高一数学必修一总复习教案
- 格式:doc
- 大小:219.00 KB
- 文档页数:8
人教版高一数学必修一《复习题》教案及教学反思一、教案编写本次教学主要针对人教版高一数学必修一中的《复习题》章节进行教学。
通过开展《复习题》的教学,学生们可以巩固之前所学的数学知识,同时还能够为下一步的学习打下坚实的基础。
本次教学采用下面的教案设计:1. 教学目的•通过对《复习题》的学习,巩固之前所掌握的知识点。
•强化数学思维,提升数学解题能力。
•注重培养学生的合作学习意识,提高学生应对团队合作和独立思考的能力。
2. 教学内容本次教学的内容主要涉及以下几个方面:•整式的加减运算;•二次根式的化简;•分式的加减运算;•分式方程的求解。
3. 教学过程(1)导入环节在导入环节中,教师可以通过以下几个方面来启发学生的兴趣和激发学习的热情:•通过学生自主提问的方式回顾前期所学的知识点,并进行思考和讨论;•通过教师出示课外拓展题目,引导学生进行自主思考;•通过教师讲述数学知识的重要性,鼓励学生积极参与讨论和学习。
(2)知识讲解本环节教师主要通过演示和讲解的方式,介绍《复习题》的相关知识点。
在讲解中,教师需要注意以下几个方面:•对中文术语的解释和讲解;•给出具体的计算步骤和解题方法;•引导学生区分不同的情况并进行分类讨论;•鼓励学生通过自主思考和独立解题的方式来巩固所学内容。
(3)实例演练本环节教师主要带领学生进行实例演练,巩固之前所学的知识点。
在实例演练中,教师需要注意以下几个方面:•需要对实例演练的难度进行适当的调整,以保证学生能够顺利掌握所讲授的知识点;•鼓励学生通过自主解题,提高自己的解题能力;•引导学生进行合作探讨,提高学生的团队协作能力。
(4)作业布置本环节教师主要通过布置作业,巩固学生所学的知识点,并帮助学生提高自己的解题能力。
在作业布置中,教师需要注意以下几个方面:•布置适量、难度适中的作业;•鼓励学生通过自主思考和独立解题的方式完成作业;•引导学生适时和同学进行解题讨论,以提升学生的合作学习能力。
最新人教版高一数学必修1第一章《复习》教案本章的研究内容主要包括集合和函数的基本知识,以及抽象函数和复合函数的相关问题。
通过整合这些知识,可以帮助学生系统化、网络化地理解数学概念,培养他们的理性思维能力和抽象思维能力。
在研究过程中,我们将注重培养学生的分析、探究、思考能力,帮助他们综合运用基本知识解决问题。
同时,我们也会激发学生对数学的兴趣,培养他们的合作、交流和创新意识。
本章的教学重点包括集合与函数的基本知识,含字母问题的研究,以及抽象函数的理解。
教学难点则在于分类讨论的标准和抽象函数的理解。
为了更好地进行教学,我们准备了多媒体课件和投影仪,并计划用两个课时来完成本章的教学任务。
在教学过程中,我们首先对第一章的知识点进行了回顾,包括集合的含义、表示法、元素与集合的关系,集合间的基本关系以及函数的概念和表示方法等等。
我们还介绍了函数的单调性、奇偶性以及应用问题的解法。
在解决函数应用题的过程中,我们需要遵循“设、列、解、答”的步骤,即先分析题意设出变量,然后列出关系式建立函数模型,接着运用函数的性质解出要求的量,最后回到原实际问题作答。
这些步骤可以用框图来表示。
通过本章的研究,我们希望学生能够掌握集合和函数的基本知识,理解抽象函数和复合函数的相关问题,并能够综合运用这些知识解决实际问题。
同时,我们也希望能够培养学生的分析、探究、思考能力,激发他们对数学的兴趣和创新意识。
当涉及到多个变量时,需要寻找与所求量(y)之间的关系式。
确定一个自变量(x),并通过题目中的条件用x表示其他变量,最终得到函数模型y=f(x)。
在证明集合相等时,需要同时满足A包含于B和B包含于A。
判断两个函数是否相同,需要考虑它们的定义域和对应法则。
函数表达式可以通过定义法、换元法和待定系数法求得。
函数的定义域可以通过列出使函数有意义的自变量的不等式来求解。
常见的依据包括分母不为0、偶次根式中被开方数不小于0以及实际问题的实际意义。
本章复习整体设计教材分析这是本章的复习课,在我们学习了集合的表示、集合间的关系、集合的运算等知识的基础上,能够利用集合的语言描述数学对象或生活实例,使得学生能更清晰地表达自己的思想.本课既是对前面三课内容的一个复习、巩固,同时又是一个综合的过程,把各种形式的集合语言、运算做一个检阅.教学中要求主要以读懂集合所表示的语言为主,不必过分加深.三维目标1.加深对集合关系运算的认识.2.学会借助数轴和韦恩图来分析问题.3.对含字母的集合问题有一个初步的了解.4.掌握集合语言与自然语言、图形语言的互译.重点难点教学重点:集合语言的理解.教学难点:带字母的集合问题的研究.课时安排1课时教学过程导入新课设计思路一(复习导入)设计思路二(情境导入)同学们,前几节课我们重点学习了集合的表示、集合间的关系和集合的运算,他们有一个共同特点就是符号化,比如“∈”、“⊆”,大家回忆一下,前面学过哪些符号?写得越多越好.一般写出的是:∈,∉,{,…,},{x|p(x),x∈A},∅,N,N*/N+,Z,Q,R,,,⊆,⊇,∪,∩,[,],(,),[,),(,].还要引导学生注意的有:(-∞,+∞),(a,+∞),(-∞,a).推进新课知识回顾1.∈,∉,{,…,},{x|p(x),x∈A},∅,N,N*/N+,Z,Q,R, A2.交集、并集的定义与符号:A∩B={x∣x∈A,且x∈B} A∪B={x|x∈A,或x∈B}记忆技巧:使用联系、类比的方法记忆.应用示例思路1例1 考虑下面每组对象能否构成一个集合:(1)所有的好人;(2)不超过10的非负数;(3)我班的16岁以下的学生;(4)充分接近大的有理数.分析:使用集合的定义和集合的性质进行判断.解:(1)所有的好人,无明确的标准,对于其中的一个人来说是否是好人无法客观判断,因此(1)不能构成集合.(2)任何一个给定数x ,可以明确地判断是不是“不超过10”的非负数,即“0≤x≤10”与“x >10或x <0”,两者必具其一,且仅具其一,故(2)能构成集合.类似(3)能构成集合,(4)不能构成集合.变式训练1.已知集合A ={1,2,a},则a 应满足什么条件?解:a≠1且a≠22.下列各种说法中,各自所表述的对象是否确定,能否构成集合?(1)我们班的全体学生;(2)我们班的高个子学生;(3)地球上的四大洋;(4)方程x 2-1=0的解;(5)不等式2x -3>0的解;(6)直角三角形.解:(1)、(3)、(4)、(5)、(6)对象是能确定的,能构成集合.(2)是不能确定的,不能构成集合.点评:与集合相关的问题的解决,一般情况下依赖的是集合的三个性质,所以在本章中注意对这三个性质的把握.例2 设A={(x ,y)|y=-4x+6},B={(x ,y)|y=5x-3},求A∩B.解:A∩B ={(x ,y)|y=-4x+6}∩{(x ,y)|y=5x-3}={(x,y)}|⎭⎬⎫⎩⎨⎧-=+-=3564x y x y ={(1,2)}.点评:本题中,(x ,y)可以看作直线上的点的坐标,也可以看作二元一次方程的一个解. 例3 开运动会时,高一(8)共有28名同学参加比赛,有15人参加游泳,有8人参加田径,有14人参加球类,同时参加游泳和田径的有3人,同时参加游泳和球类的有3人,没有人同时参加三项比赛.问同时参加田径和球类比赛的有多少人?只参加游泳一项的有多少人?分析:用图示法来表示.解:设参加田径和球类比赛的有x 人,则9+3+8-3-x +3+x +14-3-x=28,解得:x=3. 答:参加田径和球类比赛的有3人,只参加游泳一项的有9人.点评:Venn 图在解决多种关系问题的时候就显示了其简洁性,便于处理各种繁杂的关系,所以要引起注意.例4 已知A={x|2x 2=sx-r},B={x|6x 2+(s+2)x+r=0},且A∩B={21},求A ∪B. 解:因为21∈A 且21∈B ,所以⎪⎪⎩⎪⎪⎨⎧=+++-=,0)2(2123,2121r s r s 即⎩⎨⎧-=+-=-,52,12s r s r 解之得⎪⎩⎪⎨⎧-=-=,23,2r s 所以A={21,23-},B={21,21-},所以A ∪B={21,21-,23-}. 