三相异步电动机常见的制动方法
- 格式:doc
- 大小:30.50 KB
- 文档页数:2
摘要近几十年来,随着电力电子技术、微电子技术及现代控制理论的发展,中、小功率电动机在工农业生产及人们的日常生活中都有极其广泛的的应用。
特别是在乡镇企业及家用电器中,更需要有大量的中、小功率电动机。
由于这种电动机的发展及广泛的应用,它的使用、保养和维护工作也越来越重要。
电机是现代工农业生产和交通运输的重要设备,与电机配套的控制设备的性能已经成为用户关注的焦点。
电机的控制包括电机的起动、调速和制动。
异步电动机由于具有结构简单、体积小、价格低廉、运行可靠、维修方便、运行效率较高、工作特性较好等优点,因而在电力拖动平台上得到了广泛应用。
据统计,其耗电量约占全国发电量的40%左右。
当电机并入电网时,电机转速从静止加速到额定转速的过程称为电机的起动过程。
异步电动机的起动性能最重要的是起动电流和起动转矩。
因此在电机的起动过程中,如何降低起动电流,增大起动转矩,一直是机电行业的专家们探讨的重要课题。
电动机机应用广泛,种类繁多、性能各异,分类方法也很多。
本文是对三相异步电动机做出深入的剖析与设计。
三相异步电动机是一种具有高效率、低磨损、低噪声的电机机种.本设计在介绍三相异步电动机中,关于相数、极数、槽数及绕组连接方式的选择方法和应遵从的规律详细的加以说明和介绍。
文中主要介绍了几种常用的制动方式的特点,对不同制动方式进行了技术比较,分析了他们各自的实用场所,为实际应用提供了科学的理论依据。
关键词:三相异步电动机结构制动方式前言电动机是把电能转换成机械能的设备。
近几十年随着科技的发展电动机在机械、冶金、石油、煤炭、化学、航空、交通、农业以及其他各种工业中,被广泛地应用着。
随着工业自动化程度不断提高,需要采用各种各样的控制电机作为自动化系统的元件,人造卫星的自动控制系统中,电机也是不可缺少的。
此外在国防、文教、医疗及日常生活中(现代化的家电工业中)电动机也愈来愈广泛地应用起来与单相电动机相比,三相异步电动机运行性能好,并可节省各种材料。
三相异步交流电动机制动的常用方法
三相异步交流电动机的制动是指将电动机的转速减缓或停止,常用的方法有以下几种:
1. 直接制动法:即将电动机的电源直接切断,电动机的转子惯性使其继续转动,由于没有电源给它提供能量,电动机会逐渐减速直至停止。
2. 反接制动法:将电动机的两条相线交换接线,使电动机变成发电机,将其与外部电阻负载相连,电动机继续转动,通过外部电阻的消耗,将电动机的能量转化为热能散失,从而达到制动的目的。
3. 动态制动法:在电动机运行时,通过改变电动机的电源参数,如改变电源电压、频率等,使电动机的电磁能转化为机械能,使其减速或停止运转。
4. 电磁制动法:在电动机转速较高时,通过向电动机的绕组通电,产生电磁力,使电动机的转子减速或停止,这种方法适用于制动力较大的场合,如起重机、卷扬机等。
5. 转矩控制制动法:通过控制电动机的电源,使电机产生逆转矩,对电动机进行制动,这种方法适用于制动精度要求较高的场合,如卷板机、拉拔机等。
- 1 -。
三相异步电动机能耗制动控制简介三相异步电动机是常见的工业电机,其广泛应用于各种机械设备中,是工业自动化领域的核心部件。
但是在一些场景下,需要对电机进行能耗控制和制动控制,尤其是在工程机械上,这一需求尤为常见。
本文将简单介绍三相异步电动机的能耗制动控制技术。
能耗制动能耗制动是一种通过将电机回馈电能返回电网以实现制动的方法。
当电机在运行中需要减速或停止时,可以将电机转子接通到直流电源造成一个短路,在这个时候,电机会将其运动动能转化为电能并反向输入到电网中,这样就实现了电机的能耗制动。
根据电机的工作原理,可以将三相异步电机分为彩绘电机和鼠笼电机。
彩绘电机彩绘电机能耗制动的方法比较简单,因为彩绘电机的转子是由绕组转子构成的,所以可以通过给转子加上额外的接线使其转子电路短路,使得电机在停止使用时通过短路将电能回馈到网络中,实现电机的能耗制动。
在实际应用中,还可以使用直接转矩控制,通过调节直流电流实现电机的能耗制动。
