IC(双极型集成电路)工艺技术
- 格式:ppt
- 大小:7.76 MB
- 文档页数:80
集成电路中的工艺技术和制造方法集成电路是现代电子技术的关键组成部分,广泛应用于各个领域,如通信、计算机、消费电子等。
在集成电路的生产过程中,工艺技术和制造方法起着至关重要的作用。
本文将介绍集成电路中的工艺技术和制造方法,以帮助读者更好地了解和掌握相关知识。
一、工艺技术1. 光刻技术光刻技术是集成电路制造中常用的一种工艺技术。
它通过使用光刻胶和光罩,将设计好的电路图案转移到硅片上。
在光刻过程中,需要使用紫外线光源照射光刻胶,然后通过显影、蚀刻等步骤使电路图案得以形成。
2. 氧化技术氧化技术是制造MOS(金属氧化物半导体)器件中常用的一种工艺技术。
它主要是通过在硅片上生成一层氧化膜,用于隔离、保护和改善电路性能。
在氧化过程中,将硅片暴露在含氧气体中,并加热至一定温度,使氧气与硅片表面发生化学反应,生成氧化物。
3. 离子注入技术离子注入技术是制造P型、N型半导体等器件中常用的一种工艺技术。
它通过将离子束引入硅片,改变硅片的掺杂浓度和类型,从而改变硅片的导电性质。
离子注入过程中,需要对离子束的能量、剂量等参数进行调控,以达到所需的掺杂效果。
4. 化学镀膜技术化学镀膜技术是在集成电路制造过程中常用的一种工艺技术。
它通过将金属离子溶液直接还原在硅片表面,形成金属薄膜。
化学镀膜技术可用于金属线的填充、连接器的制造等方面,具有较高的成本效益和生产效率。
5. 清洗技术清洗技术是在集成电路制造中不可或缺的一种工艺技术。
由于集成电路制造过程中会产生许多杂质和污染物,需要进行定期的清洗以保证电路性能和可靠性。
清洗技术可采用化学溶液、超声波等方法,有效地去除硅片表面的污染物。
二、制造方法1. MOS制造方法MOS制造方法是制造MOS器件的一种常用方法。
它主要包括沉积薄膜、氧化、掩膜、离子注入、蚀刻、金属化等步骤。
其中,沉积薄膜步骤用于生成绝缘层和接触孔,氧化步骤用于形成氧化膜,掩膜步骤用于定义电路图案,离子注入步骤用于掺杂硅片,蚀刻步骤用于去除多余材料,金属化步骤用于连接电路。
晶体的生长晶体切片成wafer晶圆制作功能设计à模块设计à电路设计à版图设计à制作光罩工艺流程1) 表面清洗晶圆表面附着一层大约2um的Al2O3和甘油混合液保护之,在制作前必须进行化学刻蚀和表面清洗。
2) 初次氧化有热氧化法生成SiO2 缓冲层,用来减小后续中Si3N4对晶圆的应力氧化技术干法氧化Si(固) + O2 àSiO2(固)湿法氧化Si(固) +2H2O àSiO2(固) + 2H2干法氧化通常用来形成,栅极二氧化硅膜,要求薄,界面能级和固定电荷密度低的薄膜。
干法氧化成膜速度慢于湿法。
湿法氧化通常用来形成作为器件隔离用的比较厚的二氧化硅膜。
当SiO2膜较薄时,膜厚与时间成正比。
SiO2膜变厚时,膜厚与时间的平方根成正比。
因而,要形成较厚的SiO2膜,需要较长的氧化时间。
SiO2膜形成的速度取决于经扩散穿过SiO2膜到达硅表面的O2及OH基等氧化剂的数量的多少。
湿法氧化时,因在于OH基在SiO2膜中的扩散系数比O2的大。
氧化反应,Si 表面向深层移动,距离为SiO2膜厚的0.44倍。
因此,不同厚度的SiO2膜,去除后的Si表面的深度也不同。
SiO2膜为透明,通过光干涉来估计膜的厚度。
这种干涉色的周期约为200nm,如果预告知道是几次干涉,就能正确估计。
对其他的透明薄膜,如知道其折射率,也可用公式计算出(d SiO2) / (d ox) = (n ox) / (n SiO2)。
SiO2膜很薄时,看不到干涉色,但可利用Si的疏水性和SiO2的亲水性来判断SiO2膜是否存在。
也可用干涉膜计或椭圆仪等测出。
SiO2和Si界面能级密度和固定电荷密度可由MOS二极管的电容特性求得。
(100)面的Si的界面能级密度最低,约为10E+10 -- 10E+11/cm –2 .e V -1 数量级。
