纳米纤维过滤材料的表征方法及标准建立
- 格式:pdf
- 大小:385.75 KB
- 文档页数:2
纳米材料的质量标准及检验方法纳米材料是一类具有特殊结构和性质的材料,其尺寸在纳米级别,纳米材料的质量标准和检验方法对于确保纳米材料的安全性和可靠性具有重要意义。
本文将就纳米材料的质量标准和检验方法进行探讨。
首先,纳米材料的质量标准主要包括物理性质、化学成分、纯度、微观结构、表面形貌等方面。
物理性质涉及到纳米材料的机械性能、热性能、电性能等等,包括硬度、延展性、导电性等指标。
化学成分则关注纳米材料中的元素及其含量,要求准确无误。
纯度是指纳米材料中的杂质含量,要求低于一定的标准值,以确保纳米材料的纯度。
微观结构是指纳米材料内部的组织结构,如晶体结构、晶粒尺寸等,需要通过显微镜等方法进行观察和分析。
表面形貌是指纳米材料表面的形态特征,如表面的光滑度、粗糙度等,需要通过扫描电子显微镜等方法进行分析。
以上几项指标都是纳米材料质量的重要衡量标准。
其次,纳米材料的检验方法与传统材料的检验方法有一定的差异。
由于纳米材料的尺寸处于纳米级别,一些传统的宏观检测方法难以进行有效的应用。
因此,针对纳米材料的特殊性,需要发展和采用一些特殊的检验方法。
对于物理性质的检验,可以利用一些特殊仪器设备进行测试,如纳米硬度计、纳米拉曼光谱仪、纳米热分析仪等。
这些仪器设备能够对纳米材料的物理性能进行定量分析。
对于化学成分的检验,可以利用一些化学分析方法进行检测。
传统的化学分析方法,如光谱法、质谱法、电化学法等都可以在一定程度上可以进行纳米材料的化学成分分析,但需要结合纳米材料的特点进行相应的改进。
对于纯度的检验,可以利用纳米材料的特殊性进行测试。
例如,可以利用扫描电子显微镜观察纳米材料的表面形貌,以确定其纯度。
还可以利用X射线衍射仪等仪器对纳米材料的微观结构进行表征,以确定杂质的存在情况。
总之,纳米材料的质量标准和检验方法是确保纳米材料安全可靠的重要环节。
由于纳米材料的特殊性,需要发展和采用一些特殊的检验方法。
随着纳米技术的迅猛发展,人们对纳米材料的质量标准和检验方法的研究和探索也将不断深入。
静电纺纳米纤维的过滤机理及性能摘要:纳米纤维将来最广泛的用途之一是用于过滤材料。
利用静电纺丝方法能够得到直径为几十或几百纳米的纳米级纤维,形成的纤维毡重量轻,渗透性好,比表面积大、孔隙率高、内部孔隙的连通性好,很适合用作过滤材料。
在基布上铺上纳米纤维层复合后,基布的过滤效率可明显提高,纳米纤维层的孔径比基布约小两个数量级,并且纳米纤维层孔径分布均匀、离散度小。
关键词:静电纺丝;纳米纤维;过滤性能近年来,通过静电纺丝制造纳米纤维较为流行。
静电纺丝提供了一种制造纳米纤维的便捷途径,生产纳米纤维所需聚合物的量可小至几百毫克。
静电纺纳米纤维在众多领域有着广泛的用途,不仅可以用作过滤材料,也可以用于组织工程、人造器官、药物传递和创伤修复等。
但是目前只有在过滤方面的应用稍微成熟,因纳米纤维网强力太低,一般需要熔喷、纺粘、针织布等基布支撑,这样形成的复合过滤材料既克服了纳米纤维强力小的缺点,又发挥了其优越的过滤性能。
DOSHI研究发现,夹入纳米纤维于熔喷与纺粘织物之间做成的过滤材料比传统的商业过滤器更能有效地排除超细微粒。
甚至以纳米纤维为夹层的过滤材料,因为高表面积和低重量,仅仅用重量是原来1/15的这种复合过滤材料就能达到很好的过滤性能[1]。
本文简要介绍了静电纺纳米纤维的发展、基本理论、纺丝工艺参数对静电纺丝的影响,以及非织造织物的过滤机理、结构和性能参数,对静电纺纳米纤维在过滤材料方面的应用研究现状进行综述分析。
