制动器结构设计
- 格式:doc
- 大小:560.00 KB
- 文档页数:8
纯电动汽车制动器的结构设计及优化策略随着环保意识的日益提高,纯电动汽车作为一种零排放的交通工具受到越来越多消费者的青睐。
而在纯电动汽车的设计中,制动器是关键的安全系统之一。
本文将探讨纯电动汽车制动器的结构设计及优化策略,旨在提高制动器的性能和安全。
1. 纯电动汽车制动器的结构设计纯电动汽车制动器的结构设计需要考虑以下几个方面:1.1 制动器类型目前市场上主要有电磁液压制动系统和电子制动系统两种类型的制动器。
电磁液压制动系统采用电磁阀控制液压系统的工作,具有成熟的技术和较高的制动力;而电子制动系统通过电子控制单元控制电机或电动液压泵制动,具有更高的灵活性和响应速度。
1.2 制动力分配纯电动汽车的制动力分配需要与动力系统协调工作,以确保稳定和协调的制动效果。
制动力分配可以根据车速、加速度等参数进行调整,确保制动的平衡性和可控性。
1.3 制动盘和制动片材料选择制动盘和制动片的材料选择对于制动性能至关重要。
常见的材料包括钢、铸铁、碳陶瓷等。
每种材料都有其优势和劣势,需要根据纯电动汽车的使用需求和成本考虑进行选择。
2. 优化策略2.1 轻量化设计纯电动汽车的重量对于续航里程和动力消耗有着直接的影响。
因此,在制动器的设计中,应该注重轻量化的策略,选择轻量化材料和优化结构,以减少整车的负荷。
2.2 能量回收制动系统纯电动汽车可以利用能量回收制动系统,将制动时产生的能量转化为电能并储存在电池中,以供日后使用。
能量回收制动系统的优化可以实现最大化能量的回收,提高能源利用率。
2.3 制动系统智能化通过引入智能化技术,纯电动汽车的制动系统可以更加智能和自动化。
例如,采用传感器和控制单元实时监测车辆和驾驶员的信息,根据实时情况调整制动力分配和制动策略,提高制动的效果和安全性。
2.4 制动系统的可维护性纯电动汽车制动系统的可维护性对于车辆的长期使用和安全性至关重要。
制动系统应该设计成模块化的结构,方便维修和更换零部件,降低维护成本和时间。
目录1前言 (1)2盘式制动器的结构方案分析 (2)2.1 钳盘式制动器的分类 (2)2.2盘式制动器的选择 (3)2.3盘式制动器的功用和要求 (4)2.4滑动钳式制动器的工作原理 (4)3盘式制动器的设计与计算 (6)3.1制动力矩的计算 (6)3.2 制动器表面温升 (7)3.3 摩擦片单位压力 (8)3.4 性能约束 (9)4盘式制动器主要参数的确定 (11)4.1制动盘直径与厚度 (11)4.2摩擦衬块半径 (11)4.3制动衬块面积 (11)5Solidworks的盘式制动器设计 (12)5.1 制动器零件的绘制(附主要零件的立体效果图) (12)5.2 制动器的装配图 (16)5.2 制动器爆炸图的生成(附立体效果图) (17)5.4 制动器工程图的生成(附总装配图) (18)结论 (19)致谢 (20)参考文献 (21)1 前言汽车工业的百年发展史,1886年真是不同寻常的一年,这一年,德国人卡尔·奔驰研制的0.9马力的三轮汽车取得了帝国专利证书,同年,另一名德国人戴姆勒也试驾了他发明的四轮汽油汽车。
从此,汽车开始改变这个世界。
1906年美国的杜里埃兄弟制造并出售了13辆以汽油为燃料的四轮汽车。
1914年,福特汽车公司已经实现了汽车的流水线生产。
1928年,通用公司雪佛兰汽车的年产量就达到了120万辆。
汽车很快就成了时尚的宠儿。
中国汽车工业从1953年兴建第一汽车制造厂开始,1956年第一辆解放牌载货汽车驶出一汽的大门,中国不能制造汽车的历史从此结束。
如今汽车品牌之多,汽车生产技术之先进,已是人们有目共睹的事实。
21世纪是汽车工业飞速发展的时代,汽车工业逐步成为许多国家的支柱产业。
我国随着国民经济的快速发展,汽车的年产量和社会保有量也都在迅速增加。
汽车质量的优劣,关系到我国汽车产业能否冲出国门,走向世界。
因此,对汽车以及相关产品的改进也是相当重要的。
从汽车诞生时起,车辆制动系统在车辆的安全方面就扮演着至关重要的角色。
制动器主要零件的结构设计摘要:随着现代科学技术特别是计算机技术的迅速发展,近年来出现了一批新的设计理论和设计方法,如优化设计、可靠性设计、计算机辅助设计、有限元方法等等。