鼠笼电机鼠笼电机的转子由短路环和绕组组成,鼠笼电机能耗制动则是通过电网反向给电机供电,在电机转速逐渐降低的过程中,发生电磁感应使得电机的绕组中产生感电势,并产生一定的电流,从而使电机能量得以回馈到电网中。
与彩绘电机相比,鼠笼电机的能耗制动需要注意保护电机,避免因电机突然停止导致电流过大,损坏电机。
电机制动控制电机的制动控制主要包括电阻制动和反电动势制动两种方式。
在彩绘电机中,由于电机转子绕组可以方便地接入外部电阻,因此电阻制动成为一种常见的控制方式。
对于鼠笼电机,其产生的反电动势比较大,可以通过控制电机漏感和截止角来进行制动控制。
电阻制动电阻制动通过在电机强制加上电阻来消耗电机的能量,实现制动的目的。
电阻制动的控制电路简单,但是其能量消耗效率较低。
实际应用中,可以通过控制电阻的值和接入时间优化电机的能耗。
反电动势制动反电动势制动则是通过电机转子所产生的反电动势来制动电机。
反电动势是一种通过电机转子运动所产生的电势,与电机的电磁感应相似,但却与电源的相关性极小,电机速度逐渐降低的过程中,反电动势会随之降低,从而实现电机制动的目的。
三相异步电动机的三种制动方式最经济:回馈制动最迅速:反接制动能制停:能耗制动时间:2010-04-27 16:47来源:作者:点击:次三相异步电动机与直流电动机一样,也有再生回馈制动、反接制动和能耗制动三种方式。
它们的共同点是电动机的转矩M与转速n的方向相反,以实现制动。
此时电动机由轴上吸收机械能,并转换成电能。
一、再生回馈制动再生回馈制动是在外加转矩的作用下,转子转速超过同步转速,电磁转矩改变方向成为制动转矩的运行状态。
再生回馈制动与反接制动和能耗制动不同,再生回馈制动不能制动到停止状态。
以下是再生回馈制动存在:(1)当电网的频率突然下降或者电机的极数突然增高,电机可能工作在发电状态,此时的电机将机械能转变成电能回馈给电网。
如图1,当电机在电动状态下运行时工作于P点,在突然变极或者变频时,电机的工作特性会突然在a线1段部分(蓝线部分),电机的转矩突然变负,其制动作用,直到最后重新稳定工作于P点为止,电机又回到电动状态。
2图1(2)当电机在位能负载(如吊车、提升机)的作用下,使其转速n高于同步转速n,此时,电机的输出转矩变负,电机由轴上吸收机械能,当电机的转矩(制0点),此动转矩)与负载的位能转矩相平衡时,电机既稳定运行(如图2中P3时电机以高于同步转速的速度运行。
在转子电路中串入不同的电阻,可得到不同的人为机械特性,并可得到不同的稳定速度,串入的电阻越大,稳定速度越高,一般在回馈制动时不串入电阻,以免转速过高。
图2二、反接制动反接制动是在电机定子三根电源线中的任意两根对调而使电机输出转矩反向产生制动,或者在转子电路上串接较大附加电阻使转速反向,而产生制动。
(1)电源两相反接的反接制动:点稳定运行,为使电机停转,将定子三根电源线中如图3所示,电机原在P1的任意两根对调,使旋转磁场反向,电机的转矩反向,起制动作用,电机运行在a线段。
当电机制动停止时,应及时将电机与电网分离,否则电机会反转。
电源两相反接反接制动的优点是制动效果强,缺点是能量损耗大,制动准确度差。
简述三相异步电动机能耗制动的原理
三相异步电动机能耗制动是一种常见的电动机制动方式,其原理基于电动机的反电动势和电磁感应现象。
在正常运行时,三相异步电动机通过供电系统提供的电源电压和频率驱动转子旋转。
当需要制动时,通常通过切断电源来停止电机的供电,但这样会导致电机突然停止,可能会对机械设备和电动机本身造成损坏。
为了解决这个问题,使用能耗制动可以将电机的动能转化为电能消耗。
当电机停止供电后,由于转子的旋转惯性,会产生一个反向电动势。
这个反向电动势会导致电流在电机内流动,从而产生电阻力矩,使电机逐渐减速并停止旋转。
具体来说,三相异步电动机在能耗制动时,通常将两个相线短接在一起,而第三个相线则通过一个制动电阻连接到电网上。
这样,当电机停止供电后,旋转的转子会产生一个反向电动势,这个电动势会引起电流在两个短接的相线之间流动。
