大气压强发现的故事讲解学习
- 格式:doc
- 大小:13.50 KB
- 文档页数:4
大气压强发现的故事有句成语这样说:“重如泰山,轻如鸿毛”。
泰山之重是显而易见的,有比鸿毛还轻的东西吗?有!那就是空气。
现在知道,水的密度是1,做羽绒衣的羽绒的密度大约是0.23,而空气的密度却只有0.0128左右。
空气实在太轻了,在许多场合下它的存在都被人们忽略不计了。
最早注意到空气有重量的是意大利的物理学家伽利略。
他将一个空瓶(当然里面有正常气压的空气)密封起来,放在天平上与一堆砂子平衡。
然后,他设法用打气筒向那个瓶子打进更多的空气,并再次密封。
当伽利略把这只瓶子再放回到天平上时,这时的瓶子比那堆砂要重一点,只有再往砂堆里加添一两颗小砂子,天平才会平衡。
伽利略推断,瓶子重量增加是由于里面的空气增多了的缘故,因此,空气是有重量的。
虽然伽利略科学地测定空气是有重量的,但他却无法解释“大自然讨厌真空”这个老问题。
罗马时代以来,人们就注意到一个现象:用来输送水的水管,当它们跨越高度在10米以上的山坡时,水就输不上去了。
在超过10米深的井里,抽水泵便不起作用了。
人们早就知道只要把水管里的空气抽掉,造成一个真空,那么水就会沿着水管往上流。
他们无法解释水为什么会往上流,而不是通常那样“水往低处流”,就借用古希腊学者亚里士多德的名言“大自然讨厌真空”来解释。
粗一想也对,大自然是不让真空存在的,一旦真空出现就让水来填补,于是水就被抽上来了。
真空出现到哪里,水就跟到哪里。
可是,为什么水到了10米高的地方就再也上不去了呢?尽管11米、12米处也存在真空。
对此,伽利略只能解释说是大自然的那种“厌恶”是有限度的,到了10米以上的真空,它就不厌恶了,因而水就再也抽不上去了。
“智者千虑必有一失”,伽利略对抽水问题的解释过于牵强附会,使他没有触及到问题的实质。
伽利略的学生托里拆利把老师的思想推进了一大步。
他认为,既然空气有重量就会产生压力,就像水有重量会产生压力和浮力一样。
正是空气的压力把水从管子里往上压,压到10米的高度时,水柱的重量正好等于空气的压力,水再也压不上去了。
大气压强产生的原因大气压强讲解(优秀2篇)大气压强产生的原因大气压强讲解(优秀2篇)大气压强是谁发现的?篇一1654年春季的一天,法国勒根堡的郊外风和日丽,山坡下的平地上聚集了上千人,等着观看马德堡的市长奥托格里克表演的一个科学游戏。
皇帝、皇后也兴致勃勃地赶来了,所以现场的气氛格外热烈。
只见奥托格里克一手拿着由他设计制作的两个铁制的直径20厘米的半球来见皇帝。
他告诉皇帝,这两个半球,取名为马德堡半球,把它们合拢后,抽去里面的空气,两边即使各用五六匹马来拉也未必能拉开。
皇帝觉得这真是不可思议,催促奥托格里克赶快把实验做起来。
奥托格里克把两个半球啪地合上,然后用一个小唧筒,三下两下抽光了里面的空气。
他将两根又粗又结实的绳子系住半球两边的环,让两个彪形大汉,一人拉一头绳子使劲拔起河来。
只见那两个大汉都使出了浑身的力气,可那两个半球还是紧紧地抱在一起。
两边的壮汉增加到三个,可是两个半球反倒像越拉越紧了。
看的人都目瞪口呆,简直不相信自己的眼睛。
那小小的两个半球,怎么会吸得这样紧?这时奥托格里克干脆让壮汉们下来,牵过4匹骏马,一边2匹,让马来进行这场拔河比赛。
“啪,啪”,随着鞭声,骏马扬蹄奋力向前,可是无论骏马如何用力,却是前进不了半步,那两个半球牢牢地粘合在一起,依然如故。
奥托格里克吩咐将两边的马匹一匹一匹地增加,一直增加到两边各是7匹骏马,还是不见分晓。
看得众人都凝神屏息,广场上竟没有一点声音。
这时,奥托格里克吩咐再各加一匹马,驭手的鞭子甩得如爆竹般炸响,马嘶啸啸,尘土飞扬。
人们再也按捺不住,连皇帝、皇后也忘记了自己的身份,站起来,跟着人们手舞足蹈地高喊道:“加油!加油!”只听得“嘭”的一声,铁球终于裂成两半。
两边的8匹马各带着一个半球一下子冲出好几百米远。
这就是著名的马德堡半球实验。