这些方法的发展和应用,使得各个工程领域的设计工作从形式到效果都发生了根本性的变化,产生了巨大的经济和社会效益。
制动性能是汽车行驶安全性的重要指标。
汽车制动性能的好坏,直接关系到汽车行驶的安全性,同时也直接影响到汽车动力性的充分发挥。
汽车的动力性越好,对其制动性能则要求越高。
及如何选择制动器是决定汽车好坏的决定性因素。
汽车的制动装置显得尤为重要,在众多的整车性能检测项目中,制动器便自然成为交通工具中强制执行的安全项之一。
关键词:汽车;制动器;制动钳;制动盘。
AbstractWith modern science and technology,particularly the rapid development of computer technology,In recent years a number of new design theory and design methodology,If the design,reliability design,computer-aided design,limited Yuan methods,and so on. The development and application of these methods. Makes various engineering design work from the forms to effect fundamental changes have taken place in,Tremendous economic and social benefits.Braking performance is an important indicator motor road safety. Motor braking performance is good or bad. Direct bearing on the security of the motor travelling,It is also directly affects sexual drive motor full play. Motor engine of the better,Their braking performance requires higher. And how to choose brakes are good or bad decisions motor decisive factor. Automobile and moto it is particularly important to the braking devices,Among the performance testing projects,Brakes naturally become transport enforcement of the security one.Keywords:motorcar;brake;Brake Caliper ;Brake disc。
汽车制动器的结构与设计一、制动器的分类1.力滑制动器:常见于自行车等小型交通工具,在车轮上施加压力,利用摩擦力来达到制动效果。
2.机械制动器:常见于机动车,通过操纵手柄或脚踏等机械装置来施加制动。
3.液压制动器:常见于大型汽车和卡车等,通过液压系统传递力量来实现制动。
二、制动器的结构1.制动盘:通常由铸铁或复合材料制成,安装在车轮上,并根据需要进行冷却和散热。
2.制动片:一般由摩擦材料制成,紧贴在制动盘上,当施加制动时与制动盘接触产生摩擦力。
3.制动钳:用于将制动片与制动盘紧密连接,同时通过活塞和液压力来施加压力使制动片与制动盘之间产生摩擦。
4.制动液:液压制动系统中的工作介质,一般使用无水醇基液体,用于传递压力从而实现制动效果。
5.制动管路:用于将制动液从主缸输送到制动钳,并保持一定的压力和流量。
三、制动器的设计要点1.制动力的配比:制动力的配比是指前后轮的制动力分配是否合理。
在制动系统中,前轮的制动力应该稍大于后轮,以保持车辆的稳定性和平衡性。
2.制动片的材料选择:制动片的摩擦材料应具有良好的摩擦性能、热稳定性和耐磨性,在制动过程中能够迅速产生摩擦力,并且能够在高温环境下保持稳定的制动效果。