点评:参数问题的解决是本节的难点,也是学生思维的难点,所以充分挖掘题中的隐含条件是解决问题的关键.例5 已知A={x|x 2≤4},B={x|x >a},若A∩B=∅,求实数a 的取值范围.解:A={x|x 2≤4}={x|-2≤x≤2},B={x|x >a},然后从数轴上分析得到a≥2.点评:通过数轴寻找解题途径是解决含参数不等式的一个重要的方法,也是数与形结合的一个重要的部分.思路2例1 用列举法表示下列集合:(1){x|x=|x|,x ∈Z ,x <5};(2){(x,y)|x+y=6,x ∈N +,y ∈N +}.分析:使用列举法的时候,要注意元素的特征,这两道题一个是数,一个是有序的实数对.解:(1)由x=|x|得x≥0,因为x ∈Z 且x <5,所以x=0,1,2,3,4.用列举法表示为{0,1,2,3,4}.(2)由两个变量的取值得符合条件的元素为⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==⎩⎨⎧-=⎩⎨⎧==,1,5,2,4,3,3,4,2,5,1y x y x y x y x y x 用列举法表示为{(1,5),(2,4),(3,3),(4,2),(5,1)}.变式训练1.用列举法表示集合C={x|x=b b a a ||||+,a 、b ∈R }. 解:C={2,-2,0}.2.用列举法表示集合D={x|x-36∈Z ,x ∈N +}. 解:3-x 是6的倍数,所以3-x=±1,±2,±3,±6,所以x=0,-1,1,2,4,5,6,9,因为x ∈N +,所以D={1,2,4,5,6,9}.例2 (1)0与{0};(2)0与∅;(3) ∅与{0};(4){0,1}与{(0,1)};(5){(a,b)}与{(b,a)}各是什么关系?用适当的符号表示出来.分析:首先要分清是“元素与集合”的关系,还是“集合与元素”的关系.解:(1)0与{0}是元素与集合的关系,应为0∈{0};(2)空集不含任何元素,所以0∉∅;(3)∅与{0}都是集合,两者的关系是“包含与否”的关系,空集是任何非空集合的真子集,∅{0};(4){0,1}是含两个元素0与1的集合,而{(0,1)}是以“有序数组”(0,1)为元素的单元素的集合,所以{0,1}与{(0,1)}不相等,即{0,1}≠{(0,1)};(5)当a=b时,{(a,b)}={(b,a)};当a≠b时,{(a,b)}≠{(b,a)}.点评:空集∅是许多特殊性质的重要集合,值得重视.(5)中的a=b是可能的特殊关系,不可不考虑到.例3已知A={x|x<3},B={x|x<a}.(1)若B⊆A,求a的取值范围;(2)若A⊆B,求a的取值范围;(3)若A B,求a的取值范围.分析:紧扣子集、全集、补集的定义,利用数轴,数形结合解出a的范围.解:(1)因为B⊆A,B是A的子集,如图,a≤3.(2)因为A⊆B,A是B的子集,如图,a≥3.(3)因为A={x|x≥3},B={x|x≥a},A B,所以A是B的真子集,如上图a<3.点评:(1)这类问题,注意数形结合,以形定数,才能相得益彰.(2)要注意验证端点值,做到准确无误,要不然会功亏一篑.例4某车间有120人,其中乘电车上班的有84人,乘汽车上班的有32人,两车都乘的有18人,求:(1)只乘电车的人数;(2)不乘电车的人数;(3)乘车的人数;(4)不乘车的人数;(5)只乘一种车的人数.分析:本题是已知全集中元素的个数,求各部分元素的个数,可用图解法.用整个圆表示车间的120人.解:设只乘电车的人数为x,不乘电车的人数为y,乘车的人数为z,不乘车的人数为u,只乘一种车的人数为v.如上图所示,(1)x=66人;(2)y=36人,(3)z=98人;(4)u=22人;(5)v=80人.点评:(1)此种求集合中元素个数的问题,一般用画图解较为方便.(2)此题是一道利用集合知识解决实际问题的应用题,其解题的一般思路是设出各个集合,再分析各集合之间的交集、并集、补集的关系及其含义,以求解问题.知能训练课本第17页复习题3—10题.课堂小结本节课是对集合一章的总结,本章的特点是符号比较多,它比整个初中三年总的符号还多得多,而且又是在很短的时间内教学完毕,所以肯定存在对符号的理解的问题,这个又是学生解决集合问题的最大的障碍.针对这个问题的解决,主要在以后的学习中注意有意识地去不停地渗透.本节课在内容上介绍了集合的基本知识,在教学时不要过分地挖掘,避免造成对数学失去信心,所以多从生活中的实际的例子中去探索用集合语言来描述数学对象的方法.应用集合语言,可以更为清晰地表达我们的思想.集合是整个数学的基础,它在以后的学习中有着极为广泛的应用.作业课本第17页复习题11、12.设计感想通过本章的教学,作为新课程的实施者,在教学方式上和对学生的学习方式应该有所转变,高度概括地说就是自主、合作、创新.所谓自主就是尊重学生学习过程中的自主性,独立性,在学习的内容上、时间上、进度上,更多地给予学生自主支配的机会,给学生自主判断、自主选择和自主承担的机会.过去的课堂是老师控制学生学什么,什么时间学,学生始终处于被动状态,这种过度控制压抑了学习的兴趣和学习过程中的美好体验.习题详解课本第17页复习题1.{0,1,2,3,4}.2.(1)是有限集,(2)、(3)是无限集.3.A={x|x是三边不全相等的三角形}.4.A∩B={1,2},A∪B={0,1,2,3,4}.5.A∩B={x|1<x<2},A∪B=R.6.由数轴可以知道a的取值范围为[4,+∞).7.(1)A=(-∞,-1)∪[2,+∞);(2)A=(-∞,-1)∪[2,3];(3)A=[-2,-1)∪{2};(4)A= .8.满足条件的A有:{5},{1,5},{3,5},{1,3,5}共有4个.9.符合题意的情况有以下几种:(1)A={1,2,3},B={1,2,3,4,5};(2)B={1,2,3},A={1,2,3,4,5};(3)A={1,2,3,4},B={1,2,3,5};(4)B={1,2,3,4},A={1,2,3,5}.10.两门都优秀的百分率至少为45%.由题意可以知道,数学不优秀的为30%,语文不优秀的为25%,为使上述两门学科都优秀的百分率最少,则两门学科不优秀的学生要尽量不重复,故两门学科都优秀的百分率至少为1-(30%+25%)=45%.11.图略,(A∩B)=A∪ B.12.(1)能成立,(2)能成立,(3)不能成立.13.(1)C×D={(a,1),(a,2),(a,3)};(2)A={1,2},B={2};(3)A×B有12个元素.14.略。
2024年高一数学教案必修一第一章集合与函数概念第一课时集合的含义与表示方法一、教学目标1.理解集合的含义,掌握集合的表示方法。
2.能够运用集合的语言描述生活中的现象。
3.培养学生的抽象思维能力和语言表达能力。
二、教学重难点1.重点:集合的含义与表示方法。
2.难点:集合语言的应用。
三、教学过程(一)导入新课同学们,你们听说过集合吗?其实,在我们的生活中,集合无处不在。
今天我们就来学习一下集合的含义与表示方法。
(二)新课讲解1.集合的含义(1)集合的定义:集合是一些明确且不同的对象的全体。
(2)集合的元素:构成集合的对象叫做集合的元素。
(3)集合的性质:确定性、互异性、无序性。
2.集合的表示方法(1)列举法:将集合中的元素一一列举出来,用大括号表示。
(2)描述法:用文字或符号描述集合中元素的特征。
(3)图示法:用Venn图或树状图表示集合。
(三)案例分析1.例题1:下列各式中,哪些是集合?A.{1,2,3,4,5}B.{x|x是小于10的正整数}C.{a,b,c,a}D.{x|x是方程x²3x+2=0的解}解析:A、B是集合,C不是集合(元素不互异),D不是集合(方程解不明确)。
2.例题2:用列举法表示下列集合。
A.所有小于5的正整数B.所有大于0且小于10的偶数解析:A.{1,2,3,4}B.{2,4,6,8}(四)课堂练习1.判断下列各式是否为集合,并说明理由。
A.{1,2,3,4,5}B.{x|x是大于5的正整数}C.{a,b,c,a}D.{x|x是方程x²4x+3=0的解}2.用列举法表示下列集合。
A.所有大于3且小于10的奇数B.所有小于0的整数1.本节课我们学习了集合的含义与表示方法,掌握了集合的性质。