(100)面时,氧化膜中固定电荷较多,固定电荷密度的大小成为左右阈值的主要因素。
双极型集成电路(Bipolar)制造工艺双极集成电路基础有源器件:双极晶体管无源器件:电阻、电容、电感等双极IC:数字集成电路、模拟和微波集成电路特点:速度快、稳定性好、负载能力强新型双极晶体管:异质结双极晶体管多晶硅发射极双极晶体管B E C•埋层•外延层•隔离区•基区•发射区和集电区•金属化PN结隔离的NPN晶体管•钝化层•几个概念–有源区:硅片上用于制造元器件的区域–场区:没有制作元器件的区域•埋层•外延层•隔离区•基区•发射区和集电区•金属化•钝化层介质(厚氧化层)隔离的NPN晶体管如何制造双极晶体管?双极晶体管是基于平面工艺,在硅表面加工制造出来的元器件隔离方法:PN结隔离、PN结对通隔离、介质—PN结混合隔离、全介质沟槽隔离PN结隔离PN结对通隔离轻掺杂的外晶体管延层PNP晶体管(横向PNP和衬底PNP)C EN C EB B P PP P横向PNP晶体管B EP CN+N+ N-epiP-subs衬底PNP晶体管pn结隔离SBC结构工艺流程pn结隔离SBC结构工艺流程n+埋层的设计n+埋层的两个作用①减小晶体管收集区串联电阻②减弱寄生PNP管效应考虑二个要点①选固溶度大的杂质以减小埋层的电阻率②选扩散系数小的杂质以减小后续高温工艺中n+埋层向外延层的扩散外延生长的设计外延层电阻率隔离区的设计z确保p+隔离扩散穿透整个n型外延层,和p型衬底相通z隔离扩散过程中外延层的下推距离集电极深接触的设计①进一步降低集电极串联电阻②集电极欧姆接触穿透外延层和埋层相连③使用“磷穿透”工艺两个不利因素:①增加工艺的复杂性n+②加大集电极和基区之间的距离基区形成的设计考虑z为提高电流放大倍数β值和减小基区渡越时间,要求基区宽度W小,基区的掺杂浓度N低b b太低时,在较高工作电压下,集电结和发射结z Nb空间电荷区容易相连会造成穿通现象,而且低Nb 也会加大基区电阻.小到一定限度,也要求提高基区的浓度防止基z Wb区穿通依据实际情况折衷考虑。
第五章电子设备制造基础本章教学学时:2本章主要介绍电子设备的基本构成及电子元器件、集成电路的制造工艺、发展现状、壳体及插接件的制造技术及电子设备的组装技术,以期使读者对电子设备的制造有一个整体的了解。
本章的重点为电器元件的种类;机电元件的种类;CMOS的工艺流程;SBC工艺流程;整机组装的工艺过程及要求。
学习的难点是集成电路的工艺技术和双极集成电路制造工艺。
本章教学方式:授课与自学主要授课内容:第一节电子设备的基本构成一、电抗元件1.电阻器电阻器可分为固定电阻器(含特种电阻器)和可变电阻器(电位器)两大类。
2.电位器与可变电阻(变阻器)电位器与可变电阻从原理上说是一致的,电位器就是一种可连续调节的可变电阻器。
除特殊品种外,对外有三个引出端,靠一个活动端(也称为中心抽头或电刷)在固定电阻体上滑动,可以获得与转角或位移成—定比例的电阻值。
3.电容器电容器种类繁多,分类方式有多种,通常按绝缘介质材料分类,有时按容量是否可调分类。
其中按介质材料可分为:有机介质、复合介质,无机介质,气体介质,电解质电容器。
4.电感器电感器一般又称电感线圈,在谐振、耦合、滤波、陷波等电路应用十分普遍。
与电阻器、电容器不同的是电感线圈没有品种齐全的标准产品,特别是一些高频小电感,通常需要根据电路要求自行设计制作。
5.变压器变压器也是一种电感器。
它是利用两个电感线圈靠近时的互感现象工作的,在电路中可以起到电压变换和阻抗变换的作用,是电子产品中十分常见的元件。
二、机电元件利用机械力或电信号的作用,使电路产生接通、断开或转接等功能的元件,称为机电元件。
常见于各种电子产品中的开关,插接件等都属于机电元件。
1.开关开关是接通或断开电路的一种广义功能元件,种类繁多。
2.连接器连接器是电子产品中用于电气连接的一类机电元件,使用十分广泛。
习惯上把连接器称为插接件,有时也把连接器中一部分称为插接件。
