度。
(三)抗菌性能一些纳米材料,如纳米银、纳米氧化锌等具有良好的抗菌性能。
将这些纳米材料引入非织造布中,可以赋予非织造布抗菌功能,有效抑制细菌和真菌的生长,在医疗卫生领域具有重要的应用价值。
(四)抗紫外线性能纳米二氧化钛、纳米氧化锌等纳米材料具有良好的紫外线吸收和散射能力。
将这些纳米材料添加到非织造布中,可以提高非织造布的抗紫外线性能,延长其使用寿命,适用于户外用品和防护服装等领域。
纳米纤维技术介绍1.纳米纤维纳米纤维是指直径为纳米尺度而长度较大的线状材料,纳米是一个长度单位,其符号为nm,为1毫米的百万分之一(l nm=1×10-6mm)。
图1可以直观的比较人类头发(0.07-0.09mm)与纳米纤维直径的差别。
图1纳米纤维直径尺度示例2纳米纤维的应用与优势纳米纤维在众多领域都有应用的优势,这些优势被近年来大量的学术论文报导,同时受到了产业界的重视,一些产品已经在市场上广泛的应用。
这些领域包括:空气过滤、液体过滤、能源/电池隔膜、生物医学、药物缓释控释、健康和个人防护、环境保护、吸声材料、食物和包装等等。
纳米纤维作为过滤材料的优势:纳米纤维在空气过滤和液体过滤材料领域已有市场化的产品,其进入中国市场的方式均为原装进口。
为确保技术壁垒相关企业虽在国内建立了全资子公司,但不设纳米纤维过滤材料生产线。
相关产品有唐®®纳森公司Torit DCE除尘器、燃汽轮机过滤器GDX™、汽车引擎过滤器PowerCore™,唐纳森公司宣称其产品具有无可替代的性能。
另有美国贺氏(H&V)公司FA6900NW、FA6901NW、FA6900NWFR系列空气过滤滤料,以及H&V公司一些型号不明的滤料也有使用纳米材料。
纳米纤维非织造材料对亚微米颗粒的过滤效率是常规的微米纤维非织造材料(无纺布)所无法比拟的。
这一特性决定了纳米纤维在空气中颗粒污染物的分离(电子工业、无菌室、室内环境净化、新风系统、工业高效除尘等)和液体中颗粒污染物的分离(燃油滤清器、水处理等)相关领域具有广阔的应用前景。
(1)纳米纤维直径小——孔隙尺寸小、过滤效率高过滤材料通常为纤维平面非织造材料(纤维无纺布),随着纤维直径的减小,单位面积内的纤维根数显著增加,纤维未搭接处形成的孔隙尺寸显著减小,过滤效率明显提升(如图2所示)。
对于常规过滤材料很难拦截的PM 2.5污染物有很高的拦截效率。
图2纤维直径与孔隙尺寸和过滤效率之间的关系(2)纳米纤维比表面积大——对细微颗粒的吸附能力强纤维直径减小,纤维比表面积增大。
静电纺纳米纤维的过滤机理及性能摘要:纳米纤维将来最广泛的用途之一是用于过滤材料。
利用静电纺丝方法能够得到直径为几十或几百纳米的纳米级纤维,形成的纤维毡重量轻,渗透性好,比表面积大、孔隙率高、内部孔隙的连通性好,很适合用作过滤材料。
在基布上铺上纳米纤维层复合后,基布的过滤效率可明显提高,纳米纤维层的孔径比基布约小两个数量级,并且纳米纤维层孔径分布均匀、离散度小。
关键词:静电纺丝;纳米纤维;过滤性能近年来,通过静电纺丝制造纳米纤维较为流行。
静电纺丝提供了一种制造纳米纤维的便捷途径,生产纳米纤维所需聚合物的量可小至几百毫克。
静电纺纳米纤维在众多领域有着广泛的用途,不仅可以用作过滤材料,也可以用于组织工程、人造器官、药物传递和创伤修复等。
但是目前只有在过滤方面的应用稍微成熟,因纳米纤维网强力太低,一般需要熔喷、纺粘、针织布等基布支撑,这样形成的复合过滤材料既克服了纳米纤维强力小的缺点,又发挥了其优越的过滤性能。