3.制动盘的散热设计:制动盘在制动过程中会产生大量的热量,因此需要进行散热设计,以保持制动盘的良好工作状态,并避免因过热而影响制动效果。
4.制动钳的刚度设计:制动钳需要具有足够的刚度,以确保制动片与制动盘之间的紧密接触,并能够迅速施加制动力。
5.制动系统的控制:现代汽车制动系统通常采用电子控制单元(ECU)来控制制动力的施加和释放,以实现更精确的制动控制和更好的驾驶体验。
总结:汽车制动器的结构和设计直接关系到车辆的制动效果和安全性。
制动盘、制动片、制动钳、制动液和制动管路是制动器的主要组成部分,其设计需要考虑制动力的配比、摩擦材料的选择、散热设计、刚度设计和系统控制等方面。
只有在结构合理和设计精良的情况下,汽车制动器才能发挥最佳的制动效果,确保行车安全。
优化紧凑型轿车盘式制动器结构设计方案紧凑型轿车盘式制动器是汽车制动系统中的重要零部件之一,在保证安全性和可靠性的基础上,优化盘式制动器的结构设计方案,可以提升制动性能、减轻重量、降低成本等方面带来一定的好处。
首先,我们可以从盘式制动器的材料选择和制造工艺方面来进行优化设计。
目前常用的盘式制动器材料有铸铁和复合材料两种。
铸铁材料制作的盘式制动器具有成本低、制造工艺简单等优势,但其刹车性能和散热性能相对较差。
相比之下,复合材料制作的盘式制动器具有重量轻、散热性能好等优点,但制造工艺较为复杂,成本较高。
因此,在优化盘式制动器结构设计方案时,可以根据车辆的使用情况和需求选择合适材料,并结合先进的制造工艺进行制作,使其既能满足制动要求,又能降低制造成本。
其次,我们可以从盘式制动器的组成部分进行优化设计。
盘式制动器主要由刹车盘、刹车夹和刹车片等组成。
刹车盘是承受刹车力的部件,在设计时需要考虑到刹车盘的厚度、直径、材料选择等因素。
优化设计可以选择合适的材料,如高强度合金材料,以提高刹车盘的耐热性和耐磨性。
同时,通过改变刹车盘的厚度和直径,可以提升制动力矩和散热能力。
刹车夹是将刹车片夹紧在刹车盘上的部件,优化设计可以优化刹车夹的结构,使其更加紧凑、轻量化,并考虑到刹车片的易更换性和维修性。
此外,在盘式制动器的结构设计中,还需要考虑到盘式制动器的散热性能。
制动时,刹车盘会受到较大的摩擦热量,如果不能及时散热,会导致刹车性能下降甚至制动失效。
因此,在优化设计过程中,应合理设计散热通道和散热片,以增加散热面积和散热能力,确保盘式制动器在高温工况下的正常工作。
可以通过优化刹车盘的内部结构,增加散热通道的数量和尺寸,进一步提升盘式制动器的散热性能。
最后,在盘式制动器的结构设计中,还需要考虑到制动力的传递和分配。
优化设计可以选择合适的刹车片材料和结构,以提高制动力的传递效果。
同时,合理设计刹车系统的衬垫和活塞等部件,以均匀地分配制动力,避免因部分区域受压不均衡导致刹车不稳定的问题。
第四章制动器结构设计5.1 制动器主要结构参数的选取5.1.1 制动鼓直径D 或半径R 的选取5.1.2 制动蹄摩擦衬片的包角?及宽度?的选取试验表明,摩擦衬片包角6在90-100之间时,磨损最小,制动鼓温度最低,制动效能最高。
减小6角,有利于散热,但单位压力增大,磨损加剧。
6角过大将使制动作用不平顺,容易使制动器发生自锁。
因此初步选取摩擦片包角为100.5.1.3 摩擦衬片起始角6。
一般村片均布于制动蹄中央,使6。
=No —6/2。
根据?值为100,可得6。
为40。
有时,应单位压力的分布,将衬片相对于最大压力点对称布置,以改善磨损均匀性和制动效能。
5.1.4 制动器中心到张开力Fo 作用线的距离。
在保证制动鼓内轮缸和制动凸轮能够布置的条件下,a 应尽可能大,以提高制动效能。
初步设计时定为a=o .8R 左右。
5.1.5 制动蹄支承点位置座标k 和c 。
如图5-1,在保证两蹄支承毛面互不干涉的条件下,k 应尽可能小,以使尺寸c 尽可能大。
初步设计可取c=o .8R 左右。
代入得?5.1.6 摩擦片的摩擦系数根据参考文献【1】,领从蹄式制动器的摩擦片系数f 一般在0.3-0.35之间,当f 增大到一定值时,由于自行增势作用易导致自锁。
通常取f =o .3可使计算接近实际值。