3.继电器继电器是一种电气控制常用的机电元件,可以看作是一种由输入参量(如电、磁、光、声等物理量)控制的开关。
半导体集成电路生产工艺一、引言半导体集成电路(Integrated Circuit,简称IC)是现代电子技术的重要基础,广泛应用于计算机、通信、消费电子等领域。
而半导体集成电路生产工艺则是制造集成电路的关键环节,决定了集成电路的性能和质量。
本文将以半导体集成电路生产工艺为主题,介绍其基本概念、制造流程和常见工艺技术。
二、基本概念半导体集成电路生产工艺是指将半导体材料(如硅)加工成集成电路的过程。
其核心目标是在半导体材料上制造出微小的电子器件,并将其互连成功能完整的电路。
半导体集成电路生产工艺主要包括晶圆制备、晶圆工艺和封装测试三个阶段。
三、制造流程1. 晶圆制备晶圆是半导体集成电路制造的基础,通常由高纯度的单晶硅制成。
晶圆制备包括切割、抛光和清洗等步骤。
切割是将单晶硅锯成薄片,抛光是将薄片的表面磨光,清洗则是去除表面的杂质和污染物。
2. 晶圆工艺晶圆工艺是将晶圆上的半导体材料进行加工和改性,形成电子器件的过程。
主要包括掺杂、沉积、光刻、蚀刻和清洗等步骤。
掺杂是向半导体材料中引入掺杂剂,改变其电学性质;沉积是在晶圆表面形成薄膜,用于制造电极、介质等结构;光刻是利用光刻胶和光掩模,将特定图形投射到晶圆上;蚀刻是将晶圆表面的材料溶解或腐蚀,形成所需的结构;清洗是去除加工过程中产生的残留物和污染物。
3. 封装测试封装是将制造好的芯片封装到塑料或陶瓷封装体中,以保护芯片并提供电气连接。
封装工艺主要包括粘接、引线焊接和封装胶固化等步骤。
测试则是对封装好的芯片进行功能和可靠性测试,以确保芯片符合设计要求。
四、常见工艺技术1. CMOS工艺CMOS(Complementary Metal-Oxide-Semiconductor)工艺是目前集成电路制造中最常用的工艺之一。
它采用p型和n型MOSFET互补工作的原理,具有低功耗、低噪声和高集成度的特点,适用于各种应用场景。
2. BJT工艺BJT(Bipolar Junction Transistor)工艺是一种双极型晶体管工艺,适用于高频和高功率应用。
BCD工艺概述范文BCD(Bipolar-CMOS-DMOS)工艺是一种集成电路(IC)制造技术,结合了双极器件(Bipolar)、互补金属氧化物半导体器件(CMOS)和双极型金属氧化物半导体器件(DMOS)。
BCD工艺的优势在于能够在同一芯片上集成不同类型的器件,从而实现不同功能的集成电路。
BCD工艺的发展起源于20世纪70年代,早期用于制造汽车和工业电子领域的功率管理器件。
随着科技的进步和需求的增加,BCD工艺逐渐应用于更多的领域,如通信、计算机、消费电子等。
BCD工艺的主要特点是低功耗、高密度和高集成度,能够满足复杂的电路设计需求。
BCD工艺的核心是结合了不同类型的晶体管,以满足不同的应用要求。
双极型晶体管(BJT)是一种电流控制器件,具有高速度和高增益的特点,适用于模拟和混合信号电路。
CMOS晶体管是一种功耗极低的器件,适用于数字电路。
DMOS晶体管是一种功率器件,具有高电流密度和低导通阻抗的特点,适用于功率管理和功率放大器。
在BCD工艺中,不同类型的晶体管可以同时存在于同一芯片上,形成了多层结构。
通常,CMOS层用于数字逻辑电路,BJT和DMOS层用于模拟和功率电路。
这种多层结构的优势在于可以实现在一个芯片上集成模拟、数字和功率电路,提高了电路的集成度和性能。
BCD工艺的制造过程包括晶圆制备、前向工艺和后向工艺。
晶圆制备是将单晶硅材料切割成薄片,然后进行清洗和抛光处理,使其表面平整。
前向工艺是按照设计要求在晶圆上依次进行掺杂、沉积、光刻、刻蚀和清洗等步骤,形成器件的结构和特性。
后向工艺是对前向工艺完成的芯片进行切割、封装和测试等步骤,最终形成可用的集成电路。
BCD工艺的应用非常广泛,涵盖了多个领域。
在通信领域,BCD工艺可以用于制造高速、低功耗的数字逻辑电路和射频(RF)前端模块。
