数学分式的运算知识点
- 格式:docx
- 大小:14.86 KB
- 文档页数:1
2024中考数学复习核心知识点精讲及训练—分式(含解析)1.了解分式、分式方程的概念,进一步发展符号感;2.熟练掌握分式的基本性质,会进行分式的约分、通分和加减乘除四则运算,发展学生的合情推理能力与代数恒等变形能力;3.能解决一些与分式有关的实际问题,具有一定的分析问题、解决问题的能力和应用意识;4.通过学习能获得学习代数知识的常用方法,能感受学习代数的价值。
考点1:分式的概念1.定义:一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.其中A叫做分子,B叫做分母.2.最简分式:分子与分母没有公因式的分式;3.分式有意义的条件:B≠0;4.分式值为0的条件:分子=0且分母≠0考点2:分式的基本性质分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,这个性质叫做分式的基本性质,用式子表示是:A A M A A MB B M B B M⨯÷==⨯÷,(其中M是不等于零的整式).考点3:分式的运算考点4:分式化简求值(1)有括号时先算括号内的;(2)分子/分母能因式分解的先进行因式分解;(3)进行乘除法运算(4)约分;(5)进行加减运算,如果是异分母分式,需线通分,变为同分母分式后,分母不变,分子合并同类项,最终化为最简分式;(6)带入相应的数或式子求代数式的值【题型1:分式的相关概念】【典例1】(2022•怀化)代数式x,,,x2﹣,,中,属于分式的有()A.2个B.3个C.4个D.5个【答案】B【解答】解:分式有:,,,整式有:x,,x2﹣,分式有3个,故选:B.【典例2】(2023•广西)若分式有意义,则x的取值范围是()A.x≠﹣1B.x≠0C.x≠1D.x≠2【答案】A【解答】解:∵分式有意义,∴x+1≠0,解得x≠﹣1.故选:A.1.(2022•凉山州)分式有意义的条件是()A.x=﹣3B.x≠﹣3C.x≠3D.x≠0【答案】B【解答】解:由题意得:3+x≠0,∴x≠﹣3,故选:B.2.(2023•凉山州)分式的值为0,则x的值是()A.0B.﹣1C.1D.0或1【答案】A【解答】解:∵分式的值为0,∴x2﹣x=0且x﹣1≠0,解得:x=0,故选:A.【题型2:分式的性质】【典例3】(2023•兰州)计算:=()A.a﹣5B.a+5C.5D.a 【答案】D【解答】解:==a,故选:D.1.(2020•河北)若a≠b,则下列分式化简正确的是()A.=B.=C.=D.=【答案】D【解答】解:∵a≠b,∴,故选项A错误;,故选项B错误;,故选项C错误;,故选项D正确;故选:D.2.(2023•自贡)化简:=x﹣1.【答案】x﹣1.【解答】解:原式==x﹣1.故答案为:x﹣1.【题型3:分式化简】【典例4】(2023•广东)计算的结果为()A.B.C.D.【答案】C【解答】解:==.故本题选:C.1.(2023•河南)化简的结果是()A.0B.1C.a D.a﹣2【答案】B【解答】解:原式==1.故选:B.2.(2023•赤峰)化简+x﹣2的结果是()A.1B.C.D.【答案】D【解答】解:原式=+==,故选:D.【题型4:分式的化简在求值】【典例5】(2023•深圳)先化简,再求值:(+1)÷,其中x=3.【答案】,.【解答】解:原式=•=•=,当x=3时,原式==.1.(2023•辽宁)先化简,再求值:(﹣1)÷,其中x=3.【答案】见试题解答内容【解答】解:原式=(﹣)•=•=x+2,当x=3时,原式=3+2=5.2.(2023•大庆)先化简,再求值:,其中x=1.【答案】见试题解答内容【解答】解:原式=﹣+====,当x=1时,原式==.3.(2023•西宁)先化简,再求值:,其中a,b是方程x2+x﹣6=0的两个根.【答案】,6.【解答】解:原式=[﹣]×a(a﹣b)=×a(a﹣b)﹣=﹣=;∵a,b是方程x2+x﹣6=0的两个根,∴a+b=﹣1ab=﹣6,∴原式=.1.(2023春•汝州市期末)下列分式中,是最简分式的是()A.B.C.D.【答案】C【解答】解:A、=,不是最简分式,不符合题意;B、==,不是最简分式,不符合题意;C、是最简分式,符合题意;D、==﹣1,不是最简分式,不符合题意;故选:C.2.(2023秋•岳阳楼区校级期中)如果把分式中的x和y都扩大2倍,那么分式的值()A.不变B.扩大2倍C.扩大4倍D.缩小2倍【答案】B【解答】解:∵==×2,∴如果把分式中的x和y都扩大2倍,那么分式的值扩大2倍,故选:B.3.(2023•河北)化简的结果是()A.xy6B.xy5C.x2y5D.x2y6【答案】A【解答】解:x3()2=x3•=xy6,故选:A.4.(2023秋•来宾期中)若分式的值为0,则x的值是()A.﹣2B.0C.2D.【答案】C【解答】解:由题意得:x﹣2=0且3x﹣1≠0,解得:x=2,故选:C.5.(2023秋•青龙县期中)分式的最简公分母是()A.3xy B.6x3y2C.6x6y6D.x3y3【答案】B【解答】解:分母分别是x2y、2x3、3xy2,故最简公分母是6x3y2;故选:B.6.(2023春•沙坪坝区期中)下列分式中是最简分式的是()A.B.C.D.【答案】A【解答】解;A、是最简二次根式,符合题意;B、=,不是最简二次根式,不符合题意;C、==,不是最简二次根式,不符合题意;D、=﹣1,不是最简二次根式,不符合题意;故选:A.7.(2023春•原阳县期中)化简(1+)÷的结果为()A.1+x B.C.D.1﹣x【答案】A【解答】解:原式=×=×=1+x.故选:A.8.(2023•门头沟区二模)如果代数式有意义,那么实数x的取值范围是()A.x≠2B.x>2C.x≥2D.x≤2【答案】A【解答】解:由题意得:x﹣2≠0,解得:x≠2,故选:A.9.(2023春•武清区校级期末)计算﹣的结果是()A.B.C.x﹣y D.1【答案】B【解答】解:﹣==.故答案为:B.10.(2023春•东海县期末)根据分式的基本性质,分式可变形为()A.B.C.D.【答案】C【解答】解:=﹣,故选:C.11.(2023秋•莱州市期中)计算的结果是﹣x.【答案】﹣x.【解答】解:÷=•(﹣)=﹣x,故答案为:﹣x.12.(2023秋•汉寿县期中)学校倡导全校师生开展“语文阅读”活动,小亮每天坚持读书.