皇帝看了实验,心里真是百思不得其解,便问奥托格里克说:“你莫不是在变什么戏法,要不,这两个半球怎么会有如此大的吸引力呢?”奥托格里克说:“不是两个半球有什么吸力,而是空气对它的压力,也就是大气压强!”“大气压强?”皇帝听了,越发觉得莫名其妙,这也难怪。
北师大版物理教材:大气压强详解关于“强大气压”在北师大版物理教材中的相关内容,主要涉及大气压强的存在、测定以及应用。
以下是根据参考文章整理的相关信息:一、大气压强的基本概念●定义:大气压强,简称大气压或气压,是指空气对浸在它里面的物体产生的压强。
这个压强是由大气受重力和流动性共同作用而产生的。
●特点:大气压向各个方向都有,且在同一高度压强相等。
大气压强随深度增加而增大,但这里的深度是指从大气层外表面向下的距离,也就是说大气压随海拔高度的增加而减小。
二、大气压强的存在●证明实验:马德堡半球实验是证明大气压强存在的重要实验之一。
这个实验通过两个抽成真空并合在一起的铜半球来展示大气压强的力量,当两边各用几匹马向相反的方向拉时,半球仍被紧紧吸住,从而证明了大气压强的存在。
●日常现象:日常生活中也有很多现象可以说明大气压强的存在,如用吸管吸饮料、钢笔吸墨水、吸盘式挂衣钩能紧贴在墙上等。
三、大气压强的测定●托里拆利实验:意大利科学家托里拆利首次精确测出了大气压强的值。
他通过实验发现,大气压强可以支撑起一定高度的水银柱,从而计算出大气压强的具体数值。
通常,我们把760mm高水银柱产生的压强叫作标准大气压,其值为1.013×10^5Pa。
●测量工具:测量大气压的仪器叫作气压计,常见的水银气压计和金属盒气压计(无液气压计)都是基于托里拆利实验的原理制成的。
水银气压计测量准确,但体积大、携带不便,常用于气象站和实验室;而金属盒气压计体积小、携带方便,但测量不够精确。
四、大气压强的应用●抽水机:活塞式抽水机和离心式水泵等设备都是利用大气压强来工作的。
它们通过减小内部压强,使水在大气压强的作用下被抽上来。
●其他应用:大气压强还广泛应用于日常生活和工业生产中,如真空包装、高压锅、喷雾器等。
综上所述,北师大版物理教材中关于“强大气压”的内容涵盖了大气压强的定义、特点、存在证明、测定方法以及应用等多个方面。
通过这些内容的学习,学生可以更好地理解大气压强在自然界和人类社会中的重要作用。
证明大气压强存在的事例说到大气压,很多人可能觉得这是一件高深莫测的事,仿佛只有科学家才懂得玩意儿。
不过,实际上,大气压就在我们身边,天天跟我们打交道,嘿,听我慢慢道来!你有没有注意过那种一打开瓶盖,突然“嘭”的一声,气泡冒出来的感觉?就像是气体在憋屈了很久,终于找到出口,真是个小调皮!这就是大气压在作怪。
当你拧开瓶盖的时候,瓶内的气压和外面的气压一下子平衡了,气体才一拥而出,跟着是那一阵令人心动的气泡声,简直是小小的欢腾啊。
再说了,你有没有玩过那种打气筒?想象一下,咱们用手使劲儿按下去,里面的空气被压缩得密密麻麻,最后气球咕噜咕噜地鼓起来,像个小胖子似的。
嘿,那就是大气压的又一个体现!气球的表面之所以能撑得住,就是因为外面的空气压着它,形成了一种平衡。
真是有趣吧?当你把气球放开,里面的气体猛地跑出来,气球瞬间瘪了,这就说明了压强的变化。
外面的空气压强把它压瘪,而气体一旦不再被困住,自然是要逃跑的,哈哈,真是自由得让人羡慕。
说到这里,我想起了一个有趣的事情。
有一次,我在厨房里忙活,想用真空保存一些食物。
于是我就找来了一个真空袋,把食物放进去,之后用吸尘器把袋子里的空气抽掉。
你猜怎么着?袋子里变得扁扁的,就像是一个被压扁的可乐罐。
你看,这也是大气压的一个例子哦。
外面的空气把袋子压得严严实实,食物被保护得好好的,根本不怕变质。
这真是个聪明的办法,让我在美食和科技之间找到了平衡,哈哈,生活就是这么有趣。
除了这些日常的小例子,大气压在我们的生活中还有更多的身影。
比如说,你去喝饮料的时候,咕噜咕噜的声音肯定不陌生。
那种感觉就像是打开了宝箱,满满的惊喜。
饮料的瓶子里面充满了气体,在打开瓶盖的时候,外面的气压一下子把气体推了出来,形成了那种清脆的声音。
每次喝饮料的时候,我都会想:“哇,这真是个小魔法!”你说这大气压是不是无处不在呢?还记得小时候玩过的那种小实验吗?用一根吸管喝水,水就能顺着吸管上升,像个小妖精一样。