1.静电纺丝1.1静电纺丝的发展历程及国内外现状水平静电纺最早出现在20世纪初期。
1917年,Zeleny J阐述了静电纺丝的原理[2]。
1934年,Formhals申请了制备聚合物超细纤维的静电纺丝装置专利[3];1966年,Simons申请了由静电纺丝法制备超薄、超细非织造膜的专利[4];1981年,Larrondo等对聚乙烯和聚丙烯进行了熔融静电纺丝的研究[5];1995年,Reneker研究组开始对静电纺丝进行研究,静电纺丝迅速发展[6];1999年,Fong等对静电纺丝纳米纤维串珠现象及微观结构作了研究[7-8];2000年,Spivak等首次采用流体动力学描述静电纺丝过程,并且提出了静电纺丝的工艺参数[9-10];2004年,捷克利贝雷茨技术大学与爱勒马可公司合作生产的纳米纤维静电纺丝机问世。
纳米纤维材料的制备和表征纳米纤维材料属于功能性材料的一种,具有较高的强度、韧性、导热性等特性,并在多领域得到了广泛应用。
在过去的几十年中,研究者们对纳米纤维材料进行了一系列的研究,不断探索其制备方法及性质表征方法。
一、纳米纤维材料的制备方法1. 电纺法电纺法是目前应用最为广泛的一种制备纳米纤维材料的方法。
该方法利用电场作用于高分子溶液中的聚合物分子,使其形成带电的液滴,进而拉伸和喷射成纳米级纤维。
电纺法操作简便,成本较低,制备速度较快,可以制备各种形状和类型的纳米纤维材料。
2. 模板法模板法是一种基于纳米模板的制备方法。
研究者们采用模板材料如金属、陶瓷、聚合物等,通过控制模板孔隙大小及模板表面性质来制备纳米材料。
该方法可以制备出高纯度和高度有序的纳米纤维材料。
3. 溶胶-凝胶法溶胶-凝胶法是一种将各种金属、陶瓷、聚合物预聚体以水溶液或有机溶液溶胶态悬浮,并在某些条件下使其先碳化或烧结,再热处理得到的纳米材料的制备方法。
该方法可以制备出高度纯净、高比表面积的纳米纤维材料。
4. 气相沉积法气相沉积法是利用化学气相沉积技术制备纳米材料的一种方法。
该方法可以在较低的温度下高效地制备出高质量的纳米纤维材料。
二、纳米纤维材料的表征方法1. 扫描电子显微镜扫描电子显微镜(SEM)是一种通过高压电子束扫描材料表面来获得表面形貌和结构的方法。
SEM可以对纳米纤维的直径、长度、形态、孔隙分布等表征,是表征纳米纤维材料的重要手段。
2. 透射电子显微镜透射电子显微镜(TEM)是一种运用电子束,使其透过材料薄片来获得材料内部结构的方法。
TEM可以对各种材料的微观结构进行分析和观察,并能够获得精确的纳米纤维直径和形态信息。
3. 红外光谱法红外光谱法(IR)是利用物质对红外辐射的吸收来分析样品的成分及其结构的方法,具有快速、准确、非破坏性等优点。
IR可以通过分析纳米纤维中特殊的结构和化学键信息来表征其结构和组成。
4. X射线衍射法X射线衍射法(XRD)是一种通过强制X射线入射材料的方法,通过衍射效应分析物质的晶体结构、晶格常数、晶胞参数等信息的方法。
纳米科技材料的性能测试方法与标准规范解读随着科技的高速发展,纳米科技已经成为各个领域的热门研究方向,纳米材料的性能测试方法和标准规范对于实现材料的精准设计、可靠应用以及产品的质量控制至关重要。
本文将重点介绍纳米科技材料性能测试方法和标准规范的严格解读。
1. 纳米材料的性能测试方法纳米材料与传统材料相比,具有独特的特性和性能,因此需要采用特殊的测试方法进行性能评估。