原计划用a天读完b页的书,如果要提前m天读完,那么平均每天比原计划要多读的页数为(用含a、b、m的最简分式表示).【答案】.【解答】解:由题意得:平均每天比原计划要多读的页数为:﹣=﹣=,故答案为:.13.(2023春•宿豫区期中)计算=1.【答案】1.【解答】解:===1,故答案为:1.14.(2023•广州)已知a>3,代数式:A=2a2﹣8,B=3a2+6a,C=a3﹣4a2+4a.(1)因式分解A;(2)在A,B,C中任选两个代数式,分别作为分子、分母,组成一个分式,并化简该分式.【答案】(1)2a2﹣8=2(a+2)(a﹣2);(2)..【解答】解:(1)2a2﹣8=2(a2﹣4)=2(a+2)(a﹣2);(2)选A,B两个代数式,分别作为分子、分母,组成一个分式(答案不唯一),==.15.(2023秋•思明区校级期中)先化简,再求值:(),其中.【答案】,.【解答】解:原式=÷(﹣)=÷=•=,当x=﹣1时,原式==.16.(2023秋•长沙期中)先化简,再求值:,其中x=5.【答案】,.【解答】解:原式=(﹣)•=•=,当x=5时,原式==.17.(2023•盐城一模)先化简,再求值:,其中x=4.【答案】见试题解答内容【解答】解:原式=(+)•=•=•=x﹣1,当x=4时,原式=4﹣1=3.18.(2022秋•廉江市期末)先化简(﹣x)÷,再从﹣1,0,1中选择合适的x值代入求值.【答案】﹣,0.【解答】解:原式=(﹣)•=﹣•=﹣,∵(x+1)(x﹣1)≠0,∴x≠±1,当x=0时,原式=﹣=0.1.(2023秋•西城区校级期中)假设每个人做某项工作的工作效率相同,m个人共同做该项工作,d天可以完成若增加r个人,则完成该项工作需要()天.A.d+y B.d﹣r C.D.【答案】C【解答】解:工作总量=md,增加r个人后完成该项工作需要的天数=,故选:C.2.(2023秋•长安区期中)若a=2b,在如图的数轴上标注了四段,则表示的点落在()A.段①B.段②C.段③D.段④【答案】C【解答】解:∵a=2b,∴=====,∴表示的点落在段③,故选:C.3.(2023秋•东城区校级期中)若x2﹣x﹣1=0,则的值是()A.3B.2C.1D.4【答案】A【解答】解:∵x2﹣x﹣1=0,∴x2﹣1=x,∴x﹣=1,∴(x﹣)2=1,∴x2﹣2+=1,∴x2+=3,故选:A.4.(2023秋•鼓楼区校级期中)对于正数x,规定,例如,,则=()A.198B.199C.200D.【答案】B【解答】解:∵f(1)==1,f(1)+f(1)=2,f(2)==,f()==,f(2)+f()=2,f(3)==,f()==,f(3)+f()=2,…f(100)==,f()==,f(100)+f()=2,∴=2×100﹣1=199.故选:B.5.(2023秋•延庆区期中)当x分别取﹣2023,﹣2022,﹣2021,…,﹣2,﹣1,0,1,,,…,,,时,计算分式的值,再将所得结果相加,其和等于()A.﹣1B.1C.0D.2023【答案】A【解答】解:当x=﹣a和时,==0,当x=0时,,则所求的和为0+0+0+⋯+0+(﹣1)=﹣1,故选:A.6.(2022秋•永川区期末)若分式,则分式的值等于()A.﹣B.C.﹣D.【答案】B【解答】解:整理已知条件得y﹣x=2xy;∴x﹣y=﹣2xy将x﹣y=﹣2xy整体代入分式得====.故选:B.7.(2023春•铁西区月考)某块稻田a公顷,甲收割完这块稻田需b小时,乙比甲多用0.3小时就能收割完这块稻田,两人一起收割完这块稻田需要的时间是()A.B.C.D.【答案】B【解答】解:乙收割完这块麦田需要的时间是(b+0.3)小时,甲的工作效率是公顷/时,乙的工作效率是公顷/时.故两人一起收割完这块麦田需要的工作时间为=(小时).故选:B.8.(2023春•临汾月考)相机成像的原理公式为,其中f表示照相机镜头的焦距,u表示物体到镜头的距离,v表示胶片(像)到镜头的距离.下列用f,u表示v正确的是()A.B.C.D.【答案】D【解答】解:∵,去分母得:uv=fv+fu,∴uv﹣fv=fu,∴(u﹣f)v=fu,∵u≠f,∴u﹣f≠0,∴.故选:D.9.(2023•内江)对于正数x,规定,例如:f(2)=,f()=,f(3)=,f()=,计算:f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)+…+f(99)+f(100)+f(101)=()A.199B.200C.201D.202【答案】C【解答】解:∵f(1)==1,f(2)=,f()=,f(3)=,f()=,f(4)==,f()==,…,f(101)==,f()==,∴f(2)+f()=+=2,f(3)+f()=+=2,f(4)+f()=+=2,…,f(101)+f()=+=2,f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)+…+f(99)+f(100)+f(101)=2×100+1=201.故选:C.10.(2023春•灵丘县期中)观察下列等式:=1﹣,=﹣,=﹣,…=﹣将以上等式相加得到+++…+=1﹣.用上述方法计算:+++…+其结果为()A.B.C.D.【答案】A【解答】解:由上式可知+++…+=(1﹣)=.故选A.11.(2023秋•顺德区校级月考)先阅读并填空,再解答问题.我们知道,(1)仿写:=,=,=.(2)直接写出结果:=.利用上述式子中的规律计算:(3);(4).【答案】(1),;;(2);(3);(4).【解答】解:(1),=;=,故答案为:,;;(2)原式=1﹣+++...++=1﹣=;故答案为:;(3)==1﹣+﹣+﹣+⋯⋯+=1﹣=;(2)原式=×()+×()+×()+...+×()=()==.12.(2023秋•株洲期中)阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可化为带分数.如:.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如,这样的分式就是假分式;,这样的分式就是真分式.类似地,假分式也可以化为带分式(即:整式与真分式的和的形式).