2.能够运用集合语言描述生活中的现象,提高抽象思维能力和语言表达能力。
四、作业布置1.抄写并背诵集合的定义、性质及表示方法。
2.完成课后练习题。
第二章函数及其性质第一课时函数的概念一、教学目标1.理解函数的概念,掌握函数的表示方法。
1.1.1集合的含义与表示(一)【课型】新授课【教学目标】(1)了解集合、元素的概念,体会集合中元素的三个特征;(2)理解元素与集合的“属于”和“不属于”关系;(3)掌握常用数集及其记法;【教学重点】掌握集合的基本概念;【教学难点】元素与集合的关系;【教学过程】一、引入课题军训前学校通知:8月15日8点,高一年级在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。
阅读课本P2-5内容二、新课教学(一)集合的有关概念1.一般地,我们把研究对象统称为元素,一些元素组成的总体叫集合,也简称集。
思考1:判断以下元素的全体是否组成集合,并说明理由:(1)大于3小于11的偶数;(2)我国的小河流;(3)非负奇数;(4)方程210x的解;(5)某校2007级新生;(6)血压很高的人;(7)著名的数学家;(8)平面直角坐标系内所有第三象限的点(9)全班成绩好的学生。
对学生的解答予以讨论、点评,进而讲解下面的问题。
2.关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。
(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。
(3)无序性:给定一个集合与集合里面元素的顺序无关。
(4)集合相等:构成两个集合的元素完全一样。
3.元素与集合的关系;(1)如果a是集合A的元素,就说a属于A,记作:a∈A(2)如果a不是集合A的元素,就说a不属于A,记作:a A例如,我们A表示“1~20以内的所有质数”组成的集合,则有3∈A,4A,等等。
4.集合与元素的字母表示:集合通常用大写的拉丁字母A,B,C…表示;集合的元素用小写的拉丁字母a,b,c,…表示。
第一章单元复习从容说课通过对本章集合知识与函数知识结构的整合,使学生所学的知识系统化、网络化.本课从知识结构的整体出发,通过对集合知识与函数知识的综合运用,培养学生的理性思维能力,优化学生的数学认知结构.通过解决抽象函数、复合函数的有关问题,培养学生的抽象思维能力;利用分析、讨论的课堂教学手段,培养学生的合作、交流意识;结合函数知识解决实际问题,激发学生学习数学的兴趣,培养他们分析问题、解决问题的能力.三维目标一、知识与技能掌握集合、函数的有关概念,能综合运用集合与函数的基本知识解决问题.对复合函数与抽象函数有新的认识.二、过程与方程培养学生分析、探究、思考的能力,进一步培养学生综合运用基本知识解决问题的能力.三、情感态度与价值观激发学生学习数学的兴趣,培养他们合作、交流、创新意识以及分类讨论、抽象理解能力.教学重点集合与函数的基本知识,含字母问题的研究,抽象函数的理解.教学难点分类讨论的标准、抽象函数的理解.教具准备多媒体课件、投影仪.课时安排2课时教学过程一、知识回顾(一)第一章知识点1.集合:①集合的含义;②表示法;③元素与集合的关系.2.集合间的基本关系:①子集;②真子集;③集合相等.3.集合的运算:①并集;②交集;③补集.4.函数:①函数的概念;②三要素:定义域,值域,对应法则;③映射概念.5.函数的表示:①表示法:解析法,列表法,图象法;②求函数的解析式;③求函数的定义域;④求一些简单函数的值域和最值.6.函数的单调性:①函数单调性定义;②单调函数的概念;③单调区间;④判断或证明函数单调性的方法;⑤单调性的应用;⑥利用函数的单调性求最值.7.函数的奇偶性:①奇偶性的概念;②奇偶性的定义域特征;③判断函数奇偶性的步骤;④奇偶性图象特征.8.函数的应用问题:①解函数应用题的基本方法步骤;②与几何图形有关的应用题的解法;③与物理现象有关的应用题的解法;④与社会生活有关的实际问题的解法.9.(1)解函数应用题的主要步骤是:①“设”即分析题意设出变量;②“列”即列出关系式,建设函数模型;③“解”即运用函数的性质解出要求的量;④“答”即回到原实际问题作答.(2)解实际问题的步骤用框图可表示为(3)当实际问题中的变量较多时,首先寻找所求量(y )与这些变量间的关系式,然后根据实际要求确定一个自变量(x ),而其他变量通过题中条件再用x 表示出来,用代入法即可得到函数模型y =f (x ).(二)方法总结1.证明集合相等的方法:A =B ⇔①A ⊂B ;②A ⊃B (两点必须同时具备).2.相同函数的判定方法:①定义域相同;②对应法则相同(两点必须同时具备).3.函数表达式的求法:①定义法;②换元法;③待定系数法.4.函数的定义域的求法:列出使函数有意义的自变量的不等关系式,求解即得函数的定义域.常涉及到的依据为:①分母不为0;②偶次根式中被开方数不小于0;③实际问题要考虑实际意义等.5.函数值域的求法:①配方法(二次或四次);②判别式法;③反表示法;④换元法;⑤不等式法;⑥函数的单调性法.6.函数单调性的判定法:①设x 1、x 2是所研究区间内的任两个自变量,且x 1<x 2;②判定f (x 1)与f (x 2)的大小;③作差比较或作商比较.(注:做有关选择、填空题时,可采用复合函数单调性判定法,做解答题时必须用单调性定义和基本函数的单调性)7.函数奇偶性的判断:首先看函数的定义域是否关于原点对称,再看f (-x )与f (x )的关系.(1)图象的作法与平移:①据函数表达式,列表、描点、连光滑曲线;②利用熟知函数的图象的平移、翻转、伸缩变换;③利用函数图象的对称性描绘函数图象.(2)函数的应用举例(实际问题的解法). a.解决应用问题的一般程序是:①审题:弄清题意,分清条件和结论,理顺数量关系;②建模:将文字语言转化成数学语言,利用相应的数学知识模型. ③求模:求解数学模型,得到数学结论.④还原:将用数学方法得到的结论,还原为实际问题的意义.b.建模类型:①可化为一、二次函数的应用题的解法;②可化为分段函数的应用题解法. 8.常用函数的研究、总结与推广:(1)以二次函数为背景的函数问题(包括通过换元可转化为二次函数的问题).(2)研究函数y =b ax d cx ++(ac ≠b d)的图象性质. (3)研究函数y =x +x1的图象性质并推广.9.抽象函数(即不给出f (x )解析式,只知道f (x )具备的条件)的研究. (1)若f (a +x )=f (a -x ),则f (x )关于直线x =a 对称. (2)若对任意的x 、y ∈R ,都有f (x +y )=f (x )+f (y ),可利用赋值法研究抽象函数的性质.二、讲解新课 典型例题 【例1】 集合A ={x |x 2-mx -8≥0},B ={x |x 2-2mx -n <0},问能否找到两个实数m 、n ,使A ∩B ={x |4≤x <5}?若存在,求出m 、n 的值;若不存在,请说明理由.解:假设存在实数m 、n 满足条件.由题意可知,4是方程x 2-mx -8=0的一根,由韦达定理知方程的另一根为-2. ∴m =4+(-2)=2.∴B ={x |x 2-4x -n <0},A ={x |x ≥4或x ≤2}. 由题意可知,5是方程x 2-4x -n =0的一根,方程x 2-4x -n =0的另一根为x 0,则⎩⎨⎧-=⋅=+,5,4500n x x ∴⎩⎨⎧=-=.5,10n x综上,存在实数m =2,n =5满足题意.方法引导:本题通过集合与一元二次方程结合,给出一类开放性的问题,要求学生自己找出是否存在实数m 、n 能够满足题意.解题的关键就是能发现一元二次不等式解的特点.【例2】 设A ={x |-2≤x ≤a }≠∅,B ={y |y =2x +3,x ∈A },C ={z |z =x 2,x ∈A },且C ⊆B ,求实数a 的取值范围.解:∵A ={x |-2≤x ≤a },∴B ={y |y =2x +3,x ∈A }={y |-1≤y ≤2a +3}. 又C ={z |z =x 2,x ∈A },且C ⊆B ,①当-2≤a ≤0时,C ={z |z =x 2,x ∈A }={z |a 2≤z ≤4},∴⎩⎨⎧≥+-≥,432,12a a 得a ≥21,无解.