DOSHI研究发现,夹入纳米纤维于熔喷与纺粘织物之间做成的过滤材料比传统的商业过滤器更能有效地排除超细微粒。
甚至以纳米纤维为夹层的过滤材料,因为高表面积和低重量,仅仅用重量是原来1/15的这种复合过滤材料就能达到很好的过滤性能[1]。
本文简要介绍了静电纺纳米纤维的发展、基本理论、纺丝工艺参数对静电纺丝的影响,以及非织造织物的过滤机理、结构和性能参数,对静电纺纳米纤维在过滤材料方面的应用研究现状进行综述分析。
1.静电纺丝1.1静电纺丝的发展历程及国内外现状水平静电纺最早出现在20世纪初期。
1917年,Zeleny J阐述了静电纺丝的原理[2]。
1934年,Formhals申请了制备聚合物超细纤维的静电纺丝装置专利[3];1966年,Simons申请了由静电纺丝法制备超薄、超细非织造膜的专利[4];1981年,Larrondo等对聚乙烯和聚丙烯进行了熔融静电纺丝的研究[5];1995年,Reneker研究组开始对静电纺丝进行研究,静电纺丝迅速发展[6];1999年,Fong等对静电纺丝纳米纤维串珠现象及微观结构作了研究[7-8];2000年,Spivak等首次采用流体动力学描述静电纺丝过程,并且提出了静电纺丝的工艺参数[9-10];2004年,捷克利贝雷茨技术大学与爱勒马可公司合作生产的纳米纤维静电纺丝机问世。
非织造布和织物过滤材料比较分析随着过滤产品在工业和生活中的广泛应用,不同种类的过滤材料也在不断发展和更新,其中包括非织造布和织物过滤材料。
本文将从材质、结构、性能和应用等方面进行比较分析,以探讨两者各自的优缺点及适用范围。
1.材质非织造布(Nonwoven Fabric)是由一系列纤维或片状材料通过机械、热力或化学处理等加工技术形成的纤维网状结构材料。
其原材料包括纤维素、聚合物、硅酸盐、金属等,可以根据需要选择不同材质的纤维进行生产。
而织物(Fabric)则主要由纺织工艺加工而成,一般采用天然纤维、化纤、合成纤维等进行织造。
2.结构非织造布的结构比较松散,大部分是无序排列的纤维网,其密度和孔隙率、厚度等可根据不同产品的需求进行调整。
而织物的结构相对较为紧密,由多根经纬线交织而成,多为有规律的编织、针织或绕组结构。
3.性能由于材质和结构的区别,非织造布和织物过滤材料也具有不同的性能特点。
非织造布具有较好的透气性、吸湿性和柔软度,且可根据不同工艺进行防水、防油处理;其孔隙率大、过滤效率高、使用寿命长,但耐腐蚀性较差,易受机械损伤或温度变化而产生变形。
织物过滤材料具有均匀的网状结构,耐磨性和抗压性能也较好,适用于一些高压高温的过滤工作,但对于某些细小颗粒物的过滤效果不如非织造布。
4.应用由于各自的特点不同,非织造布和织物过滤材料的应用范围也有所区别。
非织造布主要应用于制作口罩、卫生巾、湿巾等消费品,以及空气过滤器、水处理过滤器、电力装备过滤器等工业用品。
而织物过滤材料则广泛应用于建筑、汽车、空调等领域,如空气净化器、汽车油滤器、水处理过滤器等。
总之,非织造布和织物过滤材料各自具有不同的优缺点和应用范围,在选择和应用时需要根据具体的产品需求进行合理选择。
未来,随着新材料、新工艺的不断涌现,这两种过滤材料也将不断发展和完善,为各行业领域提供更加高效、环保、经济的过滤解决方案。
纳米纤维膜材料的制备及其过滤性能研究随着科技的不断进步和社会的发展,纳米技术成为了研究的热点领域。
其中,纳米纤维膜材料作为一种重要的纳米材料,在过滤领域具有潜力巨大的应用前景。
本文将探讨纳米纤维膜材料的制备方法以及其在过滤性能方面的研究。