如:,;解决下列问题:(1)分式是真分式(填“真”或“假”);(2)将假分式化为带分式;(3)如果x为整数,分式的值为整数,求所有符合条件的x的值.【答案】(1)真;(2)x﹣2+;(3)﹣1或﹣3或11或﹣15.【解答】解:(1)分式是真分式;故答案为:真;(2);(3)原式=,∵分式的值为整数,∴x+2=±1或±13,∴x=﹣1或﹣3或11或﹣15.13.(2023秋•涟源市月考)已知,求的值.解:由已知可得x≠0,则,即x+.∵=(x+)2﹣2=32﹣2=7,∴.上面材料中的解法叫做“倒数法”.请你利用“倒数法”解下面的题目:(1)求,求的值;(2)已知,求的值;(3)已知,,,求的值.【答案】(1);(2)24;(3).【解答】解:(1)由,知x≠0,∴.∴,x•=1.∵=x2+=(x﹣)2+2=42+2=18.∴=.(2)由=,知x≠0,则=2.∴x﹣3+=2.∴x+=5,x•=1.∵=x2+1+=(x+)2﹣2+1=52﹣1=24.∴=.(3)由,,,知x≠0,y≠0,z≠0.则=,=,y+zyz=1,∴+=,+=,+=1.∴2(++)=++1=.∴++=.∵=++=,∴=.14.(2022秋•兴隆县期末)设.(1)化简M;(2)当a=3时,记M的值为f(3),当a=4时,记M的值为f(4).①求证:;②利用①的结论,求f(3)+f(4)+…+f(11)的值;③解分式方程.【答案】(1);(2)①见解析,②,③x=15.【解答】解:(1)=====;(2)①证明:;②f(3)+f(4)+⋅⋅⋅+f(11)====;③由②可知该方程为,方程两边同时乘(x+1)(x﹣1),得:,整理,得:,解得:x=15,经检验x=15是原方程的解,∴原分式方程的解为x=15.15.(2023春•蜀山区校级月考)【阅读理解】对一个较为复杂的分式,若分子次数比分母大,则该分式可以拆分成整式与分式和的形式,例如将拆分成整式与分式:方法一:原式===x+1+2﹣=x+3﹣;方法二:设x+1=t,则x=t﹣1,则原式==.根据上述方法,解决下列问题:(1)将分式拆分成一个整式与一个分式和的形式,得=;(2)任选上述一种方法,将拆分成整式与分式和的形式;(3)已知分式与x的值都是整数,求x的值.【答案】(1);(2);(3)﹣35或43或﹣9或17或1或7或3或5.【解答】解:(1)由题知,,故答案为:.(2)选择方法一:原式==.选择方法二:设x﹣1=t,则x=t+1,则原式=====.(3)由题知,原式====.又此分式与x的值都是整数,即x﹣4是39的因数,当x﹣4=±1,即x=3或5时,原分式的值为整数;当x﹣4=±3,即x=1或7时,原分式的值为整数;当x﹣4=±13,即x=﹣9或17时,原分式的值为整数;当x﹣4=±39,即x=﹣35或43时,原分式的值为整数;综上所述:x的值为:﹣35或43或﹣9或17或1或7或3或5时,原分式的值为整数.16.(2023春•兰州期末)阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可以化为带分数,如:.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如,这样的分式就是假分式;再如:这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式),如:.解决下列问题:(1)分式是真分式(填“真分式”或“假分式”);(2)将假分式化为整式与真分式的和的形式:=2+.若假分式的值为正整数,则整数a的值为1,0,2,﹣1;(3)将假分式化为带分式(写出完整过程).【答案】(1)真分式;(2)2+;1,2,﹣1;(3)x﹣1﹣.【解答】解:(1)由题意得:分式是真分式,故答案为:真分式;(2)==2+,当2+的值为正整数时,2a﹣1=1或±3,∴a=1,2,﹣1;故答案为:2+;1,2,﹣1;(3)原式===x﹣1﹣.1.(2023•湖州)若分式的值为0,则x的值是()A.1B.0C.﹣1D.﹣3【答案】A【解答】解:∵分式的值为0,∴x﹣1=0,且3x+1≠0,解得:x=1,故选:A.2.(2023•天津)计算的结果等于()A.﹣1B.x﹣1C.D.【答案】C【解答】解:====,故选:C.3.(2023•镇江)使分式有意义的x的取值范围是x≠5.【答案】x≠5.【解答】解:当x﹣5≠0时,分式有意义,解得x≠5,故答案为:x≠5.4.(2023•上海)化简:﹣的结果为2.【答案】2.【解答】解:原式===2,故答案为:2.5.(2023•安徽)先化简,再求值:,其中x=.【答案】x+1,.【解答】解:原式==x+1,当x=﹣1时,原式=﹣1+1=.6.(2023•广安)先化简(﹣a+1)÷,再从不等式﹣2<a<3中选择一个适当的整数,代入求值.【答案】;﹣1.【解答】解:(﹣a+1)÷=•=.∵﹣2<a<3且a≠±1,∴a=0符合题意.当a=0时,原式==﹣1.7.(2023•淮安)先化简,再求值:÷(1+),其中a=+1.【答案】,.【解答】解:原式=÷(+)=÷=•=,当a=+1时,原式==.8.(2023•朝阳)先化简,再求值:(+)÷,其中x=3.【答案】,1.【解答】解:原式=[+]•=•=,当x=3时,原式==1.。
人教版八年级数学上册15.2分式的运算知识点归纳分式的乘除法则:①乘法:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。
②除法:分式除以分式,把除式的分子、分母颠倒位置后,再与被除式相乘。
字母表示:①ab ·cd=a·cb·d②ab ÷cd=ab·dc=a·db·c运算的结果应化成最简分式。
例1、4b3a3×6a25b2=24a2b15a3b2=85ab例2、7y22x ÷5x2y4=7y22x×45x2y=28y210x3y=14y5x3如果运算的时候,分子和分母是多项式,通常要先分解因式,再约分要计算分式的乘除混合运算,可以先把除法转化成乘法,再用乘法法则来计算。
分式乘方,要把分子、分母分别乘方。
字母表示:(ab )n=a nb n分式的加减法则:①分母相同的分式相加减,保持分母不变,把分子相加减。
②分母不同的分式相加减,要先通分,使分母化为相同的,然后再加减。
字母表示:①ac ±bc=a±bc②ab ±cd=adbd±bcbd=ad±bcbd在分式的混合运算中,运算顺序和以前是一样的,即:①从左往右计算。