大气压强发现的故事
有句成语这样说:“重如泰山,轻如鸿毛”。
泰山之重是显而易见的,有比鸿毛还轻的东西吗?有!那就是空气。
现在知道,水的密度是1,做羽绒衣的羽绒的密度大约是0.23,而空气的密度却只有0.0128左右。
空气实在太轻了,在许多场合下它的存在都被人们忽略不计了。
最早注意到空气有重量的是意大利的物理学家伽利略。
他将一个空瓶(当然里面有正常气压的空气)密封起来,放在天平上与一堆砂子平衡。
然后,他设法用打气筒向那个瓶子打进更多的空气,并再次密封。
当伽利略把这只瓶子再放回到天平上时,这时的瓶子比那堆砂要重一点,只有再往砂堆里加添一两颗小砂子,天平才会平衡。
伽利略推断,瓶子重量增加是由于里面的空气增多了的缘故,因此,空气是有重量的。
虽然伽利略科学地测定空气是有重量的,但他却无法解释“大自然讨厌真空”这个老问题。
罗马时代以来,人们就注意到一个现象:用来输送水的水管,当它们跨越高度在10米以上的山坡时,水就输不上去了。
在超过10米深的井里,抽水泵便不起作用了。
人们早就知道只要把水管里的空气抽掉,造成一个真空,那么水就会沿着水管往上流。
他们无法解释水为什么会往上流,而不是通常那样“水往低处流”,就借用古希腊学者亚里士多德
的名言“大自然讨厌真空”来解释。
粗一想也对,大自然是不让真空存在的,一旦真空出现就让水来填补,于是水就被抽上来了。
真空出现到哪里,水就跟到哪里。
可是,为什么水到了10米高的地方就再也上不去了呢?尽管11米、12米处也存在真空。
对此,伽利略只能解释说是大自然的那种“厌恶”是有限度的,到了10米以上的真空,它就不厌恶了,因而水就再也抽不上去了。
“智者千虑必有一失”,伽利略对抽水问题的解释过于牵强附会,使他没有触及到问题的实质。
伽利略的学生托里拆利把老师的思想推进了一大步。
他认为,既然空气有重量就会产生压力,就像水有重量会产生压力和浮力一样。
正是空气的压力把水从管子里往上压,压到10米的高度时,水柱的重量正好等于空气的压力,水再也压不上去了。
为了证实这一点,托里拆利设计了一个实验并让自己的助手维维安尼帮助去做。
要用10米高的水管做实验是很不方便的,因为它有三四层楼那么高,怎样观测呢?托里拆利聪明地利用比水重13.6倍的水银来做试验。
他叫人制作了一根1米长的玻璃管,一端封闭,一端开口。
维维安尼将水银灌满管子,然后用手指堵住开口的一端,将管子颠倒过来使开口的一端朝下,再放进一个盛满水银的陶瓷槽里。
当他松开按住管子的手指时,管里的水银很快下降,当水银降到距槽里的水银面76厘米高度时,就不再降低了。
换算一下就可以得到,76
厘米高的水银柱产生的压强,正好等于10米水柱产生的压强。
这个实验形象地显示出,水银槽里水银表面所受到的大气压强,刚好等于76厘米高的水银柱所产生的压强。
托里拆利设计的这个实验装置,成了世界上第一个测量大气压强的气压计。
后来,气象报告中的气压单位也曾沿用多少厘米(或毫米)水银柱高来表示。
大气有压力这是肯定的,这压力究竟有多大?这方面最为生动的例子发生在德国。
1645年的一天,德国东南部的雷根斯城轰动了:皇帝大驾光临,百姓倾城出动,为的是观看一个名叫盖利克的人表演。
广场上站立着16匹雄壮的骏马,分成左右两队,每队各8匹马。
它们彼此背向排列,用铁链和绳索牵引着一个直径为25厘米的青铜真空球。
这只球是盖利克事先在当地铁匠铺定做的,它由两个半球合拢而成,两个半球的边缘做得十分平整,因此能紧密地合在一起而不会漏气。
表演一开始,盖利克先用抽气机将铜球内的空气抽光,然后他下命令给两边的马夫。
只听“啪”“啪”两声鞭响,左右两边的马夫拼命往前赶马,谁知这些骏马虽然使足了力气往前拉,就是拉不开那由两个半球合在一起的青铜球。
皇帝和百姓们都看呆了。
盖利克向大家解释说“这里面没有什么魔力,主要是铜球表面所受到的大气压力把它们紧紧压在一起。
不信的话,把空气再放回到铜球里面去,使两边
的压力相等,就很容易把钢球打开了。
”说着,他用双手左右一拉,铜球确实轻易地打开了。
多么神奇的大气压!。