一、纳米纤维膜材料的制备方法1. 电纺法电纺法是最常用的制备纳米纤维膜的方法之一。
该方法利用高电压将聚合物液体或溶液喷射成纤维,经过固化之后形成纳米纤维膜。
电纺法制备的纳米纤维膜具有高比表面积、细小的孔隙尺寸和良好的微观结构。
2. 真空过滤法真空过滤法通过将聚合物溶液放置在具有微米级孔隙的膜上,利用真空抽取溶剂,使聚合物溶液在膜上形成纳米纤维状。
真空过滤法制备的纳米纤维膜具有较高的孔隙率和良好的渗透性能。
3. 相转移法相转移法是一种通过界面活性剂调控纳米纤维的制备方法。
通过调节界面活性剂的浓度和类型,使其在水溶液-有机溶液界面产生交互作用力,从而形成纤维状的纳米材料。
二、纳米纤维膜材料的过滤性能研究1. 孔隙结构控制纳米纤维膜的孔隙结构对其过滤性能具有重要影响。
研究人员可以通过调节电纺工艺中的参数,如电压、喷丝距离和聚合物浓度等,来控制纳米纤维膜的孔隙尺寸和分布。
此外,不同的制备方法也会对孔隙结构产生影响,如真空过滤法制备的纳米纤维膜具有较大的孔隙尺寸。
2. 渗透性能研究纳米纤维膜作为过滤材料,其渗透性能是一个非常重要的性能指标。
研究人员通过测量纳米纤维膜的渗透通量和截留率来评估其过滤性能。
在研究中,可以通过调节纳米纤维膜的厚度、孔隙结构和材料表面性质等因素,来改善纳米纤维膜的渗透性能。
3. 应用研究纳米纤维膜材料具有广泛的应用前景。
在饮用水和废水处理中,纳米纤维膜可以有效去除微小的悬浮物和溶解物质。
此外,在空气过滤领域,纳米纤维膜也可以用于过滤空气中的颗粒物,提供更好的室内空气质量。
在生物医学领域,纳米纤维膜还可以应用于组织工程、药物传输等方面。
总结:纳米纤维膜材料的制备及其过滤性能研究对于开发高效的过滤材料具有重要意义。
非织造材料在过滤领域的应用
非织造材料在过滤领域有广泛的应用。
非织造材料是一种由纤维或纤维束通过机械、热力或化学手段相互结合而形成的材料。
以下是非织造材料在过滤领域的几个主要应用:
1. 空气过滤:非织造材料可用于空气过滤器中,用于去除空气中的颗粒物、灰尘、花粉、细菌和病毒等污染物。
由于非织造材料具有较高的孔隙度和表面积,能够提供更大的过滤面积和较高的过滤效率。
2. 液体过滤:非织造材料也广泛用于液体过滤领域,例如水处理、食品和饮料生产等。
非织造材料可以根据需要选择不同的纤维材料和结构,以实现对不同颗粒大小和污染物的有效过滤和分离。
3. 医疗过滤:医疗用的口罩、外科手术衣等防护用品中常使用非织造材料,通过过滤细菌、病毒和其他有害微粒,起到保护作用。
非织造材料的高效过滤性能和透气性能使其成为医疗领域的理想选择。
4. 汽车过滤:汽车中的空气滤清器、油滤器和燃油滤清器等部件也常使用非织造材料制造,以去除发动机进气中的颗粒和污染物,保护发动机免受损害。
5. 工业过滤:非织造材料在工业过滤中也有广泛应用,例如液体和气体的过滤分离、除尘设备等。
非织造材料的高强度、耐腐蚀性和耐高温性能使其适用于各种工业环境和要求。
总之,非织造材料由于其多样性和优异的性能,在过滤领域具有
重要的应用价值。
納米纖維布的濾網應用随着科技的不断发展,人们对于生活品质的要求也越来越高。
而在这个信息时代中,空气污染已成为人们关注的重要问题之一。
因此,过滤空气中的有害物质已经成为了人们追求健康生活的一个必要条件。
在过滤技术领域,納米纖維布的濾網应用已经成为了一种效果很好的过滤材料。
一、納米纖維布制作要说納米纖維布的濾網应用,首先需要了解的就是納米纖維布的制作方式。
納米纖維布是一种由一层或多层纳米纤维组成的超薄非织造布,其纤维纤维直径在50-500纳米之间。