②有括号先算括号里面的式子,依次按小括号、中括号、大括号的顺序进行。
③没有括号,则先算乘方,再算乘除,最后算加减。
一个数的负指数幂等于把幂指数变号后所得的幂的倒数。
字母表示:a−m=1a m(m是正整数)例3、3−2=132=19,4−3=143=164。
随着指数的取值范围由正整数推广到全体整数,前面《整式的乘法》一章中的一些运算性质也推广到了整数指数幂:①a m·a n=a m+n(m,n都是整数)②a m÷a n=a m−n(m,n都是整数)③(a m)n=a mn(m,n都是整数)④(a m b n)p=a mp b np(m,n都是整数)负指数幂也可用在科学记数法中,小于1的正数也可以用科学记数法表示。
分式乘除运算分式乘除运算是数学中的一个重要概念,它涉及到分数的乘法和除法运算。
分数是数学中的一个重要概念,它可以表示一个数在另一个数中所占的比例。
在分数的乘法和除法运算中,我们需要掌握一些基本的规则和技巧,才能正确地进行计算。
一、分式的乘法运算分式的乘法运算是指将两个分数相乘,得到一个新的分数。
分式的乘法运算可以使用以下公式进行计算:a/b × c/d = ac/bd其中,a、b、c、d都是实数,且b、d不等于0。
这个公式告诉我们,在分式的乘法运算中,我们只需要将分子相乘,分母相乘,然后将结果写成一个新的分数即可。
例如,计算2/3 × 4/5,我们可以按照上述公式进行计算:2/3 × 4/5 = 8/15这个结果告诉我们,2/3和4/5相乘的结果是8/15。
二、分式的除法运算分式的除法运算是指将一个分数除以另一个分数,得到一个新的分数。
分式的除法运算可以使用以下公式进行计算:a/b ÷ c/d = ad/bc其中,a、b、c、d都是实数,且b、c、d不等于0。
这个公式告诉我们,在分式的除法运算中,我们只需要将分子相乘,分母相乘,然后将结果写成一个新的分数即可。
例如,计算2/3 ÷ 4/5,我们可以按照上述公式进行计算:2/3 ÷ 4/5 = 2/3 × 5/4 = 10/12这个结果告诉我们,2/3除以4/5的结果是10/12。
三、分式的约分和通分在分式的乘法和除法运算中,我们有时需要对分式进行约分和通分。
分式的约分是指将分式的分子和分母同时除以一个相同的数,使得分式的值不变。
例如,对于分式6/8,我们可以将分子和分母同时除以2,得到3/4,这就是分式的约分。
分式的通分是指将两个或多个分式的分母变为相同的数,使得分式可以进行加减运算。
通分的方法有很多种,其中一种比较简单的方法是使用最小公倍数。
例如,将2/3和3/4通分,我们可以将分母分别乘以对方的分母,得到6/12和9/12,这就是通分后的分式。
小学数学点知识归纳分式的乘除运算法则小学数学点知识归纳:分式的乘除运算法则在数学中,分式的乘除运算是很常见的,它们常常出现在各种数学问题中。
理解分式的乘除运算法则对于小学生来说是非常重要的。
本文将介绍小学数学中分式的乘除运算法则,帮助学生更好地掌握这一知识点。
一、分式的乘法分式的乘法遵循以下法则:分子相乘得到新分子,分母相乘得到新分母。
即若有两个分式A和B,它们的乘积为:A ×B = (A的分子 × B的分子)/ (A的分母 × B的分母)示例1:计算分式 2/5 × 3/4 的结果。
根据分式乘法法则,我们可以进行如下计算:2/5 × 3/4 = (2 × 3)/(5 × 4)= 6/20所以,2/5 × 3/4 的结果是 6/20。
示例2:计算分式 1/3 × 4 的结果。
将整数转化成分式,分母为1即可。
计算如下:1/3 × 4 = (1 × 4)/(3 × 1)= 4/3所以,1/3 × 4 的结果是 4/3。
二、分式的除法分式的除法遵循以下法则:将除法转化为乘法,即将除号变为乘号,同时对于除数取其倒数。
即若有两个分式A和B,它们的除法可以表示为:A ÷B = A ×(1/B)示例3:计算分式 2/5 ÷ 3/4 的结果。
根据分式除法法则,我们可以进行如下计算:2/5 ÷ 3/4 = 2/5 ×(4/3)=(2 × 4)/(5 × 3)= 8/15所以,2/5 ÷ 3/4 的结果是 8/15。
示例4:计算分式 1/3 ÷ 4 的结果。
将整数转化成分式,分母为1即可。
计算如下:1/3 ÷ 4 = 1/3 ×(1/4)=(1 × 1)/(3 × 4)= 1/12所以,1/3 ÷ 4 的结果是 1/12。
小学五年级数学分式知识点在小学五年级的数学学习中,分式是一个重要的知识点。
掌握好分式的概念、简化、四则运算和应用等内容,对于进一步学习数学和解决实际问题都非常有帮助。
本文将介绍小学五年级数学中的分式知识点,帮助同学们更好地理解和应用。
一、概念分式是由分子和分母组成的表达式,分子和分母都是整数。
分子表示被分成的若干份,分母表示平均分成的份数。
分式通常用a/b来表示,其中a为分子,b为分母,a和b都是整数。
例如,1/2、3/4都是分式。
二、简化分式简化分式就是将分子和分母的公因数约掉,使分数的值保持不变,但分子和分母的数值尽可能简单。
例如,8/12可以简化为2/3,因为8和12都可以同时除以2。
简化分式的目的是方便计算和比较大小。
三、分式的四则运算1. 相加减:当两个分式的分母相同,可以直接将分子相加或相减,并保持分母不变。
例如,1/3 + 2/3 = 3/3 = 1,1/2 - 1/4 = 2/4 - 1/4 = 1/4。
2. 相乘:将两个分式的分子相乘,分母相乘。
例如,1/2 × 2/3 = 2/6 = 1/3。
3. 相除:将一个分式的分子乘以另一个分式的倒数,即分子和分子相乘,分母和分母相乘。
例如,1/2 ÷ 3/4 = 1/2 × 4/3 = 4/6 = 2/3。
需要注意的是,在进行相乘和相除运算时,可以先简化分式,再进行计算,得到最简分式的结果。
四、分式的应用分式在实际生活中有广泛的应用。
以下是一些常见的应用场景:1. 分配问题:将一份物品按照比例分给几个人。
例如,小明拥有5张票,小红有7张票,他们一共卖出了12张票,现在需要按照比例分剩下的票。
小明分到的票数可以表示为5/12,小红分到的票数可以表示为7/12。
2. 配方问题:根据食谱中的比例调整食材的数量。
例如,做面包的配方中,面粉和水的比例是3:1,如果需要做300克面包,可以计算出面粉和水的重量分别为225克和75克。