在计算机领域,BCD工艺可以用于制造高集成度的微处理器和图形处理器。
在消费电子领域,BCD工艺可以用于制造音频放大器、电源管理器件和触摸屏控制器。
IC工艺流程简介IC工艺流程简介 (1)工艺流程................................................................................................... 错误!未定义书签。
1) 表面清洗 (1)2) 初次氧化 (1)3) CVD(Chemical Vapor deposition)法沉积一层Si3N4(Hot CVD或LPCVD)。
(2)4) 涂敷光刻胶 (4)5) 此处用干法氧化法将氮化硅去除 (7)6) 离子布植将硼离子(B+3) 透过SiO2膜注入衬底,形成P型阱 (8)7) 去除光刻胶,放高温炉中进行退火处理 (8)8)用热磷酸去除氮化硅层,掺杂磷(P+5) 离子,形成N型阱 (9)9) 退火处理,然后用HF去除SiO2层 (9)10) 干法氧化法生成一层SiO2层,然后LPCVD沉积一层氮化硅 (9)11) 利用光刻技术和离子刻蚀技术,保留下栅隔离层上面的氮化硅层 (10)12) 湿法氧化,生长未有氮化硅保护的SiO2层,形成PN之间的隔离区 (10)13) 热磷酸去除氮化硅,然后用HF溶液去除栅隔离层位置的SiO2,并重新生成品质更好的SiO2薄膜, 作为栅极氧化层。
(10)14) LPCVD 沉积多晶硅层,然后涂敷光阻进行光刻,以及等离子蚀刻技术,栅极结构,并氧化生成SiO2保护层。
(10)15) 表面涂敷光阻,去除P阱区的光阻,注入砷(As) 离子,形成NMOS的源漏极。
用同样的方法,在N阱区,注入B离子形成PMOS的源漏极。
(10)16) 利用PECVD 沉积一层无掺杂氧化层,保护元件,并进行退火处理。
(10)17) 沉积掺杂硼磷的氧化层 (10)18) 濺镀第一层金属 (10)19) 光刻技术定出VIA孔洞,沉积第二层金属,并刻蚀出连线结构。
然后,用PECVD法氧化层和氮化硅保护层。
集成电路ic--芯片制造工艺的八大步骤集成电路(Integrated Circuit,IC)是现代电子技术的核心组成部分,广泛应用于计算机、通信、消费电子等领域。
IC的制造工艺涉及多个步骤,以下将详细介绍其八大步骤。
第一步,晶圆制备。
晶圆是IC制造的基础,它通常由高纯度的硅材料制成。
首先,将硅材料熔化,然后在石英坩埚中拉制出大型硅棒。
接着,将硅棒锯成薄片,形成晶圆。
第二步,沉积。
沉积是指在晶圆表面上沉积一层薄膜,用于制作电路的不同部分。
常用的沉积方法包括化学气相沉积和物理气相沉积。
通过这一步骤,可以形成绝缘层、导体层等。
第三步,光刻。
光刻是一种利用光敏物质的特性进行图案转移的技术。
首先,在晶圆表面涂覆光刻胶,然后使用掩膜板将光刻胶进行曝光,形成所需的图案。
接着,用化学液体将未曝光的部分去除,留下所需的图案。
第四步,蚀刻。
蚀刻是指将多余的材料从晶圆表面去除,以形成所需的结构。
蚀刻方法主要有湿法蚀刻和干法蚀刻两种。
通过这一步骤,可以制作出电路的导线、晶体管等元件。
第五步,离子注入。
离子注入是将特定的杂质离子注入晶圆表面,以改变材料的导电性能。
通过控制离子注入的能量和剂量,可以形成导电性能不同的区域,用于制作场效应晶体管等元件。
第六步,金属化。
金属化是将金属材料沉积在晶圆表面,形成电路的导线和连接器。
常用的金属化方法包括物理气相沉积和电镀。
通过这一步骤,可以形成电路的互连结构。
第七步,封装测试。
封装是将晶圆切割成独立的芯片,并封装到塑料或陶瓷封装中,以保护芯片并便于安装和使用。
测试是对封装好的芯片进行功能和可靠性测试,以确保芯片的质量。
第八步,成品测试。
成品测试是对封装好的芯片进行全面测试,以验证其功能和性能是否符合设计要求。
测试包括逻辑测试、温度测试、可靠性测试等。
通过这一步骤,可以筛选出不合格的芯片,确保只有优质的芯片进入市场。