②当0<a ≤2时,C ={z |0≤z ≤4},∴⎩⎨⎧+≤-≥,324,10a 得a ≥21.∴21≤a ≤2.③当a >2时,C ={z |0≤z ≤a 2}, ∴⎩⎨⎧+≤-≥,32,102a a 得-1≤a ≤3.∴2<a ≤3.综上21≤a ≤3. 方法引导:本题是集合与二次函数相结合的问题,通过对a 进行分类讨论,利用数轴分析集合间的包含关系来解决.【例3】 已知函数f (x )=xax x ++22,x ∈[1,+∞).(1)当a =21时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.(1)解:当a =21时,f (x )=x +x21+2.设1≤x 1<x 2,则f (x 2)-f (x 1)=(x 2-x 1)(1-2121x x ). ∵2x 1x 2>2,0<2121x x <21, ∴1-2121x x >0.又x 2-x 1>0, ∴f (x 2)-f (x 1)>0,即f (x 1)<f (x 2).∴f (x )在区间[1,+∞)上为增函数,则f (x )在区间[1,+∞)上的最小值为f (1)=27. (2)解法一:在区间[1,+∞]上,f (x )=xax x ++22>0恒成立⇔x 2+2x +a >0恒成立.设y =x 2+2x +a ,x ∈[1,+∞),y =x 2+2x +a =(x +1)2+a -1在区间[1,+∞)上递增, ∴当x =1时,y min =3+a .于是当且仅当y min =3+a >0时,函数f (x )>0恒成立,故a >-3.解法二:f (x )=x +xa+2,x ∈[1,+∞),当a ≥0时,函数f (x )的值恒为正;当a <0时,y =x +2与y =xa在[1,+∞)上都是增函数.所以f (x )=x +xa+2在[1,+∞)上是增函数.故当x =1时,y min =3+a ,于是当且仅当y min =3+a >0时,函数f (x )>0恒成立,故a >-3.方法引导:本题体现了函数思想在解题中的运用,第(1)题用函数单调性求函数的最小值,第(2)题用函数的单调性解决恒成立的问题.在第(2)题的解法一中,还可以这样解:要使x 2+2x +a >0恒成立,只要a >-x 2-2x =-(x +1)2+1恒成立,在[1,+∞)上,由函数单调性得-(x +1)2+1≤-3,所以只要a >-3.【例4】 已知f (x )=-x 2+ax -4a +21,x ∈[0,1],求f (x )的最大值g (a ),且求g (a )的最小值.解:∵f (x )=-x 2+ax -4a +21=-(x -2a )2+42a -4a +21,对称轴x =2a,∵x ∈[0,1],①当2a≤0,即a ≤0时,f (x )max =f (0)=-4a +21.②当0<2a<1,即0<a <2时,f (x )max =f (2a )=42a -4a +21.③当2a≥1,即a ≥2时,f (x )max =f (1)=43a-21.∴g (a )=⎪⎪⎪⎩⎪⎪⎪⎨⎧≥-<<+-≤+-.2,2143,20,2144,0,2142a a a a aa a ①当a ≤0时,-4a +21≥21. ②当0<a <2时,42a -4a +21=41(a -21)2+167≥167.③当a ≥2时,43a-21≥1.∴g (a )min =167.方法引导:本题是含参数的二次函数最值问题,通过对称轴x =2a的移动,对a 进行分类讨论,得到的最大值g (a )是关于a 的一个分段函数的形式,注意分段函数的最小值,是每一段最小值的最小值.【例5】 对于任意非零实数x 、y ,已知函数y =f (x )(x ≠0)满足f (xy )=f (x )+f (y ). (1)求f (1),f (-1);(2)判断y =f (x )的奇偶性;(3)若y =f (x )在(0,+∞)上是增函数,且满足f (x )+f (x -21)≤0,求x 的取值范围.解:(1)∵对于任意非零实数x 、y ,有f (xy )=f (x )+f (y ), 取x =y =1,得f (1)=f (1)+f (1), ∴f (1)=0.取x =y =-1,得f (1)=f (-1)+f (-1),∴f (-1)=0.(2)对任意x ≠0,取y =-1,则f (-x )=f (x )+f (-1)=f (x )+0,即f (-x )=f (x ),∴f (x )是偶函数.(3)∵f (x )+f (x -21)≤0,∴f [x (x -21)]≤0.由f (x )是偶函数,得f (|x 2-21x |)≤f (1).又y =f (x )(x ≠0)在(0,+∞)上是增函数,∴0<|x 2-21x |≤1. ∴-1≤x 2-21x <0或0<x 2-21x ≤1. 解得0<x <21或4171-≤x <0或21<x ≤4171+.方法引导:本题求抽象函数的单调性与奇偶性,一般常用赋值法,给x 、y 取一些特殊的值,从而得到一些特殊的函数值,再结合函数的单调性与奇偶性的性质解题.【例6】 已知f (x )∈[83,21],求y =f (x )+)(21x f -的值域.解:∵f (x )∈[83,21],∴2f (x )∈[43,1].∴1-2f (x )∈[0,41].∴)(21x f -∈[0,21].令t =)(21x f -,t ∈[0,21],则f (x )=21(1-t 2).∴y =21(1-t 2)+t =-21(t -1)2+1.由于t ∈[0,21],所以21≤y ≤87.故函数y 的值域为[21,87].方法引导:本题利用换元法求函数的值域,设出新元以后必须给出新元的范围,对于)(21x f -的范围的研究通常由里向外,最后再根据二次函数的性质求值域.【例7】 如下图,灌溉渠的横断面是等腰梯形,底宽及两边坡总长度为a ,边坡的倾斜角为60°.(1)求横断面积y 与底宽x 的函数关系式;(2)已知底宽x ∈[4a ,2a ],求横断面面积y 的最大值和最小值. 解:(1)分别过A 、B 作AE 、BF 垂直于CD ,交CD 于点E 、F , ∵∠ADC =∠BCD =60°,且AB =x ,∴AD =BC =2xa -.∴D E=CF =2x a -·cos60°=4xa -,AE =2xa -·sin60°=4)(3x a -.∴y =21(AB +CD )·AE =21(x +x +2xa -)·4)(3x a -=163(a +3x )(a -x )(0<x<a ).(2)∵y =-1633(x -3a )2+123a 2,x ∈[4a ,2a],∴当x =3a时,y max =123a 2;当x =2a时,y min =6435 a 2.故横断面面积y 的最大值为123a 2,最小值为6435a 2.方法引导:本题是函数在几何图形方面的应用,运用几何图形的性质求出与面积有关的量(用x 表示),根据面积公式列出关系式,这个过程就是建立数学模型,得到的函数是二次函数,但定义域不是R ,而是实际的底宽[4a ,2a].【例8】 某蔬菜基地种植西红柿,由历年市场行情得知,从2月1日起的300天内,西红柿市场售价与上市时间的关系用图甲所示的一条折线表示;西红柿的种植成本与上市时间的关系用图乙的抛物线表示:(1)写出如图甲表示的市场售价与时间的函数关系式P =f (t );写出如图乙表示的种植成本与时间的函数关系式Q =g (t ).(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?(注:市场售价和种植成本的单位:元/102 kg ,时间单位:天)解:(1)由图甲可得市场售价与时间的函数关系为f (t )=⎩⎨⎧≤<-≤≤-.300200,3002,2000,300t t t t由图乙可得种植成本与时间的函数关系为g (t )=2001(t -150)2+100,0≤t ≤300. (2)设t 时刻的纯收益为h (t ),则由题意得h (t )=f (t )-g (t ),即h (t )=⎪⎪⎩⎪⎪⎨⎧≤<-+-≤≤++-.300200,2125272001,2000,217521200122t t t t t t当0≤t ≤200时,配方整理得h (t )=-2001(t -50)2+100,所以,当t =50时,h (t )取得区间[0,200]上的最大值100;当200<t ≤300时,配方整理得h (t )=-2001·(t -350)2+100,所以,当t =300时,h (t )取得区间(200,300)上的最大值87.5.