以下为常用的纳米材料性能测试方法:1.1 纳米材料的粒径测量纳米材料的粒径对于其性能具有重要影响,因此粒径测量是纳米材料性能测试的首要任务。
常用的方法有透射电子显微镜(TEM)、扫描电子显微镜(SEM)和动态光散射(DLS)等。
1.2 纳米材料的结构表征纳米材料的结构对其性能起着至关重要的作用,因此需要采用一系列的结构表征方法进行测试。
例如,X射线衍射(XRD)用于分析晶体结构;拉曼光谱(Raman)用于研究材料的分子振动和晶格动力学等。
1.3 纳米材料的机械性能测试材料的机械性能是其可靠运用的关键指标之一,对纳米材料的机械性能测试方法进行了大量研究。
常用的方法包括纳米压痕测试(Nanoindentation)、扫描探针显微镜(SPM)和纳米拉伸实验等。
1.4 纳米材料的热学性能测试纳米材料的热学性能对于其在能源、催化等领域的应用至关重要。
因此,研究者们开发了一系列测试方法,如差示扫描量热法(DSC)、热导率测试仪和纳米量热仪等。
2. 纳米材料性能测试的标准规范解读为了保证纳米科技材料性能测试的准确性和可比性,各个国家和国际组织制定了相应的标准规范,以规定测试方法和要求。
下面将重点介绍几个重要的标准规范:2.1 ISO/TS 80004-1:2015该标准主要针对纳米材料的术语和定义进行了规范,为纳米科技材料的研究和应用提供了统一的术语和定义。
它为纳米材料的性质表征和测试提供了一个共同的基础。
2.2 ISO/TS 12901-2:2014该标准规范了纳米材料亲水性和疏水性的测试方法和评价准则,以及纳米颗粒在液体中的分散性评价指标,对于纳米材料的应用和环境影响研究具有重要意义。
纳米纤维材料的制备及应用研究进展随着科技的不断发展和人们对生活质量要求的提高,纳米技术越来越受到人们的关注。
纳米技术是通过自组装和自组装性的理论基础,设计和制备具有纳米尺度结构的新材料。
其中,纳米纤维作为一种重要的纳米材料,由于其特殊的性质和广泛的应用前景,吸引了众多科学家的研究。
一、纳米纤维的制备方法:1.电纺法制备:电纺法是目前制备纳米纤维最常用的方法之一,其制备原理是通过利用高电场作用下纤维素溶液表面的荷电作用将喷涌出的液滴逐渐拉伸成纳米级尺寸的纤维。
电纺法制备的纳米纤维具有较高的比表面积、较好的孔结构和悬浮性,因此被广泛应用于材料、能源、生物医学、环保等领域。
2.气相沉积法制备:气相沉积法制备纳米纤维技术是利用化学气相沉积技术,通过控制反应温度、压力和气体流量等工艺条件,在陶瓷、金属、半导体等材料基底上形成纳米级尺寸的纤维。
该方法可以制备出高度纯净和高结晶度的材料纳米纤维,但需要复杂的真空设备,成本较高。
二、纳米纤维材料的应用:1.生物医学领域:纳米纤维作为一种具有生物相容性、可降解、高比表面积、高孔隙率的生物材料,被广泛应用于修复组织、制造3D支架、制备组织工程等方面。
同时,具有药物载体、细胞培养和诊断、生物传感器等免疫分析方面的应用潜力。
2.环境保护领域:纳米纤维材料在环境保护领域的应用主要体现在水处理、废气处理、液态催化剂等方面。
通过制备新型的纳米纤维材料,提高其润湿性、晶体结构、表面活性位点等,在环境中吸附、催化、分解有害物质,具备重要的环保应用价值。
3.能源领域:纳米纤维在能源领域中的应用包括燃料电池、锂离子电池、超级电容器等,利用其高比表面积、高电导性、高反应活性等特点,来提高能量传输和储存的效率。
4.材料领域:纳米纤维材料在材料领域中的应用非常广泛,包括塑料、橡胶、金属、陶瓷等材料的增强、传热性能改善、制备纳米复合材料等方面。
