第二章 系统动力学的基本理论
- 格式:ppt
- 大小:582.00 KB
- 文档页数:30
第二章车辆动力学建模方法及基础理论§2-1 动力学方程的建立方法在车辆动力学研究中,建立系统运动微分方程的传统方法主要有两种:一是利用牛顿矢量力学体系的动量定理及动量矩定理,二是利用拉格朗日的分析力学体系。
本节将对这两种体系作一简单回顾,并介绍几个新的原理。
一牛顿矢量力学体系(1)质点系动量定理质点系动量矢p对时间的导数等于作用于质点系的所有外力F i的矢量和(即主矢),其表达式为:二、分析力学体系分析力学是用分析的方法来讨论力学问题,较适合处理受约束的质点系。
(1)动力学普遍方程动力学普遍方程由拉格朗日(Lagrange)于1760年给出的,方程建立的基本依据是虚位移原理,表示如下:(2-6)(2)拉格朗日方程拉格朗日法的基本思想是将系统的总动能和总势能均以系统变量的形式表示,然后将其代入拉格朗日方程,再对其求偏导数,即可得到系统的运动方程。
拉格朗日方程形式如下:利用此方程推导车辆动力学方程时,因采用广义坐标,从而使描述系统位移的坐标数量大大减少,并可以自动消去无功内力。
但也存在下述问题:①应用拉格朗日方程时,有赖于广义坐标选取得是否得当,而适当地选择广义坐标有时要靠经验;②拉格朗日能量函数对于刚体系统的表达式可能非常复杂,代人拉格朗日方程后要作大量运算。
而对于复杂的车辆系统,写出能量函数的表达式就更加困难。
三、虚功率原理若丹(Jourdain)于1908年推导出另一种形式的动力学普遍方程,其所依据的原理称之为虚功率原理。
虚功率形式的动力学普遍方程为:四、高斯原理1829年,高斯(Gauss)提出动力学普遍方程的又一形式,称为高斯原理,其表达式为:§2-2 非完整系统动力学一、非完整系统动力学简介1894年,德国学者Henz第一次将约束系统分成“完整”和“非完整”两大类,从此开辟了非完整系统动力学(Nonholonomie System)的新领域,如今它已成为分析力学的一个重要分支。
系统动力学原理第一篇:系统动力学原理5.1 系统动力学理论5.1.1 系统动力学的概念系统动力学(简称SD—System Dynamics),是由美国麻省理工学院(MIT)的福瑞斯特(J.W.Forrester)教授创造的,一门以控制论、信息论、决策论等有关理论为理论基础,以计算机仿真技术为手段,定量研究非线性、高阶次、多重反馈复杂系统的学科。
它也是一门认识系统问题并解决系统问题的综合交叉学科[1-3]。
从系统方法论来说:系统动力学是结构的方法、功能的方法和历史的方法的统一。
它基于系统论,吸收了控制论、信息论的精髓,是一门综合自然科学和社会科学的横向学科。
系统动力学对问题的理解,是基于系统行为与内在机制间的相互紧密的依赖关系,并且透过数学模型的建立与操作的过程而获得的,逐步发掘出产生变化形态的因、果关系,系统动力学称之为结构。
系统动力学模型不但能够将系统论中的因果逻辑关系与控制论中的反馈原理相结合,还能够从区域系统内部和结构入手,针对系统问题采用非线性约束,动态跟踪其变化情况,实时反馈调整系统参数及结构,寻求最完善的系统行为模式,建立最优化的模拟方案。
5.1.2 系统动力学的特点系统动力学是一门基于系统内部变量的因果关系,通过建模仿真方法,全面动态研究系统问题的学科,它具有如下特点[4-8]:(1)系统动力学能够研究工业、农业、经济、社会、生态等多学科系统问题。
系统动力学模型能够明确反映系统内部、外部因素间的相互关系。
随着调整系统中的控制因素,可以实时观测系统行为的变化趋势。
它通过将研究对象划分为若干子系统,并且建立各个子系统之间的因果关系网络,建立整体与各组成元素相协调的机制,强调宏观与微观相结合、实时调整结构参数,多方面、多角度、综合性地研究系统问题。
(2)系统动力学模型是一种因果关系机理性模型,它强调系统与环境相互联系、相互作用;它的行为模式与特性主要由系统内部的动态结构和反馈机制所决定,不受外界因素干扰。