综上,由100>87.5可知,h (t )在区间[0,300]上可以取得最大值100,此时t =50,即从2月1日开始的第50天时,上市的西红柿纯收益最大.方法引导:本题是现实生活中的实际问题,题中两图本来是通过实验分析得到相关数据抽象出来的数学模型,这里让我们通过识图找到相应的函数关系式,然后建立纯收益关于时间的分段函数,利用二次函数和分段函数的知识解决问题.【例9】 已知f (x )是定义在[-1,1]上的奇函数,且f (1)=1,若a 、b ∈[-1,1],a +b ≠0,有ba b f a f ++)()(>0.(1)判断函数f (x )在[-1,1]上是增函数还是减函数,并证明你的结论;(2)若满足f (x +21)<f (11-x ),求x 的取值范围;(3)若f (x )≤m 2-2am +1,对所有x ∈[-1,1],a ∈[-1,1]恒成立,求实数m 的取值范围.解:(1)任取-1≤x 1<x 2≤1,则x 1-x 2<0.∵ba b f a f ++)()(>0,∴2121)()(x x x f x f --+>0.∴f (x 1)+f (-x 2)<0.又∵f (x )是定义在[-1,1]上的奇函数,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2). ∴函数f (x )在[-1,1]上是增函数.(2)∵函数f (x )在[-1,1]上是增函数,由f (x +21)<f (11-x ), 得⎪⎪⎪⎩⎪⎪⎪⎨⎧-<+≤--≥+,1121,111,121x x x x ⎪⎪⎩⎪⎪⎨⎧<<-<<≥-≥.2311,12,23x x x x x 或或 ∴-23≤x <-1. (3)∵f (x )≤m 2-2am +1,且对所有x ∈[-1,1],a ∈[-1,1]恒成立, ∴m 2-2am +1≥f (x )max =f (1),得m 2-2am ≥0,当a ∈[-1,1]时恒成立. 令f (a )=m 2-2am ,a ∈[-1,1],∴⎪⎩⎪⎨⎧≥+=-≥+-=,02)1(,02)1(22m m f m m f得⎩⎨⎧-≤≥≤≥.20,02m m m m 或或∴m ≥2或m ≤-2或m =0.方法引导:本题是函数的一个综合题,注意对于函数单调性的证明应该用定义法,利用函数的单调性求出自变量之间的关系以及利用最值解决恒成立问题,这是对函数性质的一个综合把握.三、课堂练习 (2课时的练习)课本P 51复习参考题A 组1,2,3,4,5,6,7,8,9. 答案:1.(1)A ={-3,3};(2)B ={1,2};(3)C ={1,2}. 2.(1)集合的点组成线段AB 的垂直平分线;(2)集合的点组成以O 为圆心,3 cm 为半径的圆. 3.三角形的外心.4.a 的值为0,-1,1.5.A ∩B ={(0,0)},A ∩C =∅,(A ∩B )∪(B ∩C )={(0,0),(53,-59}. 6.(1){x |x ≤-2或x ≥2}. (2){x |x ≥2}.(3){x |x ≥4且x ≠5}.7.(1)f (a )+1=a +12; (2)f (a +1)=-aa+2.8.证明:(1)f (-x )=22)(1)(1x x ---+=2211x x -+=f (x );(2)f (x 1)=22)1(1)1(1xx -+=1122-+x x =-2211x x -+=-f (x ). 9.(1)图象略.(2)最大高度为1.08 m. 四、课堂小结1.集合语言是现代数学的基本语言,使用集合语言可以简洁、准确地表达数学的内容.2.运用集合与对应的语言进一步描述了函数概念.与初中的函数概念相比较,突出了函数概念的本质:两个数集间的一种确定的对应关系;明确了函数的三要素.3.函数是描述变量之间依赖关系的重要数学模型.函数的表示方法主要有解析法、图象法、列表法三种.4.研究函数的基本性质不仅是解决实际问题的需要,也是数学本身的自然要求.例如:事物的变化趋势、对称性、用料最省、利润最大、效率最高等,就要研究函数的基本性质,如单调性、最大(小)值和奇偶性等.五、布置作业 (2课时的作业)课本P52复习参考题A组10,11,12,13,14;B组2,3,4,5,6,7,8.板书设计第一章单元复习方法归类要点例题及分析过程课堂小结与布置作业。
高一数学必修一复习教案(人教A版)本资料为woRD文档,请点击下载地址下载全文下载地址必修一模块过关试题(1)一、选择题:(每小题4分共40分).函数的定义域是A.B.c.D.2.如果幂函数的图象经过点,则的值等于A、B、c、D、3.已知是单调函数的一个零点,且则A.B.c.D.4.下列表示同一个函数的是A.B.c.D.5.函数的图象为A.B.c.D.6.若偶函数在上是减函数,则下列关系中成立的是A.BcD7.下面不等式成立的是A.B.c.D.8.定义在R上的偶函数满足,且当时,则等于A.B.c.D.9.函数是定义在上的偶函数,则在区间上是A.增函数B.减函数c.先增后减函数D.先减后增函数0.若函数在区间上是减函数,则的取值范围是A.B.c.D.选择题答案题号23456789答案二、填空题1.已知在映射下的对应元素是,则在映射下的对应元素是;2.设为定义在R上的奇函数,且当时,,则时的解析式为_______________4.方程的解的个数为个.5.=三、解答题:本题共5小题,共40分。
6.计算(6分)17.(8分)已知函数的定义域为,的定义域为集合;集合,若,求实数a的取值集合。
18.(8分)f定义在R上的偶函数,在区间上递增,且有,求a的取值范围.9.(8分)设某旅游景点每天的固定成本为元,门票每张为元,变动成本与购票进入旅游景点的人数的算术平方根成正比。
一天购票人数为人时,该旅游景点收支平衡;一天购票人数超过人时,该旅游景点需另交保险费元。
设每天的购票人数为人,赢利额为元。
⑴求与之间的函数关系;⑵该旅游景点希望在人数达到人时即不出现亏损,若用提高门票价格的措施,则每张门票至少要多少元(取整数)?注:①利润=门票收入—固定成本—变动成本;②可选用数据:,,。
(1)求值;(2)判断并证明该函数在定义域上的单调性;(3)若对任意的,不等式恒成立,求实数的取值范围;数学必修一过关检测(2)一、选择题:本大题共10小题,每小题4分,共40分.函数的定义域是:2.全集U={0,1,3,5,6,8},集合A={1,5,8},B={2},则集合:A.{0,2,3,6}B.{0,3,6}c.{2,1,5,8}D.3.已知集合:A.B.[-1,5]c.D..三、解答题(本大题共5小题,共40分.解答应写出文字说明,证明过程或演算步骤.)6.不用计算器求下面式子的值:;7.(本小题满分8分)已知全集,,,.(1)求;(2)求.18.已知函数是定义在R上的偶函数,且当≤0时,.现已画出函数在y轴左侧的图像,如图所示,请补出完整函数的图像,并根据图像写出函数的增区间;写出函数的解析式和值域.19.(本小题满分8分)已知,求函数的最大值和最小值.20.(本小题满分10分)已知函数.(1)求函数的定义域;(2)判断的奇偶性;(3)方程是否有根?如果有根,请求出一个长度为的区间,使;如果没有,请说明理由?(注:区间的长度).。
高一数学必修一全套教案完美版
一、教案概述
本教案为高一数学必修一全套教案完美版,共包含全套教案的概述部分。
二、教学目标
1. 通过本教案的研究,学生将掌握必修一的数学知识和技能。
2. 培养学生的数学思维能力和解决问题的能力。
3. 培养学生的数学研究兴趣,提高研究动力。
三、教学内容
1. 第一章:函数与方程
该章节主要介绍函数与方程的基本概念和性质,包括函数的定义与表示、方程的解、函数的图像等。
2. 第二章:三角函数