納米纖維布的制作大致分为两种方式:1. 电纺法电纺法是一种利用高电压静电场将聚合物液体喷射成纳米纤维的方法。
首先,在纳米纤维制备器的金属接地电极下方,构建一组柱状电极,表面涂覆了特殊电极涂层。
当高压场施加到聚合物溶液中的液泡时,液泡表面紧贴电极涂层,并在电场的作用下逐渐拉伸成很细的纳米尺寸的纳米纤维。
2. 自组装法自组装法是一种利用聚合物的相互作用形成具有序微结构和纳米纤维网的化学制备方法。
在这种方法中,需要将两种或多种互不混合的聚合物经过重合或缩合反应,使它们相互作用并在水或有机溶剂中形成自组装聚合物纳米纤维复合物。
二、納米纖維布的濾網應用1. 空气净化器随着城市污染的日益加剧,空气净化器已经成为了越来越多城市家庭必不可少的家用电器。
而納米纖維布由于其极细的纳米纤维直径,可过滤有效过滤直径为0.3微米以下的颗粒物,因此成为了空气净化器中的重要过滤材料。
纳米纤维网有较小的孔径,过滤效率高于一般的纤维。
市面上许多空气净化器中的高效过滤器都是采用纳米纤维布制作。
2. 非织造过滤材料非织造过滤材料是利用激流切割机将纳米纤维布激流切割成定尺寸的过滤层。
由于其在滤过物料中具有很好的过滤性能和使用寿命,广泛应用于化学、医药、食品、生物、环保等领域。
而且,由于其纳米纤维构成的过滤材料尺寸与微生物、病毒差不多,因此可以在一定程度上代替传统的高效过滤器。
3. 口罩因为其纳米纤维直径较小,纺丝成的织物甚至可以使病毒被过滤掉。
静电纺丝纳米纤维在过滤材料中的应用戚妙北京永康乐业科技发展有限公司1.静电纺过滤材料简述一般说来,人们对于过滤材料原材料的甄选基本会在以下几种材料中进行:天然纤维、合成纤维、玻璃纤维、陶瓷、矿物等等[1-2]。
按照不同的加工工艺这些过滤材料可分为以下几类[3]:①机织物、针织物、编织网和纤维束等;②纺粘和熔喷无纺布;③多孔陶瓷材料;④有机膜和无机膜材料;⑤静电纺丝材料。
传统纤维过滤材料是直通的孔隙,其孔隙率也只有30%~40%[4]。
从生产工艺流程角度审视,传统纤维织造过滤材料流程长,产品的生产效率低,主要通过经纬纱之间的孔隙进行过滤,滤料本身产生的阻力也比较大;且织造成型的过滤材料必须在其形成粉尘层之后,才能起到阻挡较小颗粒状物质的作用,如果过滤材料还没有形成粉尘层、过滤层清灰或者其它原因破坏了滤料的粉尘层时,就会导致传统纤维滤料的过滤效率大幅下降。
在过滤材料上运用静电纺丝技术有非常多的优点,现将其归纳成以下几个方面[5-9]。
(1)纤维直径小,均一性好。
提高纤维滤材过滤性能的有效方法之一就是降低其纤维的直径,因为对于由直径数十微米的纤维制备出的纤维过滤器,随着纤维直径的降低滤材的过滤效率会得到提高。
(2)小孔径、高孔隙率及高通量。
运用静电纺丝技术的纤维孔隙率可达80%~90%,这种结构的滤材在有效地去除亚微米级别以及微米级别的颗粒的同时,对水流只会产生较小的阻碍比。
(3)大比表面积、强吸附力。
静电纺纤维有非常大的比表面积,这种结构大大地增加了颗粒沉积在纤维滤材表面的几率,这会对过滤的效果产生巨大的改观。
其次,当过滤的颗粒非常小时,这些细小的颗粒会堆积在膜表面,产生所谓的“层效应”,也会使得静电纺丝薄膜的有效孔径尺寸显著下降。
(4)可再生性、节约环保。
在实际的过滤过程中,大部分的杂质会留在静电纺丝薄膜的表面,只有其他很少的一部分颗粒会在静电纺薄膜内部和底部沉积,这就决定了该过滤材料方便清洁的特性,它的可持续再生的吸附功能有利于环保要求并会降低成本。