三、纳米纤维材料的未来发展:目前,虽然纳米纤维材料的研究已经取得了一定的进展,但是其制备工艺和应用技术还存在着许多挑战和难点。
硫酸水解微晶纤维制备纳米纤维素及其性能表征*通过硫酸水解和超声结合的方法,把微晶纤维素制备成纳米纤维素,采用56%的硫酸把微晶纤维素在40℃水浴水解1h,再用80%的功率超声3h,制得的纳米纤维素的固含量为1.70%,粒径分布在70nm-1500nm之间,电镜照片下呈棒状。
标签:纳米纤维素;制备;粒径;形貌分析;性能表征目前,纳米纤维素的原料来源众多,可通过物理、化学、生物等多种方式制成得到[1-2],文章中纳米纤维素是采用硫酸水解微晶纤维(MCC)的方法制成,微晶纤维素的长度大于1?滋m,它是由纤维素晶须聚集成的,纤维素晶须是纤维素在经过酸解和超声处理后不定形区断裂产生的一种棒状材料,在干燥时纤维素晶须之间的氢键会相互作用使之聚集就形成了微晶纤维素[3-6]。
采用一定量的微晶纤维素缓缓放入浓度为56%的硫酸溶液中,进行热水浴处理,直到微晶纤维刚好全部水解在硫酸中,用离心机进行离心洗涤,得到的溶液装入透析袋中透析2-3天,然后使用超声波破碎仪将纤维素颗粒变小,最后冷冻干燥得到纳米纤维素固体粉末状颗粒,对得出的样品进行粒径分析与形貌分析。
研究纳米纤维素的微观特征。
1 实验原料与仪器1.1 实验原料MCC(微晶纤维素),柱层析97%(上海金穗生物科技有限公司);硫酸,分析纯98%(南京化学试剂有限公司);25L蒸馏水(自制)1.2 实验仪器数显三用恒温水箱,HH-600(金坛市国旺实验仪器厂);离心机,TDL-40B (上海安亭科学仪器厂);超声破碎仪,BILON-500(上海比郎仪器有限公司);冷冻干燥机,LGJ-10C(北京四环科学仪器厂);激光粒度分析仪,Winer2005(济南微纳仪器有限公司);电热恒温鼓风干燥箱,DHG-9523A(上海精宏实验设备有限公司);热场发射扫描电子显微镜,JSM-7600F(日本电子株式会社)2 制备纳米纤维素步骤2.1 酸处理称取4份10gMCC,量取4份100ml的浓度为56%的浓硫酸,将MCC缓缓放入硫酸中,加入MCC的同时要不断震荡锥形瓶中的硫酸,防止MCC在里面结块,导致后面不易水解,然后进行热水浴处理,水浴温度设置为40℃,水浴时间50min-60min,直到刚好MCC全部水解。
纳米纤维材料的制备与表征纳米材料是一种具有纳米级尺寸的物质,其粒径一般在1到100纳米之间。
这种材料具有巨大的表面积和高度的表面能量,因此显示出与传统材料迥然不同的性质和行为。
其中,纳米纤维材料作为一种重要的纳米材料,因其结构的独特性和多样性而受到了广泛的关注。
制备纳米纤维材料的方法众多,常见的有电纺法、溅射法、化学气相沉积法等。
其中,电纺法是一种制备纳米纤维结构材料的有效方法。
该方法利用高电压作用下的电场引力将溶液中的聚合物拉伸成细纤维,然后通过溶剂挥发使纤维固化。
该方法制备的纳米纤维材料具有较高的比表面积、优异的机械性能和优异的吸附性能,广泛应用于领域。
制备纳米纤维材料的关键是选择适当的聚合物溶液。
常见的聚合物包括聚丙烯酸盐、聚乙烯醇、聚酯等。
这些聚合物具有良好的拉伸性和溶解性,能够通过电纺法制备出均匀且较细的纳米纤维。
此外,在制备过程中,还可以添加一些功能性添加剂,如无机纳米颗粒、染料等,以赋予纳米纤维材料更多的性能。
制备好的纳米纤维材料需要进行表征和分析,以了解其物理化学性质和结构特征。
常用的表征手段包括扫描电子显微镜(SEM)、透射电子显微镜(TEM)、傅里叶变换红外光谱(FTIR)等。