该章节主要介绍三角函数的概念和基本性质,包括正弦、余弦、正切等函数的定义与图像。
3. 第三章:数列与数学归纳法
该章节主要介绍数列的概念、等差数列和等比数列的性质,以
及数学归纳法的应用。
4. 第四章:平面向量
该章节主要介绍平面向量的基本概念和运算法则,包括向量的
表示、向量的加法和数量乘法等。
5. 第五章:解析几何
该章节主要介绍平面直角坐标系、平面上点、直线和圆的方程,以及它们之间的关系。
四、教学方法
本教案采用多种教学方法相结合的方式,包括讲授、示范、练等,使学生能够全面理解和掌握数学知识。
五、教学评价
教师将通过课堂练、作业布置等方式对学生进行教学评价,以了解学生的研究情况和掌握程度,并及时给予指导和反馈。
六、教学资源
本教案的教学资源包括教材、课件、题集等,以便帮助学生更好地研究和理解数学知识。
以上为高一数学必修一全套教案完美版的内容概述,希望能够对教学工作有所帮助。
具体的教案详细内容请参考相应教材和辅助教材。
高一数学期末复习教学案《必修第一册》 期末复习(一) 集合与逻辑 班 级 姓 名【课前预习】1. 已知集合2|340=A x R ax x .若A 中只有一个元素,则实数a 的取值范围为 .2.已知全集为=U R , [1,3),[2,4]A B =-=,如图阴影部分所表示的集合为 .3.集合A ={x |1£x <5},B =[-a ,a +3],若A ÍB ,则实数a 的取值范围是 .4.已知集合{}{}2|320,,|05,A x x x x R B x x x N =-+=∈=<<∈,则满足条件A C B ⊆⊆的集合C 的个数为 .5.已知集合U =(1,7),A =[2,5),B =[3,7),则(C U A )È(C U B )= .6.集合{}2|9100A x x x =--=,{}|10B x mx =+=,且A ÇB =B ,则m 的取值集合 是 .7.(多选题)下列说法正确的是( )A .“1a >”是“21a >”的充分不必要条件;B .“a b >”是“22ac >bc ”的充要条件C .命题“x R ∀∈,210x +<”的否定是“x R ∃∈,使得210x +≥”D .已知函数()y f x =的定义域为R ,则“()00=f ”是“函数()y f x =为奇函数”的必要不充分条件.8. 已知条件p :x >a ,条件q :11x -<.若p 是q 的必要不充分条件,则实数a 的取值范围是 .9. 已知()24f x x x m =-+,()2log g x x =,若“[]11,4x ∀∈,[]22,4x ∃∈,使得()()12f x g x >成立”为真命题,则实数m 的取值范围是 .10.已知全集U R =,集合A ={x |log 2(x -1)£3},,{|}B x x a =≥.如果A B,则实数a 的取值范围为 .【典型例题】例1.已知函数()4log f x x =,1,416x ⎡⎤∈⎢⎥⎣⎦的值域是集合A ,关于x 的不等式3122x a x +⎛⎫> ⎪⎝⎭()a R ∈的解集为B ,集合51x C x x ⎧-⎫=⎨⎬+⎩⎭≥0,集合{}()1210D x m x m m =+≤<->. (1)若A B B =,求实数a 的取值范围; (2)若D C ⊆求实数m 的取值范围.例2.已知命题:“{}|11x x x ∃∈-<<,使等式20x x m --=成立”是真命题.(1)求实数m 的取值集合M ;(2)设不等式()(2)0x a x a -+-<的解集为N ,若x ∈N 是x ∈M 的必要条件,求a 的取值范围.期末复习(一)【课外作业】 班级 姓名1.集合{}{}b a B a A ,,log ,32==,若{}2=B A ,则B A = .2.设集合A ={x |x 2+x -2<0},B =(-1,0),则C A B = .3.某次月考数学优秀率为70%,语文优秀率为75%,则这两门学科都优秀的百分率至少为 .4.已知[,3)A a a =+,(,1][5,)B =-∞-+∞,若A ÇB ¹f ,则实数a 的取值范围是 .5.已知集合2{|log 1}A x x =<-,{|B k =函数14()k f x x-=在(0,)+∞上是增函数}.则 ()R C A B = .6.已知P ={x|x 2-8x -20≤0},非空集合S ={x|1-m≤x≤1+m}.若x ∈P 是x ∈S 的必要条件,则实数m 的取值范围是 .7. 若命题“∃x 0∈R ,使得3x 20+2ax 0+1<0”是假命题,则实数a 的取值范围是____________.8.(多选题)下列命题正确的是( )A .“1a >”是“11a <”的必要不充分条件;B .若,a b ∈R ,则2b a b a a b a b+≥⋅= C . 命题“()00,x ∃∈+∞,00ln 1x x =-”的否定是“()0,x ∀∈+∞,ln 1x x ≠-” D .设a R ∈,“1a =”,是“函数()1xx a e f x ae-=+在定义域上是奇函数”的充分不必要条件9.集合1{|0}1x A x x -=<+,{|||}B x x b a =-<,若“1a =”是“A B ≠∅”的充分条件,则实数b 的取值范围是 .10.若命题p:“2log 11m -≤”, 与命题q: “函数2()2+f x x mx m =-图像与x 轴至多一个交点”至少有一个是真命题,则实数m 的取值范围是 .11.在①A B ⊆;②R R C B C A ⊆;③A B A =;这三个条件中任选一个,补充在下面问题中.若问题中的实数a 存在,求a 的取值范围;若不存在,说明理由. 问题:已知集合{}2log (1)1,A x x x R =->∈,{}()(4)0,B x x a x a x R =--+>∈,是否存在实数a ,使得 ?注:如果选择多个条件分别解答,按第一个解答计分.12.已知集合{}2|514A x y x x ==--, 集合()212|log 61B y y x x ⎧⎫⎪⎪==---⎨⎬⎪⎪⎩⎭, 集合{}|121C x m x m =+≤≤-. (1)求A ÇB ; (2)若A C A =,求实数m 的取值范围.13.已知p :24120x x ,q :22210(0)x x m m . (1)若p 是q 充分不必要条件,求实数m 的取值范围; (2)若“”是“”的充分条件,求实数m 的取值范围.。
高中数学必修一教案全套优秀6篇高一上册数学教案篇一一、教材《直线与圆的位置关系》是高中人教版必修2第四章第二节的内容,直线和圆的位置关系是本章的重点内容之一。
从知识体系上看,它既是点与圆的位置关系的延续与提高,又是学习切线的判定定理、圆与圆的位置关系的基础。
从数学思想方法层面上看它运用运动变化的观点揭示了知识的发生过程以及相关知识间的内在联系,渗透了数形结合、分类讨论、类比、化归等数学思想方法,有助于提高学生的思维品质。
二、学情学生初中已经接触过直线与圆相交、相切、相离的定义和判定;且在上节的学习过程中掌握了点的坐标、直线的方程、圆的方程以及点到直线的距离公式;掌握利用方程组的方法来求直线的交点;具有用坐标法研究点与圆的位置关系的基础;具有一定的数形结合解题思想的基础。
三、教学目标(一)知识与技能目标能够准确用图形表示出直线与圆的三种位置关系;可以利用联立方程的方法和求点到直线的距离的方法简单判断出直线与圆的关系。
(二)过程与方法目标经历操作、观察、探索、总结直线与圆的位置关系的判断方法,从而锻炼观察、比较、概括的逻辑思维能力。
(三)情感态度价值观目标激发求知欲和学习兴趣,锻炼积极探索、发现新知识、总结规律的能力,解题时养成归纳总结的良好习惯。
四、教学重难点(一)重点用解析法研究直线与圆的位置关系。
(二)难点体会用解析法解决问题的数学思想。
五、教学方法根据本节课教材内容的特点,为了更直观、形象地突出重点,突破难点,借助信息技术工具,以几何画板为平台,通过图形的动态演示,变抽象为直观,为学生的数学探究与数学思维提供支持。
在教学中采用小组合作学习的方式,这样可以为不同认知基础的学生提供学习机会,同时有利于发挥各层次学生的作用,教师始终坚持启发式教学原则,设计一系列问题串,以引导学生的数学思维活动。