由于制动电阻的存在,电机产生的电流会通过电阻消耗电能,并逐渐减速直至停止。
需要注意的是,能耗制动时会产生大量的热量,所以需要使用能承受高温的制动电阻,并同时配备适当的散热措施以防止过热。
总之,三相异步电动机能耗制动的原理是利用电机的反电动势和电磁感应现象,将电机的动能转化为电能消耗,通过短接两个相线和连接制动电阻的方式来实现电机的减速和停止。
这种制动方式可以避免电机突然停止带来的损坏,并减少对机械设备的冲击。
三相异步电动机的制动控制制动:就是给电动机一个与转动方向相反的转矩使它迅速停转(或限制其转速)。
制动的方法一般有两类:机械制动和电气制动。
机械制动:利用机械装置使电动机断开电源后迅速停转的方法叫机械制动。
机械制动常用的方法有:电磁抱闸和电磁离合器制动。
电气制动:电动机产生一个和转子转速方向相反的电磁转矩,使电动机的转速迅速下降。
三相交流异步电动机常用的电气制动方法有能耗制动、反接制动和回馈制动。
一、反接制动1.反接制动的方法异步电动机反接制动有两种,一种是在负载转矩作用下使电动机反转的倒拉反转反接制动,这种方法不能准确停车。
另一种是依靠改变三相异步电动机定子绕组中三相电源的相序产生制动力矩,迫使电动机迅速停转的方法。
反接制动的优点是:制动力强,制动迅速。
缺点是:制动准确性差,制动过程中冲击强烈,易损坏传动零件,制动能量消耗大,不宜经常制动。
因此反接制动一般适用于制动要求迅速、系统惯性较大,不经常启动与制动的场合。
2.速度继电器(文字符号KS)速度继电器是依靠速度大小使继电器动作与否的信号,配合接触器实现对电动机的反接制动,故速度继电器又称为反接制动继电器。
感应式速度继电器是靠电磁感应原理实现触头动作的。
从结构上看,与交流电机类似,速度继电器主要由定子、转子和触头三部分组成。
定子的结构与笼型异步电动机相似,是一个笼型空心圆环,有硅钢片冲压而成,并装有笼型绕组。
转子是一个圆柱形永久磁铁。
速度继电器的结构原理图速度继电器的符号速度继电器的轴与电动机的轴相连接。
转子固定在轴上,定子与轴同心。
当电动机转动时,速度继电器的转子随之转动,绕组切割磁场产生感应电动势和电流,此电流和永久磁铁的磁场作用产生转矩,使定子向轴的转动方向偏摆,通过定子柄拨动触头,使常闭触头断开、常开触头闭合。
当电动机转速下降到接近零时,转矩减小,定子柄在弹簧力的作用下恢复原位,触头也复原。
常用的感应式速度继电器有JY1和JFZ0系列。
JY1系列能在3000r/min的转速下可靠工作。
三相异步电动机制动方法
三相异步电动机的制动方法主要包括以下几种:
1.直接制动法:在电机的转子上加装电阻,使电机的电动势和电源电
势之差减小,从而强制电机停转。
适用于小功率电机的制动。
2.反接电源制动法:将电机的三相综合线缆任意两根交换后再接入电源,此时电机会以大于额定转矩的负载停转。
适用于较大功率电机的制动。
3.短路制动法:电机转子上装有短路环,当电机运行时,把短路环接地,使转子形成闭合回路,从而制动电机。
4.动态制动法:在电机的转速较高时,突然断电,电机中的惯性力使
转子继续旋转而在负载的作用下逐渐停转。
5.逆变器制动法:通过逆变器控制电机电源电压和频率的变化,使电
机制动。
6.机械制动法:通过机械装置(例如制动盘、制动轮等)制动电机。
以上是常见的三相异步电动机制动方法,在实际应用中需要根据具体
情况选用合适的方法。
三相异步电动机制动方式
三相异步电动机的制动方式主要有以下几种:
1. 直接制动:即电动机的定子绕组通电,但转子不转动。
这种制动方式适用于制动时需要较大的制动力矩的情况,如电梯制动等。
2. 动态制动:将电动机的定子绕组接通外部电阻或电抗,使电动机减速至停止。
动态制动又分为旁路制动和串联制动两种方式。
旁路制动是将外部电阻或电抗与电动机的定子绕组并联,串联制动则是将外部电阻或电抗与电动机的定子绕组串联。
动态制动的优点是可以调整制动力矩,适用于制动时需要提供可调制动力矩的情况。
3. 动态制动加感应制动:将动态制动的电阻或电抗与电动机的定子绕组并联,同时通过感应制动装置将电动机的定子绕组接入外部电抗,从而实现制动。