这些手段能够观察材料的形貌、晶体结构和分子组成,进而研究其性能与结构之间的关系。
通过SEM观察,可以获得纳米纤维的形貌信息,包括直径、长度和分支情况等。
此外,TEM可以进一步观察纳米纤维的内部结构,研究纳米纤维的晶体结构和分子排列方式。
而FTIR可以分析纳米纤维的表面官能团和化学键信息,判断其结构和组成。
除了形貌和结构信息外,还可以通过一系列测试手段来评估纳米纤维材料的性能。
例如,可以采用气体吸附测试仪测定比表面积和孔隙度,从而评价纳米纤维材料的吸附性能。
此外,还可以利用张力仪、扩散仪等测试纳米纤维材料的力学性能和传质性能。
总之,纳米纤维材料作为一种重要的纳米材料,在制备和表征方面都有着许多挑战和机遇。
纳米材料的表征方法与技巧纳米材料是一种具有特殊尺寸和结构的材料,其尺寸在纳米级别(10^-9米)范围内。
由于纳米材料具有独特的物理、化学和力学特性,因此对其进行准确的表征是非常重要的。
本文将介绍几种常用的纳米材料表征方法与技巧,以帮助读者更好地了解和研究纳米材料。
1. 扫描电镜(SEM)扫描电镜(Scanning Electron Microscopy,SEM)是一种常用的表征纳米材料形貌和表面形态的方法。
SEM利用电子束照射样品,然后测量样品放出的次级电子、反射电子或散射电子,通过扫描样品的表面,获得高分辨率的表面形貌信息。
SEM能够对纳米材料进行直接观察和分析,可以得到材料的形貌、尺寸、结构以及表面粗糙度等信息。
2. 透射电子显微镜(TEM)透射电子显微镜(Transmission Electron Microscopy,TEM)是一种用于观察纳米材料内部结构的高分辨率技术。
TEM利用电子束通过样品的方式,然后测量透射电子的强度,从而获得材料的原子级别结构和晶格信息。
TEM对于研究纳米材料的晶体结构、晶粒尺寸和界面特性等方面具有很高的分辨率和灵敏度。
3. X射线衍射(XRD)X射线衍射(X-ray Diffraction,XRD)是一种用于分析纳米材料结晶性质的重要手段。
通过照射样品表面的X射线,通过分析和测量样品对X射线的衍射图样,可以确定样品的晶体结构、晶体相对应的晶格参数以及晶粒尺寸等信息。
XRD对于研究纳米材料的晶体结构和晶体相变等方面具有很高的准确性和可靠性。
4. 傅里叶变换红外光谱(FTIR)傅里叶变换红外光谱(Fourier Transform Infrared Spectroscopy,FTIR)是一种用于表征纳米材料的化学组成和官能团的方法。
通过测量样品在红外区域的吸收和散射光谱,可以确定样品中存在的化学键和官能团类型,并帮助研究者了解纳米材料的结构和表面性质。
FTIR对于研究纳米材料的化学组成、官能团修饰以及材料与其他物质之间的相互作用具有重要意义。
纳米纤维由于通常在宏观上表现为膜或毛毡等形态,因此是最容易被直接应用的一种纳米材料。
静电纺丝就是迄今为止最为直接有效的制备纳米纤维工艺。
静电纺丝过程是指通过电场对聚合物的溶液或者熔体液滴施加高压静电力,当电场力克服了溶液或熔体液滴的表面张力时,液滴沿着电场力方向变形,最终形成喷射流,喷射流在空中发生鞭动和劈裂效应并固化成纤维,最终在电极上无规沉积形成纤维膜。
关于静电纺丝工艺的专利最早发表于19世纪末,但在当时并没有引起人们的足够重视。
直到1990年左右,在全世界兴起的纳米科学研究热潮中,静电纺丝作为一种方便、快捷制备纳米纤维材料的方法引起了科学家的浓厚兴趣。