5.1 系统动力学理论5.1.1 系统动力学的概念系统动力学(简称SD—System Dynamics),是由美国麻省理工学院(MIT)的福瑞斯特(J.W.Forrester)教授创造的,一门以控制论、信息论、决策论等有关理论为理论基础,以计算机仿真技术为手段,定量研究非线性、高阶次、多重反馈复杂系统的学科。
它也是一门认识系统问题并解决系统问题的综合交叉学科[1-3]。
从系统方法论来说:系统动力学是结构的方法、功能的方法和历史的方法的统一。
它基于系统论,吸收了控制论、信息论的精髓,是一门综合自然科学和社会科学的横向学科。
系统动力学对问题的理解,是基于系统行为与内在机制间的相互紧密的依赖关系,并且透过数学模型的建立与操作的过程而获得的,逐步发掘出产生变化形态的因、果关系,系统动力学称之为结构。
系统动力学模型不但能够将系统论中的因果逻辑关系与控制论中的反馈原理相结合,还能够从区域系统内部和结构入手,针对系统问题采用非线性约束,动态跟踪其变化情况,实时反馈调整系统参数及结构,寻求最完善的系统行为模式,建立最优化的模拟方案。
5.1.2 系统动力学的特点系统动力学是一门基于系统内部变量的因果关系,通过建模仿真方法,全面动态研究系统问题的学科,它具有如下特点[4-8]:(1)系统动力学能够研究工业、农业、经济、社会、生态等多学科系统问题。
系统动力学模型能够明确反映系统内部、外部因素间的相互关系。
随着调整系统中的控制因素,可以实时观测系统行为的变化趋势。
它通过将研究对象划分为若干子系统,并且建立各个子系统之间的因果关系网络,建立整体与各组成元素相协调的机制,强调宏观与微观相结合、实时调整结构参数,多方面、多角度、综合性地研究系统问题。
(2)系统动力学模型是一种因果关系机理性模型,它强调系统与环境相互联系、相互作用;它的行为模式与特性主要由系统内部的动态结构和反馈机制所决定,不受外界因素干扰。
系统中所包含的变量是随时间变化的,因此运用该模型可以模拟长期性和周期性系统问题。
系统动力学引言系统动力学是一种研究复杂系统行为和相互关系的科学方法,它将系统看作是一系列相互作用的组成部分,并通过建立模型来描述系统的行为变化。
这种方法利用数学模型和计算机模拟来分析系统的特性,从而帮助我们理解和预测系统的动态行为。
本文将介绍系统动力学的基本概念、原理和应用,并探讨其在实际问题中的应用。
系统动力学的基本概念系统动力学的核心概念包括系统、变量、关系和行为。
系统指的是我们研究的对象,可以是物理系统、社会系统或生态系统等。
变量是系统中的量化指标,用于描述系统的状态。
关系则表达了变量之间的相互依赖和相互影响关系。
系统动力学通过建立数学方程来描述这些关系,从而揭示系统的行为模式。
系统动力学的基本原理系统动力学的基本原理是基于动态反馈和延迟效应的。
动态反馈指的是系统中的变量之间存在相互作用和反馈机制,即某变量的变化会影响其他变量并反过来影响自身,形成一个闭环系统。
延迟效应则指的是系统中的变化不会立即产生对应的响应,而是有一个时间滞后的过程。
系统动力学的建模和分析过程包括以下几个步骤:1.系统边界定义:确定所研究系统的边界和范围,明确需要包含的变量和关系。
2.变量识别和定义:识别系统中的各个变量,并定义每个变量的含义与度量方式。
3.关系建立:建立变量之间的关系及数学方程,描述其相互作用和影响关系。
4.参数设定和初始条件:确定模型中的参数和初始条件,以反映实际情况。
5.模型求解和分析:利用数学方法和计算机模拟求解模型,并进行灵敏性分析、稳定性分析等。
6.结果验证和应用:验证模型结果的准确性和合理性,并将模型应用到实际问题中。
系统动力学在实际问题中的应用系统动力学在多个领域中都有广泛的应用,包括管理决策、环境保护、经济学、社会学等。
管理决策系统动力学可以帮助决策者理解和分析复杂的管理问题,并提供决策支持。
例如,一个公司管理团队可以利用系统动力学模型来研究市场需求、生产能力和供应链等因素对企业利润的影响,从而制定战略决策和管理措施。