小学数学知识归纳认识分式的基本概念和运算法则分式,又称为有理式或有理数式,是数学中的一种表示形式,用分数的形式来表示一个整体中的一部分。
学习和掌握分式的基本概念和运算法则对小学生来说是至关重要的。
本文将对小学数学中与分式相关的基本概念和运算法则进行归纳和总结。
一、分式的基本概念分式由分子和分母组成,分子表示整体中的一部分,分母表示整体的份额。
分式通常表达为a/b的形式,其中a是分子,b是非零整数的分母。
在分式中,分子可以是任意整数,分母必须是非零整数。
二、分式的简化与扩展1. 简化分式:对于一个分式,如果分子和分母有相同的因子,我们可以约去这个公因子,从而得到一个与原分式相等但较简单的分式。
简化分式有助于我们更好地理解其含义和进行后续的计算。
2. 扩展分式:对于一个分式,我们可以将分子和分母同时乘以一个非零数,从而得到与原分式相等但形式不同的分式。
扩展分式的目的是为了方便后续的计算和比较。
三、分式的加法和减法1. 分式的加法:分式的加法是指将两个分式相加,得到一个新的分式。
要进行分式的加法,首先需要将两个分式的分母化为相同的分母,然后将分子相加,并保持分母不变。
2. 分式的减法:分式的减法是指将一个分式减去另一个分式,得到一个新的分式。
要进行分式的减法,也需要首先将两个分式的分母化为相同的分母,然后将分子相减,并保持分母不变。
四、分式的乘法和除法1. 分式的乘法:分式的乘法是指将两个分式相乘,得到一个新的分式。
要进行分式的乘法,直接将两个分式的分子相乘,分母相乘,然后将所得分子和分母化简即可。
2. 分式的除法:分式的除法是指将一个分式除以另一个分式,得到一个新的分式。
要进行分式的除法,将被除数的分子乘以除数的分母,被除数的分母乘以除数的分子,然后将所得分子和分母化简即可。
五、应用题示例1. 示例1:小明和小红共有7块巧克力,小明分到其中的1/3,小红分到其中的2/5。
问小明和小红分到的巧克力数量加起来是多少?解:小明分到的巧克力数量为7 * 1/3 = 7/3,小红分到的巧克力数量为7 * 2/5 = 14/5。
初中数学分式知识点归纳分式是初中数学中的一个重要内容,分式的概念和运算在解决实际问题中有着广泛的应用。
在这篇文章中,我将对初中数学中常见的分式知识点进行归纳,帮助学生更好地理解和掌握分式。
一、分式的定义和基本性质分式可以表示为a/b的形式,其中a称为分子,b称为分母。
分式的值可以为整数、小数或无理数。
在分式中,分子和分母都可以是整数、代数式或其他形式。
1.1 分式的定义分式是用一个数的算式表示另一个数。
1.2 分式的基本性质(1)两个分数相等的充要条件是分子与分母分别相等。
(2)分子分母的积是一个确定的数,即a/b * b/a = 1。
(3)一个分数乘以或除以一个非零数,其值不变,即a/b * c = ac/b,a/b ÷ c = a/b * 1/c。
(4)分子分母同时乘(或除)以同一个非零数,不改变分数的值,即a/b = a * c /b * c,a/b = a ÷ c /b ÷ c。
二、分式的基本运算分式的运算包括加法、减法、乘法和除法四种基本运算,下面将逐一介绍这些运算的具体方法。
2.1 分式的加法和减法(1)同分母的分式相加(减):保持分母不变,分子相加(减),结果的分子写在分数线上,分母不变。
(2)异分母的分式相加(减):找到它们的公倍数作为新的分母,然后将分子按照原来的分母和新分母的比例相加(减),得到的结果即为最简分数,如果需要化简,在得到的结果上进行约分。
2.2 分式的乘法分式的乘法中,将两个分式的分子相乘作为新的分子,分母相乘作为新的分母,并将结果化简为最简分数。
2.3 分式的除法分式的除法可以转化为分式的乘法,即将除号转化为乘号,同时将除数的分子与被除数的分母相乘作为新的分子,将除数的分母与被除数的分子相乘作为新的分母,并将结果化简为最简分数。
三、分式的化简和分式方程的解法化简分式的目的是将分式转化为最简分数的形式,使得分子和分母互质。
化简分式的方法包括约分和转换为连分数等。
数学八下分式
八年级下册数学课程中有关分式的主题主要包括分式的运算、分式的化简、分式方程等内容。
以下是八年级下册数学中关于分式的一些常见知识点:
1. 分式的乘法和除法:学习如何进行分式的乘法和除法运算,包括分子乘法、分母乘法、分子除法和分母除法等。
2. 分式的加法和减法:掌握分式的加法和减法运算规则,包括通分、合并同类项等操作。
3. 分式的化简:学习如何化简分式,包括约分、提取公因式、分子分母同乘同除等方法,使分式的表达更简洁。
4. 分式方程:解决涉及分式的方程,包括一元一次分式方程和一元二次分式方程等,掌握解题的方法和技巧。
5. 分式的应用:了解分式在实际问题中的应用,如物品分配、比例关系、时间速度等问题,通过分式运算解决实际生活中的计算问题。
八年级下册数学中的分式知识是数学学习中的重要内容,需要通过练习和实践来加深理解和掌握。
建议学生多做练习题,加强对分式运算规则的理解和掌握,提高解决问题的能力和技巧。
分式及其运算
一、分式的概念
分式是用一个数除以另一个非零数所得的商。
分式由分子和分母两部分组成,用斜线"/"或水平线"—"隔开,如3/5或3—5。
其中,分子是被除数,分母是除数。
二、分式的基本运算
1. 分式的加减法
- 同分母分式的加减法:只需将分子相加或相减,分母保持不变。
- 异分母分式的加减法:先通分,使分母相同,再将分子相加或相减。
2. 分式的乘法
- 分式相乘时,分子相乘,分母相乘。
3. 分式的除法
- 分式除法可以通过乘以另一个分式的倒数来实现。
4. 分式的化简
- 分子和分母都除以它们的最大公因数,可以化简分式。
三、分式的应用
分式在日常生活和学习中有广泛的应用,例如:
1. 计算比例和百分比
2. 表示概率
3. 解决实际问题(如分配任务、计算利息等)
通过掌握分式的运算规则和应用技巧,我们可以更好地理解和处理涉及分数的各种情况。
数学分式的计算方法数学分式是一种数学表达式,由分子和分母组成,分子和分母都可以是整数、自然数、小数或其他数学表达式。
在数学中,分式的计算是一个重要的基础知识点,掌握分式的计算方法可以帮助我们解决各种实际问题。
一、分式的加减要计算分式的加减,首先要求出分式的公共分母。
如果两个分式的分母相同,那么直接将分子相加或相减即可,分母保持不变。
