平面的点法式方程
- 格式:ppt
- 大小:1.11 MB
- 文档页数:15
§7.5平面及其方程一、平面的点法式方程法线向量:如果一非零向量垂直于一平面 .这向量就叫做该平面的法线向量.容易知道 '平面上的任一向量均与该平面的法线向量垂直.唯一确定平面的条件 :当平面口上一点M o (X 0 J0 Z0)和它的一个法线向量 n^A^B *C)为已知时、平面n 的位置就完全确定了 .平面方程的建立:设M(x.y.z)是平面□上的任一点.那么向量M ^M 必与平面n 的法线向量n 垂直、即它们的数量积等于零 :由于Tn 球A*BC)* M 0M =(x —X 0, y —y 。
, Z —Z 0).所以A(XF 0)+B(y-y 0)弋(z-Z 0)=0 .n 上任一点M 的坐标 心工所满足的方程.、如果M (x 、y .Z)不在平面r 上、那么向量M^M 与法线向量n 不垂直、从而…即不在平面□上的点M 的坐标X y .Z 不满足此方程. 由此可知、方程A(x-X 0)+B(y-y 0)P(z-Z 0)n 就是平面□的方程.而平面口就是平面方程的图 形.由于方程A (X%)怕(y-y 0)4c (z-Z 0)=0是由平面L [上的一点M 0(X 0、y 0、Z 0)及它的一个法线向量 n=(AB 、C)确定的、所以此方程叫做平面的点法式方程.例1求过点(2Q)且以 ^(K-2. 3)为法线向量的平面的方程.解根据平面的点法式方程 '得所求平面的方程为(x-2)-2(yt3)t3z=0 * x-2y+3z£n .M 1(2 H ⑷、M 2(—1 \3 L 2)和M 3(0 ,2①的平面的方程.T因为 M 1M 2 =(—3,4, -6)、M 1M 3=(-2,3, —1)、 所以T T in= M 1M^M 1M^ -3-2这就是平面 反过来T n M 0M =0即例2求过三点 解我们可以用 T TM i M 2X M 1M 3作为平面的法线向量k-6 =14 + 9j-k . -1根据平面的点法式方程、得所求平面的方程为14(x-2)H(y+1)-(z -4H0 . 14x49y_ z_15』. 二、平面的一般方程由于平面的点法式方程是 x.y 的一次方程.而任一平面都可以用它上面的一点及它的法线 向量来确定 '所以任一平面都可以用三元一次方程来表示.反过来、设有三元一次方程Ax +By 4Cz 4D =0.我们任取满足该方程的一组数 x o .y o .z ^即Ax o +By o 4Cz o +D =0 .把上述两等式相减 '得A(x£o )+B(y-y o )兀(z-z o )=O 、这正是通过点 M o (x o.y oQ )且以nNA 、BQ 为法线向量的平面方程 .由于方程Ax +By 4Cz *DO与方程A(x 必)+B(y-y o )七(Z-z o ) =o同解*所以任一三元一次方程Ax 也y P z +O n 的图形总是一个平面.方程Ax 4By M z +D =o 称为平面的一般方程,其中 心z 的系数就是该平面的一个法线向量n 的坐标‘即nNA'B .0).例如 '方程3x -4y +z -9=0表示一个平面 小=(3\*訂)是这平面的一个法线向量 .讨论:考察下列特殊的平面方程 .指出法线向量与坐标面、 坐标轴的关系 '平面通过的特殊点或线.Ax +By f z ^o ;By 七Z 也 n^Ax ^z P^o r Ax +By +D P ; Cz +D P 'Ax PO By +D P . 提示: 平面过原点.n =(o *B Q).法线向量垂直于 n =(A 、o rC).法线向量垂直于 n =(A *B *o ).法线向量垂直于 n=(o *o *C)、法线向量垂直于 n=(A .o ,o b 法线向量垂直于 n=(o 占,o b 法线向量垂直于例3求通过x 轴和点(4L 1)的平面的方程.