高中数学必修1教案篇二一、教材分析本节课选自《普通高中课程标准数学教科书-必修1》(人教A版)《1.2.1函数的概念》共3课时,本节课是第1课时。
必修一教案第一章集合与函数概念一.课标要求:本章将集合作为一种语言来学习,使学生感受用集合表示数学内容时的简洁性、准确性,帮助学生学会用集合语言描述数学对象,发展学生运用数学语言进行交流的能力.函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型来学习,强调结合实际问题,使学生感受运用函数概念建立模型的过程与方法,从而发展学生对变量数学的认识.1.了解集合的含义,体会元素与集合的“属于”关系,掌握某些数集的专用符号.2.理解集合的表示法,能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用.3、理解集合之间包含与相等的含义,能识别给定集合的子集,培养学生分析、比较、归纳的逻辑思维能力.4、能在具体情境中,了解全集与空集的含义.5、理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集,培养学生从具体到抽象的思维能力.6.理解在给定集合中,一个子集的补集的含义,会求给定子集的补集.7.能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.8.学会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成的三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域,并熟练使用区间表示法.9.了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象.10.通过具体实例,了解简单的分段函数,并能简单应用.11.结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形.12.学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法.13.通过实习作业,使学生初步了解对数学发展有过重大影响的重大历史事件和重要人物,了解生活中的函数实例.二.编写意图与教学建议1.教材不涉及集合论理论,只将集合作为一种语言来学习,要求学生能够使用最基本的集合语言表示有关的数学对象,从而体会集合语言的简洁性和准确性,发展运用数学语言进行交流的能力.教材力求紧密结合学生的生活经验和已有数学知识,通过列举丰富的实例,使学生了解集合的含义,理解并掌握集合间的基本关系及集合的基本运算.教材突出了函数概念的背景教学,强调从实例出发,让学生对函数概念有充分的感性基础,再用集合与对应语言抽象出函数概念,这样比较符合学生的认识规律,同时有利于培养学生的抽象概括的能力,增强学生应用数学的意识,教学中要高度重视数学概念的背景教学.2.教材尽量创设使学生运用集合语言进行表达和交流的情境和机会,并注意运用Venn图表达集合的关系及运算,帮助学生借助直观图示认识抽象概念.教学中,要充分体现这种直观的数学思想,发挥图形在子集以及集合运算教学中的直观作用。
高中数学必修1教案最新人教版高一数学必修一教案(大全(优秀11篇)高中数学必修一教案全套篇一本节课力的合成,是在学生了解力的基本性质和常见几种力的基础上,通过等效替代思想,研究多个力的合成方法,是对前几节内容的深化。
本节重点介绍力的合成法则——平行四边形定则,但实际这是所有矢量运算的共同工具,为学习其他矢量的运算奠定了基础。
更重要的是,力的合成是解决力学问题的基础,对今后牛顿运动定律、平衡问题、动量与能量问题的理解和应用都会产生重要影响。
因此,这节课承前启后,在整个高中物理学习中占据着非常重要的地位。
二、教学目标定位为了让学生充分进行实验探究,体验获取知识的过程,本节内容分两课时来完成,今天我说课的内容为本节内容的第一课时。
根据上述教材分析,考虑到学生的实际情况,在本节课的教学过程中,我制定了如下教学目标:一、知识与技能.理解合力、分力、力的合成的概念。
理解力的合成本质上是从等效的角度进行力的替代。
.探究求合力的方法——力的平行四边形定则,会用平行四边形定则求合力。
二、过程与方法.通过学习合力和分力的概念,了解物理学常用的方法——等效替代法。
.通过实验探究方案的设计与实施,体验科学探究的过程。
三、情感态度与价值观.培养学生的合作精神,激发学生学习兴趣,形成良好的学习方法和习惯。
.培养认真细致、实事求是的实验态度。
根据以上分析确定本节课的重点与难点如下:一、重点.合力和分力的概念以及它们的关系。
.实验探究力的合成所遵循的法则。
二、难点平行四边形定则的理解和运用。
三、重、难点突破方法——教法简介本堂课的重、难点为实验探究力的合成所遵循的法则——平行四边形定则,为了实现重难点的突破,让学生真正理解平行四边形定则,就要让学生亲自体验规律获得的过程。
因此,本堂课在学法上采用学生自主探究的实验归纳法——通过重现获取知识和方法的思维过程,让学生亲自去体验、探究、归纳总结。
体现学生主体性。
实验归纳法的步骤如下。
高一数学必修一教案(10篇)高一数学必修一教案1重点难点教学:1.正确理解映射的概念;2.函数相等的两个条件;3.求函数的定义域和值域。
教学过程:1. 使学生熟练掌握函数的概念和映射的定义;2. 使学生能够根据已知条件求出函数的定义域和值域;3. 使学生掌握函数的三种表示方法。
教学内容:1.函数的定义设A、B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数fx和它对应,那么称:fAB81为从集合A到集合B的一个函数(function),记作:yfxxA其中,x叫自变量,x的取值范围A叫作定义域(domain),与x的值对应的y值叫函数值,函数值的集合{|}fxxA83叫值域(range)。
显然,值域是集合B的子集。
注意:① “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.2.构成函数的三要素定义域、对应关系和值域。
3、映射的定义设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。
4. 区间及写法:设a、b是两个实数,且a(1) 满足不等式axb8080的实数x的集合叫做闭区间,表示为[a,b];(2) 满足不等式axb8787的实数x的集合叫做开区间,表示为(a,b);5.函数的三种表示方法①解析法②列表法③图像法高一数学必修一教案2教学目标1.使学生掌握的概念,图象和性质.(1)能根据定义判断形如什么样的函数是,了解对底数的限制条件的合理性,明确的定义域.(2)能在基本性质的指导下,用列表描点法画出的图象,能从数形两方面认识的性质.(3)能利用的性质比较某些幂形数的大小,会利用的图象画出形如的图象.2.通过对的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法.3.通过对的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣.使学生善于从现实生活中数学的发现问题,解决问题.教学建议教材分析(1)是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以应重点研究.(2)本节的教学重点是在理解定义的基础上掌握的图象和性质.难点是对底数在和时,函数值变化情况的区分.(3)是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究.教法建议(1)关于的定义按照课本上说法它是一种形式定义即解析式的特征必须是的样子,不能有一点差异,诸如,等都不是.(2)对底数的限制条件的理解与认识也是认识的重要内容.如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来.关于图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象.高一数学必修一教案3教学目的:(1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;(2)能用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。