这种制动方式不仅可以提供较大的制动力矩,还可以实现能量回收,提高能量利用率。
综上所述,三相异步电动机的制动方式多种多样,可以根据具体要求选择合适的制动方式。
授课时间授课班级上课地点 教学单元名称三相异步电动机的反接制动 课时数 0.4 教学目标 1.三相异步电动机的反接制动几种方式。
2.培养学生分析问题、解决问题的能力。
教学重点 反接制动几种方式教学难点反接制动几种方式 目标群体 普专教学环境 实训室教学方法 项目驱动、讲练结合等时间安排 教学过程设计1. 转速反向反接制动(或称倒拉反向反接制动)图4-36电动机转速反向反接制动电路图转速反向反接制动如图4-36,异步电机转子串接较大电阻接通电源,起动转矩方向与重物G 产生的负载转矩的方向相反,而且T st <T L ,在重物G 的作用下,迫使电机反T st 的方向旋转,并在重物下放的方向加速。
其转差率s 为1)(11>--=n n n s (4-12) 随|-n|的增加,s 、I 2及T em 都增大,直到满足T=T L (图4-37B 点),电机转速为-n 2稳定运行,重物匀速下放。
图4-38中所示机械特性的第四象限(实线部分),即为异步电机转速反向反接制动的机械特性。
图4-37转速反向反接制动时的异步电机特性转速反向反接制动适用于低速匀速下放重物。
电动机工作在反接制动状态时,它由轴上输入机械功率,定子又通过气隙向转子输送电功率,这两部分功率都消耗在转子电路的总电阻上。
2. 定子两相反接的反接制动图4-38 异步电机定子两相反接的电路图与机械特性(a)电路图;(b)机械特性设异步电动机带反抗性负载原来稳定运行于电动状态如图4-38)的A 点,为了迅速停车或反转,可将定子两相反接,并同时在绕线式异步电动机转子回路中接电阻R f ,如图4-38)所示,由于定子相序的改变,使旋转磁场的方向发生改变,从而使异步电动机的工作点从原来电动机运行机械特性上的A 点,转移到新的机械特性(通过-n 1的特性)上的B 点。
此时,由于转子切割磁场的方向与电动状态时相反,则感应电动势的方向也改变。
此时的转差率为1n n n n n n s 111>+=---= (4-13)由上式可知,s>1是反接制动的特点(含转速反向和两相反接两种制动)。
三相异步电动机常见的制动方法
作者:骑着乌龟追蚂蚁,2007-5-31 10:47:00 发表于:《变频器与调速论坛》共有11人回复,1096次点击加为好友查看播客发送留言
最近公司在安装大型的行车,原理图上有电动机的几种制动方式,我在网上查了一下,与大家分享一下.
三相异步电动机切除电源后依惯性总要转动一段时间才能停下来。
而生产中起重机的吊钩或卷扬机的吊蓝要求准确定位;万能铣床的主轴要求能迅速停下来。
这些都需要对拖动的电动机进行制动,其方法有两大类:机械制动和电力制动。
1.机械制动
采用机械装置使电动机断开电源后迅速停转的制动方法。
如电磁抱闸、电磁离合器等电磁铁制动器。
(1)电磁抱闸断电制动控制电路
电磁抱闸断电制动控制电路如图1所示.合上电源开关QS和开关K,电动机接通电源,同时电磁抱闸线圈YB得电,衔铁吸合,克服弹簧的拉力使制动器的闸瓦与闸轮分开,电动机正常运转。
断开开关电动机失电,同时电磁抱闸线圈YB也失电,衔铁在弹簧拉力作用下与铁芯分开,并使制动器的闸瓦紧紧抱住闸轮,电动机被制动而停转。
图中开关K可采用倒顺开关、主令控制器、交流接触器等控制电动机的正反转,满足控制要求。
倒顺开关接线示意图如图2所示。
这种制动方法在起重机械上广泛应用,如行车、卷扬机、电动葫芦(大多采用电磁离合器制动)等。
其优点是能准确定位,可防止电动机突然断电时重物自行坠落而造成事故。
(2)电磁抱闸通电制动控制电路
电磁抱闸断电制动其闸瓦紧紧抱住闸轮,若想手动调整工作是很困难的。
因此,对电动机制动后仍想调整工件的相对位置的机床设备就不能采用断电制动,而应采用通电制动控制,其电路如图3所示。