解 平面通过x 轴、一方面表明它的法线向量垂直于 点、即DP .因此可设这平面的方程为By 弋z^o .x 轴*平面平行于 y 轴、平面平行于 z 轴、平面平行于x 轴和y 轴,平面平行于 y 轴和z 轴r 平面平行于 x 轴和z 轴r 平面平行于 xOy 平面.yOz 平面. zOx 平面.X 轴、即AR ;另一方面表明 它必通过原又因为这平面通过点(4 *-3 *7) *所以有—BB-Cn 、或 C 」B .将其代入所设方程并除以B (B 如)、便得所求的平面方程为y ;z=0.例4设一平面与X 、y 、z 轴的交点依次为 P (a *0 * 0)、Q (0、b *0)、R (0 , 0、c )三点、求这平面的 方程(其中乂&?€).解 j a ^D =0, f bB +D =0, pc +D=0,A=-D 、B=-D r C=—D a b c 将其代入所设方程、得 -Dx-Dy-Dz+D =0 、 a b c X +上也=1 . a b c '上述方程叫做平面的截距式方程 *而a 、b 、c 依次叫做平面在 X 、y 、z 轴上的截距.三、两平面的夹角两平面的夹角:两平面的法线向量的夹角(通常指锐角)称为两平面的夹角.设平面n 1和rb 的法线向量分别为 n 1N A 1占1 C )和n 2=(A 2旧2、C 2)、那么平面n 1和rb 的夹角e 、―AAA_A应是(n 1, n 2)和(Til , n 2)F —g ,改)两者中的锐角、因此、cos 日^cosg ,匹)!.按两向量夹角余弦的坐标表示式.平面n 1和rt 的夹角e 可由来确定.从两向量垂直、平行的充分必要条件立即推得下列结论平面口 1和巧垂直相当于A1A2怕辰 QC2=0; 平面□ 1和n 2平行或重合相当于 A =BL -C!.A , B, C 2例5求两平面 x-yPz-6=0和2x 为七-5=0的夹角. 解 n 1=(A 1 启1 Q1)=(1、一1 *2)、n 2m A 2、B 2Q2)=(2*1 * 1).c 1c2l_ I1'2■ (-1)'T ■ 2…I| Jcos g _lAie 日口2 "T A 2+ Bfg 2叔2 +B :七:"712+(-1)2七2722+12+12~^设所求平面的方程为Ax+By4Cz*HD=0.P (a *0 *0)、Q (0 *b *0)、R (0 ,0 ,c )都在这平面上*所以点P 、Q 、R 的坐标都满足所设方程*即 因为点 有由此得IAA2+B 1B 2+C 1C 2IAco眄cosg,讣府魯Y A 呢W|1X2 +(-1)X1 +2咒1||AA 2+B ,B 2pi C 2|所以*所求夹角为,4,例6 一平面通过两点 M 1(1」和M 2(o 」#)且垂直于平面 x+y+z=o 、求它的方程.解 方法一:已知从点M 1到点M 2的向量为 山勻/卫、-?)、平面x+y+z=o 的法线向量为n 2=(1、 1 J). 设所求平面的法线向量为n^A 、B 、C).因为点M 1(1、1、1)和M 2(o1)在所求平面上、所以n 丄n 仁即从—2C=o 、A 亠2C . 又因为所求平面垂直于平面 x^^zT*所以n 丄m*即A+B4C=o*B=C. 于是由点法式方程*所求平面为-2CZ)£(y —1)兀(Z —1)0 即 2x —y-z=o.方法二:从点M 1到点M 2的向量为n 1 =(-1 e *-2) *平面x+y+z=o 的法线向量为“2=(1* 1 , 1). 设所求平面的法线向量因为所以所求平面方程为2(x-1)-(y-1)-(z-1)0 2x-y-z=0 .例7设P o (x o ,y o ,z o )是平面Ax+By 兀z 也=0外一点、求P o 到这平面的距离. 解 设e n 是平面上的单位法线向量.