至今,在20多年的时间里,关于静电纺丝的的学术论文和专利成果数量逐年递增,研究内容也从起初的可行性探索扩展到制备工艺、纤维性能、纤维功能化、理论研究等各个方面。
所得到的纳米纤维由于具备了传统材料不具有的优良特性,因此在很多领域的得到了应用,比如药物控释、组织工程支架、创伤敷料、传感器、隔离膜、过滤材料等。
其中,利用静电纺丝工艺制备的过滤材料已经在国外产业化,并广泛应用于各个领域,性能大大优于传统过滤材料。
尽管如此,我们认为现有的纳米纤维过滤材料是纳米纤维性能优越性的一个例证。
但是关于纳米纤维过滤材料的研究还不够,并且缺乏理论指导。
片面的研究就如同盲人摸象,最终结果不仅不能提高现有产品的性能,反而增加了制备和原料的成本,使得整个纳米纤维过滤材料产业陷入低谷。
在纳米材料的研究中,结构与性能的关系是永恒的主题。
其前提是要有一套科学可靠的研究方法和分析表征技术。
现在,仪器表征手段非常先进,但是使用在纳米纤维材料上仍然具有很多局限性。
首先,例如,扫描电镜是观察材料表面微观形貌的通用方法。
几乎所有对电纺丝纳米纤维的研究都使用扫描电镜作为最主要甚至是唯一的表面结构表征方法。
然而,扫描电镜在微观形貌观察时的局限性主要体现在其本身电子束二次成像原理导致的对表面形态的错误的反映。
在百纳米尺度的表面上,底部带有直角的矩形沟槽往往被反射的电子束呈现为圆弧形凹槽。
这就掩盖了材料的一个重要结构特征,使得多种不同结构的材料在扫描电镜下观察得到了类似的结果。
在过滤材料中,往往需要将纤维制备成异形纤维(截面非圆形),以便提高其过滤效率或者降低流动阻力。
以往熔喷过滤纤维的尺度在10微米左右,其异形结构基本可以被扫描电镜真实反应。
但是到了百纳米尺度,这一结构细节就很可能因为测试方法的不足而被掩盖。
结果就是没有研究出材料性能差异的根本原因,并很可能把这种差异主观的归结到其他因素上。
第二,对纳米纤维强度和模量仍然没有建立起公认的表征方法。
似乎过滤材料并不是像碳纤维那样作为结构材料使用,但是滤材在工作环境中往往受到很大的交变应力作用,不同材料或同种材料在不同温度环境下使用时,会产生不同的形变,导致最终过滤材料的孔隙尺度并不是我们在静态条件下所观察测量得到的。
虽然我们可以用DSC测材料的Tg,用DMA测材料的动态力
学性能G’和G’’,并预测使用时的形变量,但是我们仍然无法得知实际使用中的孔隙变化的真实情况。
这也是现有表征方法无法得到的结果。
第三,现有纳米纤维过滤材料的研究往往只注意纤维直径、孔隙率、孔径等因素对过滤效率的影响。
但是,是否还有其他因素?如何测量其影响?我们认为至少有一个因素现在还没有被研究,那就是表面电荷。
优异的过滤材料往往利用高分子材料的驻极体特性使其带电,以增加对被过滤粒子的吸附。
静电纺丝工艺中电场力不仅产生纳米纤维,同时也使纳米纤维本身带有大量电荷。
在纳米尺度上,静电吸附更加不可忽略。
因此需要有科学的表征方法建立纳米纤维的电荷密度与过滤效率的关系。
此外,还有很多问题需要依靠科学的表征技术实现。
比如,在血液过滤中,滤材的生物安全性、血液相容性等至今还没有准确的评价标准;在生物环境中使用时,滤材与生物组织之间的界面几乎不能区分,无法表征过滤效果;在多种材料的共混纺丝中,因为相分离所表现出的纤维局部组成的区别也无法测定。
这些都可能影响过滤效果。
在科学的研究方法中,通常是在建立联系,但是如果建立了不存在的联系,无异于迷信。
因此需要更多工作通过表征方法的创新列举出所有影响素,并建立对该因素的表征标准,以便满足纳米纤维过滤材料的研究需要。
来源:静电纺丝行业期刊。