如果两个分式的分母不同,就需要找到它们的公共分母,然后将分子按照公共分母进行相加或相减,分母保持不变。
例如,计算分式1/3 + 1/4。
分母不同,公共分母可以是12,那么将分子相加得到(1*4+1*3)/12=7/12。
二、分式的乘除分式的乘法就是将分子相乘,分母相乘。
例如,计算分式1/3乘以2/5,得到(1*2)/(3*5)=2/15。
分式的除法就是将第一个分式的分子乘以第二个分式的倒数。
例如,计算分式1/3除以2/5,得到(1/3)*(5/2)=5/6。
三、分式的化简分式的化简是将分子和分母约分到最简形式。
要化简一个分式,需要找到分子和分母的最大公约数,然后将分子和分母都除以最大公约数。
例如,化简分式12/18,最大公约数是6,所以将分子和分母都除以6,得到2/3。
四、分式的比较要比较两个分式的大小,可以通过将两个分式的分子和分母相乘,然后比较乘积的大小。
例如,比较分式1/3和2/5的大小,计算(1*5)/(3*2)和(2*3)/(5*1),得到5/6和6/5,显然5/6小于6/5,所以1/3小于2/5。
五、分式的应用分式在实际问题中有广泛的应用。
例如,在分数运算中,我们常常需要将一个整数转化为分数形式,然后进行运算。
在比例和百分比的计算中,我们也需要使用分式。
此外,在经济学、物理学等领域的问题中,分式也经常用于求解。
掌握数学分式的计算方法是数学学习的重要一步。
通过理解和熟练运用分式的加减乘除、化简和比较等方法,我们可以更好地解决实际问题,提高数学思维和计算能力。
人教版八年级数学上册第十五章分式知识点总结和题型归纳分式知识点总结和题型归纳第一部分分式的运算一)分式的定义及有关题型考查分式的定义:一般地,如果A,B表示两个整数,并且B中含有字母,那么式子A/B为分式。
例1:下列代数式中是分式的有:(x- y)/(2x+ y),π/(2x- y),(x+ y)/(a+ b)。
考查分式有意义的条件:分式有意义:分母不为0 (B≠0)分式无意义:分母为0 (B=0)例1:当x有何值时,下列分式有意义:1) (x-4)/(13x2-6x)2) 2/x3) 2/(x-4)4) (x+4|x|-3x+2)/(x-1)5) x/(x2-2x-3)考查分式的值为的条件:分式值为:分子为A且分母不为0 (A/B) 例1:当x取何值时,下列分式的值为0.1) (x-1)/(x+3)2) |x|-23) (x2-2x-3)/(x-5)(x+6)例2:当x为何值时,下列分式的值为零:1) 5-|x-1|/(x+4)2) (25-x2)/(x-6)(x+5)考查分式的值为正、负的条件:分式值为正或大于0:分子分母同号 (A/B>0) 分式值为负或小于0:分子分母异号 (A/B<0) 例1:(1) 当x为何值时,分式4/(8-x)为正;2) 当x为何值时,分式5-x/(5+x)为负;3) 当x为何值时,分式(x-2)/(x+3)为非负数.例2:解不等式|x|-2≤(x+1)/(x+5)考查分式的值为1,-1的条件:分式值为1:分子分母值相等 (A/B=1)分式值为-1:分子分母值互为相反数 (A+B=0)例1:若分式|x-2|/(x+2)的值为1,-1,则x的取值分别为3和-1.思维拓展练题:1、若a>b>0,a2+b2-6ab=0,则(a+b)/(a-b)=9/5.2、一组按规律排列的分式:-b/2.5/b。
-8/b。
11/b。
则第n 个分式为(3n-1)/b。
初中数学分式知识点归纳分式作为初中数学的重要内容之一,涉及到分数的基本运算、分式的化简、分式方程的解法等多个知识点。
本文将对初中数学中的分式知识点进行归纳和总结。
一、分数的基本概念和表示方法分数是指一个数被另一个数除得的结果,由分子和分母两部分组成。
其中,分子表示被分的份数,分母表示分成的总份数。
分数的表示方法有带分数和假分数两种形式。
二、分数的基本运算1. 分数的加减法分数的加减法要求分母相同,如果分母不同,需要先进行分数的通分。
通分后,分子相加减,分母保持不变。
2. 分数的乘法分数的乘法是将两个分数的分子和分母分别相乘得到新的分子和分母。
3. 分数的除法将除法转化为乘法的倒数形式,即将除数的分子与被除数的分母相乘,除数的分母与被除数的分子相乘。
4. 解分数方程对于含有分数的方程,首先将方程两边的分数化为通分形式,然后根据方程的性质进行解题。
三、分式的化简1. 分式的约分分式的约分是指分子和分母同时除以一个公因数,将分式化简为最简形式。
约分时需要注意,分子和分母要用最大公因数进行约分。
2. 分式的化简对于分式中的分子和分母都是多项式的情况,可以使用因式分解、分子分母的分别求最大公因式等方法将分式化简为最简的代数式。
四、分数的比较1. 相等关系分数的相等关系是指两个分数的值相等,可以通过交叉相乘或通分后的分子与分母进行比较。
2. 大小关系分数的大小比较需要先通分,然后比较分子的大小。
当分子相等时,分母越大,分数越小;当分子不等时,较大的分子对应的分数较大。
五、分式的运算法则1. 分式与整数的加减法将整数转化为分数后进行分数的加减法运算,再化简为最简分数形式。
2. 分式与整数的乘除法将整数转化为分数后,与分数进行乘除法运算,再化简为最简分数形式。
六、分式的应用分式在实际生活和学习中有广泛的应用,常见的有以下几个方面:1. 比例问题:涉及到比例关系的问题,可以使用分式求解。
2. 混合运算:在复杂的运算过程中,可能会涉及到分式的加减乘除,需要灵活运用分数的运算法则。
第十六章 分式知识点及典型例子一、分式的定义:如果A 、B 表示两个整式,且B 中含有未知数,那么式子BA 叫做分式。
二、在分式中,如果________,则分式AB 有意义;如果________,则分式A B无意义;如果________且_________不为零时,则分式A B的值为零;如果__________,则分式0A B > 如果____________,则分式0A B <; 例1.下列各式aπ,11x +,15x+y ,22a b a b --,-3x 2,0•中,是分式的有( )个。
例2.下列分式,当x 取何值时有意义。
(1)2132x x ++; (2)2323x x +-。
例3. 当x________时,分式2134x x +-的值为正数,当x________时,分式2134x x +-的值为负数 例4.当x______时,分式2134x x +-无意义。