5.2 凸轮张开力的确定及蹄自锁性校核5.2.1 张开力P1与P2的确定在计算鼓式制动器时,必须建立制动蹄对制动鼓的压紧力与所产生的制动力矩之间的关系。
为计算有一个自由度的制动蹄片上的力矩1Tf T ,在摩擦衬片表面上取一横向单元面积,并使其位于与1y 轴的交角为α处,单元面积为αbRd 。
,其中b 为摩擦衬片宽度,R 为制动鼓半径,αd 为单元面积的包角,如图4-1所示。
由制动鼓作用在摩擦衬片单元面积的法向力为:αααd bR q qbRd dN sin max == (5-1) 而摩擦力fdN 产生的制动力矩为ααd f bR q dNfR dT T f sin 2max ==在由α'至α''区段上积分上式,得)cos (cos 2max αα''-'=f bR q T Tf (5-2) 当法向压力均匀分布时,αbRd q dN p = )(2αα'-''=f bR q T p Tf (5-3)由式(46)和式(47)可求出不均匀系数)cos /(cos )(αααα''-''-''=∆式(46)和式(47)给出的由压力计算制动力矩的方法,但在实际计算中采用由张开力P 计算制动力矩1Tf T 的方法则更为方便。
增势蹄产生的制动力矩1Tf T 可表达如下:111ρfN T Tf = (5-4)式中 1N ——单元法向力的合力;1ρ——摩擦力1fN 的作用半径(见图5-3)。
如果已知制动蹄的几何参数和法向压力的大小,便可用式(17—46)算出蹄的制动力矩。
为了求得力1N 与张开力1P 的关系式,写出制动蹄上力的平衡方程式:0)sin (coscos 111101=+-+δδαf N S P x 01111=+'-N f C S a P x ρ (5-5)式中 1δ——1x 轴与力1N 的作用线之间的夹角;x S 1——支承反力在x1轴上的投影。
解式(49),得])sin (cos /[11111ρδδf f c hP N -+'= (5-6)对于增势蹄可用下式表示为11111111])sin (cos /[B P f f c fh P T Tf =-+'=ρδδρ (5-7)对于减势蹄可类似地表示为22222222])sin (cos/[B P f f c fh P T Tf =+-'=ρδδρ (5-8) 为了确定1ρ,2ρ及1δ,2δ,必须求出法向力N 及其分量。
如果将dN(见图38)看作是它投影在1x 轴和1y 轴上分量x dN 和x dN 的合力,则根据式(5-5)有:4/)2sin 2sin 2(sin sin max 2max ααβααααααα'+''-===⎰⎰''''''bR q d bR q dN N x (5-9) 4/)2cos 2(cos sin cos max 2max αααααααααα''-''===⎰⎰''''''bR q d bR q dN N y (5-10) 因此)]2sin 2sin 2/()2cos 2s arctan[(co )arctan(ααβααδ'+''-''-'==xy N N式中 ααβ'-''=。
根据式(5-2)和式(5-4),并考虑到221y x N N N +=则有 22)2sin 2sin 2()2cos 2(cos /)]cos (cos 4[ααβααααρ'+''-+''-'''-'=R如果顺着制动鼓旋转的制动蹄和逆着制动鼓旋转的制动蹄的α'和α''同,显然两种蹄的δ和ρ值也不同。
对具有两蹄的制动器来说,其制动鼓上的制动力矩等于两蹄摩擦力矩之和,即221121B P B P T T T Tf Tf f +=+=对于凸轮张开机构,其张开力可由前述作用在蹄上的力矩平衡条件得到的方程式求出: 11/5.0B T P f =22/5.0B T P f = 其中Tf 前单=0.5Tf1max;Tf 后单=Tf2max ;且前、后制动器B1,B2均相等。
代入上式计算得到前、后轮p1、p2分别是:p1前=?N ,p2=N ,p1=N ,p2=N5.2.2 检查制动自锁计算蹄式制动器时,必须检查蹄有无自锁的可能,由式(5-2)得出自锁条件。
当该式的分母等于零时,蹄自锁:0)sin (cos 111=-+'ρδδf f c (5-11) 如果式 111sin cos δρδc c f '-'<(5-12) 成立,则不会自锁。