当电动机得电运转时,电磁抱闸线圈无法得电,闸瓦与闸轮分开无制动作用;当电动机需停转按下停止按钮SB2时,复合按钮SB2的常闭触头先断开切断KM1线圈,KM1主、辅触头恢复无电状态,结束正常运行并为KM2线圈得电作好准备,经过一定的行程SB2的常开触头接通KM2线圈,其主触头闭合电磁抱闸的线圈得电,使闸瓦紧紧抱住闸轮制动;当电动机处于停转常态时,电磁抱闸线圈也无电,闸瓦与闸轮分开,这样操作人员可扳动主轴调整工件或对刀等。
机械制动主要采用电磁抱闸、电磁离合器制动,两者都是利用电磁线圈通电后产生磁场,使静铁芯产生足够大的吸力吸合衔铁或动铁芯(电磁离合器的动铁芯被吸合,动、静摩擦片分开),克服弹簧的拉力而满足工作现场的要求。
电磁抱闸是靠闸瓦的摩擦片制动闸轮.电磁离合器是利用动、静摩擦片之间足够大的摩擦力使电动机断电后立即制动。
2.电力制动
电动机在切断电源的同时给电动机一个和实际转向相反的电磁力矩(制动力矩)使电动迅速停止的方法。
最常用的方法有:反接制动和能耗制动。
(1)反接制动。
在电动机切断正常运转电源的同时改变电动机定子绕组的电源相序,使之有反转趋势而产生较大的制动力矩的方法。
反接制动的实质:使电动机欲反转而制动,因此当电动机的转速接近零时,应立即切断反接转制动电源,否则电动机会反转。
实际控制中采用速度继电器来自动切除制动电源。
反接制动控制电路如图4所示。
其主电路和正反转电路相同。
由于反接制动时转子与旋转磁场的相对转速较高,约为启动时的2倍,致使定子、转子中的电流会很大,大约是额定值的10倍。
因此反接制动电路增加了限流电阻R。
KM1为运转接触器,KM2为反接制动接触器,KV为速度继电器,其与电动机联轴,当电动机的转速上升到约为100转/分的动作值时.KV常开触头闭合为制动作好准备。
反接制动分析:停车时按下停止按钮SB2,复合按钮SB2的常闭先断开切断KM1线圈,KM1主、辅触头恢复无电状态,结束正常运行并为反接制动作好准备,后接通KM2线圈(KV常开触头在正常运转时已经闭合),其主触头闭合,电动机改变相序进入反接制动状态,辅助触头闭合自锁持续制动,当电动机的转速下降到设定的释放值时,KV触头释放,切断KM2线圈,反接制动结束。
一般地,速度继电器的释放值调整到90转/分左右,如释放值调整得太大,反接制动不充分;调整得太小,又不能及时断开电源而造成短时反转现象。
反接制动制动力强,制动迅速,控制电路简单,设备投资少,但制动准确性差,制动过程中冲击力强烈,易损坏传动部件。
因此适用于
l0kw以下小容量的电动机制动要求迅速、系统惯性大,不经常启动与制动的设备,如铣床、镗床、中型车床等主轴的制动控制。
(2)能耗制动。
电动机切断交流电源的同时给定子绕组的任意二相加一直流电源,以产生静止磁场,依靠转子的惯性转动切割该静止磁场产生制动力矩的方法。
原理分析:电动机切断电源后,转子仍沿原方向惯性转动,如图5设为顺时针方向,这时给定子绕组通入直流电,产生一恒定的静止磁场,转子切割该磁场产生感生电流,用右手定则判断其方向如图示。
该感生电流又受到磁场的作用产生电磁转矩,由左手定则知其方向正好与电动机的转向相反而使电动机受到制动迅速停转。
可逆运行能耗制动的控制电路如图6所示。
KV1、KV2分别为速度继电器KV的正、反转动作触头,接触器KM1、KM2、KM3之间互锁,防止交流电源、直流制动电源短路。
停车时按下停止按钮SB3,复合按钮SB3的常闭先断开切断正常运行接触器KM1或KM2线圈,后接通KM3线圈,KM3主、辅触头闭合,交流电流经变压器T,全波整流器VC 通入V、W相绕组直流电,产生恒定磁场进行制动。
RP调节直流电流的大小,从而调节制动强度。
能耗制动平稳、准确,能量消耗小,但需附加直流电源装置,设备投资较高,制动力较弱,在低速时制动力矩小。
主要用于容量较大的电动机制动或制动频繁的场合及制动准确、平稳的设备,如磨床、立式铣床等的控制,但不适合用于紧急制动停车。
能耗制动还可用时间继电器代替速度继电器进行制动控制。
电动机的制动方法较多,还有如电容制动、再生发电制动等,但实际应用主要是上述四种方法,其各有特点和使用场合。