以上就是集成电路IC制造工艺的八大步骤。
每个步骤都至关重要,缺一不可。
双极型集成电路双极型集成电路,简称双极型IC,是一种晶体管集成电路,其特征是只有两对对极:负极(集电极)和正极(发射极)。
它以一种传统的放大方式,经常与双极型放大器、单稳放大器、一步放大器配套使用,广泛应用在电子设备和功能性元件电路中。
双极型IC的特点在于只有两对对极,而且由晶体管构成,所以它是半导体器件中一种重要的产品,也是电子器件制造的重要组成部分。
双极型IC可以完成一些复杂的功能,比如比较、空间位置检测、模拟信号处理和数字信号处理等。
双极型的晶体管装置可以进行非常复杂的处理,因此双极型IC在许多电子设备中得到广泛应用,比如电脑、手机、数码摄像机、游戏机等。
双极型集成电路模块是半导体封装的重要产品,它利用半导体封装技术,将数据、电源和信号线装载到一个封装模块中,进行多层的封装。
它的优势在于封装物的体积小,性能稳定,使用广泛,可以简化原有的电路,减少电路的故障,从而提高整个系统的可靠性。
此外,双极型集成电路的制造工艺也十分重要,一般来讲,当双极型集成电路组成比较复杂时,就需要采用更加精细、先进的制造工艺,比如利用贴片技术,单片机技术,及其他微系统技术,确保双极型集成电路的性能达到设计要求。
在量产双极型IC时,还要注意对其进行测试,以确保其性能满足设计要求。
除了本身的生产厂商外,还需要第三方的检测机构进行测试,检查双极型IC的可靠性、可用性和可编程等性能参数。
双极型集成电路是一种重要的晶体管装置,也是电子设备的重要组成部分。
它的特点是只有两对对极,并且由晶体管构成,配合双极型放大器、单稳放大器、一步放大器等电子设备,可以完成复杂的功能。
在双极型集成电路的制造过程中,除了采用先进的制造工艺之外,还需要重视测试工作,以保证可靠性和可用性。
双极型集成电路工艺(详案)各位同学:大家好!本节课将给大家介绍双极型集成电路的制造方法和过程,也就是制作工艺。
首先我们作一些必要的知识准备,来复习一下集成电路的相关知识。
广义的集成电路通俗的讲就是我们常说的芯片,它是将若干电子元件制作在一块单晶硅片上,并用金属或多晶硅互联线将它们连结起来的具有一定功能的电路,这些半导体电子元件包括:双极型晶体管、场效应管、二极管、电阻、电感、电容等。
世界上第一块IC 是由仙童半导体公司的Robert Noyce 和德州仪器公司的Jack Kilby 于是1959年分别独自发明的。
集成电路按照不同的标准可以有很多分类。
最常见的是按照处理信号的连续性来分类,可分为模拟集成电路和数字集成电路,模拟集成电路处理的是时间连续的模拟信号,而数字集成电路处理的则是时间与幅度取值都离散的数字信号。
还有一种分类方法是按构成集成电路的有源元件的种类来划分的,若构成电路的有源元件只有双极型晶体管,则为双极型集成电路;若构成电路的有源元件只有MOS 管(场效应晶体管),则为MOS 集成电路;若电路中既有双极型晶体管,又有MOS 管,则为BiCMOS 集成电路。
以上我们简单介绍了集成电路的划分,生产每一种集成电路都需要相应的制造工艺,比如双极型集成电路需要双极型集成电路工艺,MOS 集成电路需要MOS 工艺,而BiCMOS 集成电路则需要的相应的BiCMOS 工艺等等。
双极型集成电路工艺是所有集成电路工艺中最早发明的,尽管受到CMOS 工艺的巨大挑战,它仍然在高速、模拟、功率等类型的电路中占有很重要的地位。
双极型集成电路工艺按其所采用的隔离类型可分为两类,一类是采用介质隔离,也即在器件之间制备P-N 结作电隔离区,一类采用自然隔离。
采用介质隔离双极型集成电路工艺制作的电路有TTL(晶体管—晶体管逻辑) 电路、ECL(射极耦合逻辑)电路、STTL (肖特基晶体管—晶体管逻辑)电路等,而I 2 采用P-N 结作介质隔离的双极工艺按照制作的晶体管结构又可进一步细分为三种类型,即标准的埋入集电极晶体管工艺(SBC ),集电极扩散隔离晶体管工艺(CDI ),三重扩散晶体管工艺(3D )。