在平面上任取一点 P 1(X 1 $1 *Z 1)*则P o 到这平面的距离为|A(X o^i )+B(y o-y i )七(z o^i )|扌是示:en^7A ^B ^(A, B, C)' 活o =(xo —x 1,yo —y 1,zo —z1)、例8求点(2 J J )到平面x +y -z +1 =0的距离.解 d JAxp^y o 弋zo^DI 」仝2丁X 1—(—1門+1| _ 3 —E _J A 2 + B 2 弋2 j 12+12+(—1)273 ' n 可取为npc n2 .i:-J o 1J A 2 +B 2+C 2JAx o 怕y oy z o-(Ax1HBy 1 七Z 1)| J A 2 +B 2 七2JAx^怕yo +Czo +D|Td 斗RP oen 1 =j 12+12+(_1)2。
初中数学知识归纳空间直角坐标系中平面和直线的方程在初中数学中,学习空间直角坐标系是非常重要的一部分。
掌握好平面和直线的方程,对于解题和图像的分析都有着关键的作用。
本文将对空间中平面和直线的方程进行归纳总结。
一、平面的方程在空间直角坐标系中,平面由一个点和一个法向量确定。
常见的平面方程有点法式和一般式。
1.1 点法式设平面上一点P的坐标为(x0, y0, z0),平面的法向量为(a, b, c),则平面上任意一点M(x, y, z)到点P的位置矢量为PM = (x - x0, y - y0, z - z0)。
根据平面上的点和法向量的垂直关系,可得:a(x - x0) + b(y - y0) + c(z - z0) = 0这就是平面的点法式方程,也可写成:ax + by + cz + d = 0其中d = -(ax0 + by0 + cz0)。
1.2 一般式将平面的点法式方程展开,可得平面的一般式方程:Ax + By + Cz + D = 0其中A, B, C, D为常数,满足A² + B² + C² ≠ 0。
将一般式方程展开后,即可得到一般式方程的标准形式。
二、直线的方程直线是空间中的一个重要对象,研究直线方程可以帮助我们更好地理解直线的性质并解决相关问题。
2.1 参数方程参数方程是直线方程表示的一种常用形式。
设直线上一点P的坐标为(x0, y0, z0),直线的方向向量为(a, b, c),则直线上任意一点M的位置矢量为:PM = (x - x0, y - y0, z - z0)由于直线上所有点的位置矢量都与方向向量平行,可得:(x - x0)/a = (y - y0)/b = (z - z0)/c这就是直线的参数方程形式,也可以写成:x = x0 + at, y = y0 + bt, z = z0 + ct其中t为参数,表示直线上的不同点。
这种方程表示了直线上所有的点。
平面的点法式方程
平面的点法式方程是一种数学公式,可用于解决任意平面上特定点的
某种类型的方程。
它是由点的坐标表示的,可用来求出两个点之间的
距离,角度或其他图形几何性质。
点的坐标表示的方法如下:2维空间中的点可以用x和y的坐标表示,即(x,y);3维空间中的点可以用x、y和z的坐标表示,即(x,y,z)。
平面上点法式方程有三种形式。
一种是直线方程,又称作一次方程,
它包括斜截式方程ax + by + c = 0,其中a, b, c分别表示x轴和y
轴的参数;另一种是圆的方程,即x² + y² + 2gx + 2fy + c = 0,其中g, f, c是x轴和y轴的参数;第三种是抛物线方程,即
y=ax²+bx+c,其中a,b,c分别表示x轴和y轴的参数。
点法式方程在现实中有广泛的应用,例如在电子设备设计中,可以用
于计算电子元件之间的距离和连接方式;在图像处理和图形识别中,
可以用于计算图像中点之间的关系;在工程计算中,可以用于计算建