当x_______时,分式2212x x x -+-的值为零。
当x_________时,分式2361x x -+的值为负数。
三、分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变,用字母表示为_________________________________.分式的分子、分母和分式本身的符号改变其中任何____个,分式的值不变.四、约分:把分式的分子与分母的公因式约去,这样的分式变形叫做分式的约分,约分的理论依据是分式的___________________。
约分的方法:分式的分子与分母同除以他们的公因式,如果分式的分子、分母都是单项式,就直接约去分子、分母的__________;如果分式的分子或分母是多项式,就先__________,再判断公因式进行约分。
最简分式:分子与分母没有____________的分式,叫做最简分式。
(注意约分一定要彻底)五、通分:利用分式的基本性质把几个异分母的分式化为_________的分式,这样的分式变形叫做分式的通分。
分式运算初中数学知识点之分式的四则运算法则初中数学中,分式是一个重要的知识点,它在数学运算中起到了重要的作用。
分式的四则运算法则是我们学习分式运算的基础,掌握了这些法则,我们就能够正确地进行分式的加减乘除运算。
下面我们将详细介绍分式的四则运算法则。
一、分式的加法和减法假设我们有两个分式,分别为a/b和c/d,它们的分子分别为a和c,分母分别为b和d。
那么它们的加法运算可以通过以下步骤进行:1. 找到两个分式的公共分母,记为m;2. 将两个分式的分子分别乘以m/b和m/d,得到分子为am/b,cm/d的两个分式;3. 将两个新分式的分子相加,即(am/b) + (cm/d);4. 分子的和除以公共分母m,即[(am/b) + (cm/d)] / m。
同样地,分式的减法运算也可以按照上述步骤进行,只需要将第3步的相加改为相减即可。
二、分式的乘法分式的乘法运算较为简单,只需要将两个分式的分子相乘,分母相乘即可。
假设我们有两个分式,分别为a/b和c/d,那么它们的乘法运算可以用以下公式表示:(a/b) * (c/d) = (a * c) / (b * d)。
三、分式的除法分式的除法与乘法类似,只需要将两个分式的分子相乘,分母相乘即可。
假设我们有两个分式,分别为a/b和c/d,那么它们的除法运算可以用以下公式表示:(a/b) / (c/d) = (a * d) / (b * c)。
需要注意的是,除法的时候我们需要将第二个分式取倒数后再进行乘法运算。
以上就是分式的四则运算法则,通过掌握这些法则,我们可以正确地进行分式的加减乘除运算。
在实际运算中,我们还需要注意约分的情况和分母为0的特殊情况。
当分式中的分子和分母有公因子时,我们需要将其约分为最简形式,即分子和分母没有共同的约数。
而当分式的分母为0时,这个分式是无定义的,因为在数学中,除数不能为0。
通过不断的练习和运用,我们可以更好地掌握分式的四则运算法则,为更复杂的数学运算打下坚实的基础。
分 式一、概念:定义1:整式A 除以整式B ,可以表示成的形式。
BA如果除式B 中含有分母,那么称为分式。
(对于任BA何一个分式,分母不为0。
如果除式B 中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。
分式:分母中含有字母。
整式:分母中没有字母。
而代数式则包含分式和整式。
)定义2:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分。
定义3:分子和分母没有公因式的分式称为最简分式。
(化简分式时,通常要使结果成为最简分式或者整式。
)定义4:化异分母分式为同分母分式的过程称为分式的通分。
定义5:分母中含有未知数的方程叫做分式方程定义6:在将分式方程变形为整式方程时,方程两边同乘一个含有未知数的整式,并约去了分母,有时可能产生不适合原分式方程的解(或根),这种解通常称为增根。
二、基本性质:分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
三、运算法则:1、分式的乘法的法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;(用符号语言表示:﹒=)b a dc bdac2、分式的除法的法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.(用符号语言表示:÷=﹒=)b a d c b a c d bcad 分式乘除法的运算步骤:当分式的分子与分母都是单项式时: (1)乘法运算步骤是:①用分子的积做积的分子,分母的积做积的分母;②把分式积中的分子与分母分别写成分子与分母的分因式与另一个因式的乘积形式,如果分子(或分母)的符号是负号,应把负号提到分式的前面;③约分。
(2)除法的运算步骤是:把除式中的分子与分母颠倒位置后,与被除式相乘,其它与乘法运算步骤相同。
当分式的分子、分母中有多项式,①先分解因式;②如果分子与分母有公因式,先约分再计算.③如果分式的分子(或分母)的符号是负号时,应把负号提到分式的前面. 最后的计算结果必须是最简分式或整式.3、同分母分式加减法则是:同分母的分式相加减。
小学数学重点之分式的化简与运算分式的化简与运算是小学数学中的重要内容之一。
在学习这部分知识时,我们需要掌握分式的概念、化简方法以及运算规则等内容。
本文将从这几个方面来详细介绍分式的化简与运算。
一、分式的概念分式是由分子和分母组成的一种数学表达式,分子和分母都是代数式。
分式的一般形式为:$\frac{a}{b}$其中,a是分子,b是分母。
分式可以理解为一个除法的结果,分子表示被除数,分母表示除数。
例如,$\frac{2}{3}$表示2除以3的结果。
二、分式的化简方法1.化简分子和分母的公因式:如果分子和分母有公因式,可以约去公因式,使得分子和分母的值尽可能小。
例如,分式$\frac{8}{12}$可以化简为$\frac{2}{3}$,因为8和12都可以被2整除。
2.化简分子和分母的最大公约数:如果分子和分母没有公因式,可以使用最大公约数来化简分式。