已选f=0.3,计算得到111sin cos δρδc c '-'=?,即式(5-12)成立,制动蹄不会自锁。
5.3 摩擦衬片(衬块)的磨损特性计算摩擦衬片(衬块)的磨损,与摩擦副的材质、表面加工情况、温度、压力以及相对滑磨速度等多种因素有关,因此在理论上要精确计算磨损性能是困难的。
但试验表明,摩擦表面的温度、压力、摩擦系数和表面状态等是影响磨损的重要因素。
汽车的制动过程是将其机械能(动能、势能)的一部分转变为热量而耗散的过程。
在制动强度很大的紧急制动过程中,制动器几乎承担了耗散汽车全部动力的任务。
此时由于在短时间内热量来不及逸散到大气中,致使制动器温度升高。
此即所谓制动器的能量负荷。
能量负荷愈大,则衬片(衬块)的磨损愈严重。
制动器的能量负荷常以其比能量耗散率作为评价指标。
比能量耗散率又称为单位功负荷或能量负荷,它表示单位摩擦面积在单位时间内耗散的能量,其单位为W /mm 2。
双轴汽车的单个前轮制动器和单个后轮制动器的比能量耗散率分别为βδ1222112)(21tA v v m e a -= )1(2)(21222212βδ--=tA v v m e a (5-13) jv v t 21-=式中 δ——汽车回转质量换算系数;a m ——汽车总质量;1v ,2v ——汽车制动初速度与终速度,m /s ;计算时轿车取1001=v km/h(27.8m/s);总质量3.5t 以下的货车取1v =80km/h(22.2m/s);总质量3.5t 以上的 货车取1v =65km /h(18m /s);j ——制动减速度,m /s 2,计算时取j=0.6g ;t ——制动时间,s ;A l ,A 2——前、后制动器衬片(衬块)的摩擦面积;β——制动力分配系数。
取制动初速度1v =22.2m/s ,代入数据算得e1= ?W /mm 2 ,e2= ?W /mm 2 。
依参考文献【4】,鼓式制动器的比能量耗损率以不大于1.8W /mm 2为宜。
根据计算所得,前、后制动器的比能量耗散率均符合规定。
磨损和热的性能指标也可用衬片在制动过程中由最高制动初速度至停车所完成的单位衬片(衬块)面积的滑磨功即比滑磨功f L ,来衡量:][2max 2f a a f L A v m L ≤=∑(62) 式中 a m ——汽车总质量,kg ;m a x a v ——汽车最高车速,m/s ;∑A ——车轮制动器各制动衬片(衬块)的总摩擦面积,cm ’; [f L ]——许用滑磨功,对轿车取[f L ]=1000~1500J /cm 2;对客车和货车取[f L ]=600~800J /cm 2。
取1v =22.2m/s ,代入数据算得比滑磨功f L =?<[f L ]=600 J /cm 2 。
因此该车的磨损和热的性能指标均达标准。
5.4 制动器的热容量和温升的核算应核算制动器的热容量和温升是否满足如下条件:L t c m c m h h d d ≥∆+)( (5-15) 式中: d m ——各制动鼓(盘)的总质量;h m ——与各制动鼓(盘)相连的受热金属件(如轮毂、轮辐、轮辋、制动钳体等)的总质量;d c ——制动鼓(盘)材料的比热容,对铸铁c=482J /(kg ·K),对铝合金c=880J /(kg ·K);h c ——与制动鼓(盘)相连的受热金属件的比热容;t ∆ ——制动鼓(盘)的温升(一次由a v =30km /h 到完全停车的强烈制动,温升不应超过15℃);L ——满载汽车制动时由动能转变的热能,因制动过程迅速,可以认为制动产生的热能全部为前、后制动器所吸收,并按前、后轴制动力的分配比率分配给前、后制动器,即β221a a v m L = )1(222β-=a a v m L (5-16) 式中 a m ——满载汽车总质量;a v ——汽车制动时的初速度,可取max a a v v =;β——汽车制动器制动力分配系数。
估算得d m =?kg,h m =?kg,1L +L2=?............................5.5 制动器主要零件的结构设计与强度计算5.5.1 制动器主要零件的结构设计5.5.1.1 制动鼓制动鼓应具有高的刚性和大的热容量,制动时其温升不应超过极限值。