筑物之间的距离;在物流管理中,可以用于计算物流设施的连接方式等。
平面的点法式方程可以帮助人们解决很多问题,无论是在计算机可视化、工程计算、物流管理,还是图像处理和图形识别,都能派上用场。
不管是企业还是研究机构,都应该加强对平面的点法式方程的理解和
运用,帮助企业更好地掌握市场实力,帮助研究者解决科学研究问题。
平面的点法式
平面的点法式是指用平面上一点 $(x_0, y_0)$ 及法向量 $\vec{n} = (A, B)$ 来表示平面上的所有点 $(x, y)$ 的方程。
具体来说,对于一个平面上的任意一点 $(x, y)$,它到法向量的距离应该与法向量的长度相等。
根据向量内积的定义,这个条件可以表示为:
$$\vec{v} \cdot \vec{n} = 0$$
其中,$\vec{v}$ 表示点 $(x, y)$ 到点 $(x_0, y_0)$ 的向量,即:
$$\vec{v} = \begin{pmatrix} x - x_0 \\ y - y_0 \end{pmatrix}$$
将 $\vec{v}$ 和 $\vec{n}$ 的定义代入上式,得到:
$$(x-x_0)A + (y-y_0)B = 0$$
这就是平面的点法式。
可以看到,它的形式与直线的点斜式方程类似,都是通过一点及斜率(或法向量)来表示一条直线(或平面)。
不过,点法式的形式更一般,可以表示任意方向的平面,而不单单是竖直或
水平的平面。
点法式不仅在数学中有重要应用,在计算机图形学、物理和工程等领域也很常见。
比如,计算机图形学中需要判断一个点是否在一个三维模型的表面之上,就可以利用模型的各个面的点法式来计算。
物理中的光学定律也可以用点法式来表示,即光线的反射和折射都遵循着入射光线与法向量的关系。
总之,平面的点法式是一个简单又有用的数学工具,在不同领域都有广泛的应用。
空间几何中的平面与直线的交点计算在空间几何中,平面与直线的交点计算是一个重要的问题。
它在许多领域中都有广泛的应用,比如计算机图形学、机器视觉、航空航天等。
本文将介绍几种计算平面与直线交点的常用方法,并且给出具体的计算步骤和实例。
一、点法式方程法点法式方程是平面方程的一种常用形式,它可以通过平面上的一个点和平面的法向量来表示。
对于一个平面 P,设平面上的一点为 A,平面的法向量为 n,则点法式方程可以表示为:n·(X - A) = 0其中,X 是平面上的一点坐标。
对于直线 L,设直线上的一点为 B,直线的方向向量为 d,则直线可以表示为:X = B + td其中,t 是参数。
要计算平面和直线的交点,只需要将直线的方程代入平面的方程,求解参数 t,然后再将参数 t 代入直线的方程即可得到交点坐标。
例1:求平面 x + y + z = 6 和直线 x = 2t, y = 3t, z = -t 的交点坐标。
解:将直线的参数方程代入平面的方程有:(2t) + (3t) + (-t) = 64t = 6t = 3/2将 t = 3/2 代入直线的参数方程有:x = 2(3/2) = 3y = 3(3/2) = 9/2z = -(3/2) = -3/2所以,平面和直线的交点坐标为 (3, 9/2, -3/2)。
二、参数方程法参数方程法是另一种计算平面与直线交点的常用方法。
对于平面P,仍设平面上的一点为 A,平面的法向量为 n。
对于直线 L,设直线上的一点为 B,直线的方向向量为 d。
则可以得到以下参数方程:x = a + lty = b + mtz = c + nt要计算平面和直线的交点,只需要将直线的参数方程代入平面的方程,求解参数 l、m、n,然后再将参数 l、m、n 代入直线的参数方程即可得到交点坐标。
例2:求平面 2x + y - z = 3 和直线 x = 2t, y = t - 1, z = 3t 的交点坐标。