例如,分式$\frac{15}{25}$可以化简为$\frac{3}{5}$,因为15和25的最大公约数是5。
3.分式的倒数:分式的倒数是指将分子和分母互换的结果。
例如,分式$\frac{2}{3}$的倒数是$\frac{3}{2}$。
三、分式的运算规则1.分式的加法:分式的加法要求分母相同。
如果分母相同,只需将分子相加,并保持分母不变。
例如,$\frac{1}{3}+\frac{2}{3}=\frac{3}{3}=\frac{1}{1}$。
2.分式的减法:分式的减法同样要求分母相同。
如果分母相同,只需将分子相减,并保持分母不变。
例如,$\frac{5}{6}-\frac{1}{6}=\frac{4}{6}=\frac{2}{3}$。
3.分式的乘法:分式的乘法只需要将分子相乘,分母相乘。
例如,$\frac{2}{3}\times\frac{3}{4}=\frac{6}{12}$。
4.分式的除法:分式的除法可以通过将除号转化为乘号,再求倒数来实现。
例如,$\frac{1}{2}\div\frac{3}{4}=\frac{1}{2}\times\frac{4}{3}=\frac{4}{6}=\f rac{2}{3}$。
分式知识点归纳一、分式的定义:一般地,如果A ,B 表示两个整数,并且B 中含有字母,那么式子B A 叫做分式,A 为分子,B 为分母。
二、与分式有关的条件①分式有意义:分母不为0(0B ≠)②分式无意义:分母为0(0B =)③分式值为0:分子为0且分母不为0(⎩⎨⎧≠=00B A )④分式值为正或大于0:分子分母同号(⎩⎨⎧>>00B A 或⎩⎨⎧<<00B A ) ⑤分式值为负或小于0:分子分母异号(⎩⎨⎧<>00B A 或⎩⎨⎧><00B A )⑥分式值为1:分子分母值相等(A=B )⑦分式值为-1:分子分母值互为相反数(A+B=0)三、分式的基本性质(1)分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。
字母表示:C B C ••=A B A ,CB C ÷÷=A B A ,其中A 、B 、C 是整式,C ≠0。
(2)分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变, 即:BB A B B --=--=--=A A A 注意:在应用分式的基本性质时,要注意C ≠0这个限制条件和隐含条件B ≠0。
四、分式的约分1.定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。
2.步骤:把分式分子分母因式分解,然后约去分子与分母的公因。
3.两种情形:①分式的分子与分母均为单项式时可直接约分,约去分子、分母系数的最大公约数,然后约去分子分母相同因式的最低次幂。
②分子分母若为多项式,先对分子分母进行因式分解,再约分。
4.最简分式的定义:一个分式的分子与分母没有公因式时,叫做最简分式。
◆约分时。
分子分母公因式的确定方法:1)系数取分子、分母系数的最大公约数作为公因式的系数.2)取各个公因式的最低次幂作为公因式的因式.3)如果分子、分母是多项式,则应先把分子、分母分解因式,然后判断公因式.五、分式的通分1.定义:把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分。
上海七年级数学分式知识点分式是数学中的重要知识点,它在数学中的应用非常广泛,并且在我们日常生活中也经常用到。
作为上海七年级学生,我们应该掌握分式的基本概念、计算方法和应用。
本文将围绕上海七年级数学分式知识点,进行详细的论述。
一、分式的基本概念分式是指由分子和分母构成的数学表达式,通常表示为$\frac{a}{b}$(其中a和b为整数,且b不等于0)。
其中,a称为分子,b称为分母。
分式具有除法运算的性质,我们可以将分式的计算方式看作分子除以分母的结果。
二、分式的化简化简是分式中常见的操作之一,其中包括约分、通分、分子分母提公因数等基本技巧。
在分式的化简过程中,我们需要保证操作的正确性,以保证最终得到的结果是正确的。
1. 约分约分是分式化简的重要步骤之一,它是指将分子与分母的公因数全部约去,使得分子和分母中不含有相同的因数。
例如,将$\frac{10}{20}$化简为$\frac{1}{2}$,我们可以发现分子和分母都有公共因子10,那么我们可以将分子和分母同时除以10,得到最简分式$\frac{1}{2}$。
2. 通分通分是指将两个分母不同的分式化成相同分母的形式,以便进行加减运算。
例如,将$\frac{1}{3}$和$\frac{2}{5}$的通分为$\frac{5}{15}$和$\frac{6}{15}$,那么它们就可以进行加减运算。
通分的原则是将分母相乘,并同时将分子乘以相应的分母倍数,使得分式的分母相同。
3. 分子分母提公因数分子分母提公因数也是分式化简中经常使用的技巧之一。
对于分式$\frac{ab}{cd}$,我们可以将分子和分母分别进行因数分解,然后将相同的因数约掉,得到最简分数形式。
例如,将$\frac{15}{20}$化简为$\frac{3}{4}$,我们可以先将15和20分别分解为$3\times5$和$2^2\times5$,然后将分子和分母同时约掉因子5,得到最简分式$\frac{3}{4}$。
数学分式的运算知识点
其实数学和语文一样,需要记的东西都很多。
在记数学知识点的时候,要注意灵活运用。
下面是店铺给大家整理的一些关于数学分式的运算的知识点,希望对大家有所帮助。
运算法则
1.约分:
把一个分式的分子和分母的公因式约去的过程为约分。
2.分式的乘法法则:
两个分式相乘,用分子的积作为积的分子,分母的积作为积的分母。
两个分式相除,把除式的分子和分母颠倒位置(除数的倒数)后再与被除式相乘。
3. 分式的加减法法则:
同分母的分式相加减,分母不变,把分子相加减。
4.异分母分式的加减法法则:
异分母的'分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算。
备注:异分母的分式可以化成同分母的分式,这一过程叫做通分。
如:3/2和2/3可化为9/6和4/6.即:3*3/2*3,2*2/3*2。
分式的运算法则包括了约分和加减乘除的四则运算。
【数学分式的运算知识点】。