高一数学必修一复习教案第1章 集 合§1.1 集合的含义及其表示重难点:集合的含义与表示方法,用集合语言表达数学对象或数学内容;区别元素与集合等概念及其符号表示;用集合语言(描述法)表达数学对象或数学内容;集合表示法的恰当选择.考纲要求:①了解集合的含义、元素与集合的“属于”关系;②能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.经典例题:若x ∈R ,则{3,x ,x 2-2x }中的元素x 应满足什么条件?当堂练习:1.下面给出的四类对象中,构成集合的是( )A .某班个子较高的同学B .长寿的人CD .倒数等于它本身的数2.下面四个命题正确的是( )A .10以内的质数集合是{0,3,5,7}B .由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}C .方程2210x x -+=的解集是{1,1} D .0与{0}表示同一个集合 3. 平面直角坐标系内所有第二象限的点组成的集合是( )A . {x,y 且0,0x y <>}B . {(x,y)0,0x y <>} C. {(x,y) 0,0x y <>} D. {x,y 且0,0x y <>} 6.用符号∈或∉填空:0__________{0}, a __________{a }, π__________Q ,21__________Z ,-1__________R ,0__________N , 0 Φ.10.对于集合A ={2,4,6},若a ∈A ,则6-a ∈A ,那么a 的值是__________. 11.数集{0,1,x 2-x }中的x 不能取哪些数值?重难点:子集、真子集的概念;元素与子集,属于与包含间的区别;空集是任何非空集合的真子集的理解;补集的概念及其有关运算.考纲要求:①理解集合之间包含与相等的含义,能识别给定集合的子集;②在具体情景中,了解全集与空集的含义;③理解在给定集合中一个子集的补集的含义,会求给定子集的补集.当堂练习:1.下列四个命题:①Φ={0};②空集没有子集;③任何一个集合必有两个或两个以上的子集;④空集是任何一个集合的子集.其中正确的有( ) A .0个B .1个C .2个D .3个2.若M ={x |x >1},N ={x |x ≥a },且N ⊆M ,则( ) A .a >1 B .a ≥1 C .a <1 D .a ≤1 6.若AB ,AC ,B ={0,1,2,3},C ={0,2,4,8},则满足上述条件的集合A 为________.7.如果M ={x |x =a 2+1,a ∈N*},P ={y |y =b 2-2b +2,b ∈N +},则M 和P 的关系为M _________P . 8.设集合M ={1,2,3,4,5,6},A ⊆M ,A 不是空集,且满足:a ∈A ,则6-a ∈A ,则满足条件的集合A 共有_____________个. 9.已知集合A={13x -≤≤},uA={|37x x <≤},uB={12x -≤<},则集合B= .10.集合A ={x |x 2+x -6=0},B ={x |mx +1=0},若B A ,则实数m 的值是 .11.判断下列集合之间的关系:(1)A={三角形},B={等腰三角形},C={等边三角形};(2)A={2|20x x x --=},B={|12x x -≤≤},C={2|44x x x +=}; (3)A={10|110x x ≤≤},B={2|1,x x t t R =+∈},C={|213x x +≥}; (4)11{|,},{|,}.2442k k A x x k Z B x x k Z ==+∈==+∈12. 已知集合{}2|(2)10A x x p x x R =+++=∈,,且⊆A {负实数},求实数p 的取值范围.13..已知全集U={1,2,4,6,8,12},集合A={8,x,y,z},集合B={1,xy,yz,2x},其中6,12z ≠,若A=B, 求uA..14.已知全集U ={1,2,3,4,5},A ={x ∈U |x 2-5qx +4=0,q ∈R}.(1)若uA =U ,求q 的取值范围; (2)若u A 中有四个元素,求uA 和q 的值;(3)若A 中仅有两个元素,求uA 和q 的值.必修1 §1.3 交集、并集重难点:并集、交集的概念及其符号之间的区别与联系.考纲要求:①理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;②能使用韦恩图(Venn )表达集合的关系及运算.经典例题:已知集合A={}20,x x x -= B={}2240,x ax x -+=且A ⋂B=B ,求实数a 的取值范围.当堂练习:1.已知集合{}{}{}2220,0,2M x x px N x x x q M N =++==--=⋂=且,则q p ,的值为 ().A .3,2p q =-=-B .3,2p q =-=C .3,2p q ==-D .3,2p q ==2.设集合A ={(x ,y )|4x +y =6},B ={(x ,y )|3x +2y =7},则满足C ⊆A ∩B 的集合C 的个数是( ). A .0B .1C .2D .33.已知集合{}{}|35|141A x x B x a x a =-≤≤=+≤≤+,,A B B ⋂=且, B φ≠,则实数a 的取值范围是( )..1.01A a B a ≤≤≤ .0.41C a D a ≤-≤≤4.设全集U=R ,集合{}{}()()0,()0,0()f x M x f x N xg x g x =====则方程的解集是( ).A .MB . M ∩(uN ) C . M ∪(uN ) D .M N ⋃ 5.有关集合的性质:(1) u(A ⋂B)=(uA )∪(uB ); (2)u (A ⋃B)=(uA )⋂(uB )(3) A ⋃ (uA)=U (4) A ⋂ (uA)=Φ 其中正确的个数有( )个.A.1 B . 2 C .3 D .46.已知集合M ={x |-1≤x <2=,N ={x |x —a ≤0},若M ∩N ≠Φ,则a 的取值范围是 . 7.已知集合A ={x |y =x 2-2x -2,x ∈R },B ={y |y =x 2-2x +2,x ∈R },则A ∩B = . 8.已知全集{}1,2,3,4,5,U A =⋂且(uB ){}1,2,(2=uA ){}4,5B ⋂=, ,A B φ⋂≠则A= ,B= .9.表示图形中的阴影部分 . 10.在直角坐标系中,已知点集A={}2(,)21y x y x -=-,B={}(,)2x y y x =,则(uA) ⋂ B= .11.已知集合M={}{}{}2222,2,4,3,2,46,2a a N a a a a M N +-=++-+⋂=且,求实数a 的的值.12.已知集合{}{}220,60,,A x x bx c B x x mx A B B A =++==++=⋃=且B ⋂={}2,求实数b,c,m 的值.13. 已知A⋂B={3}, (uA)∩B={4,6,8}, A ∩(uB)={1,5},(uA)∪A BC(uB)={*10,,3x x x N x <∈≠},试求u(A ∪B),A ,B .14.已知集合A=}{240x R x x ∈+=,B=}{222(1)10x R x a x a ∈+++-=,且A ∪B=A ,试求a 的取值范围.必修1 第1章 集 合§1.4 单元测试1.设A={x|x ≤4},17 )(A ){a} A (B )a ⊆A (C ){a}∈A (D )a ∉A 2.若{1,2} A ⊆{1,2,3,4,5},则集合A 的个数是( ) (A )8 (B )7 (C )4 (D )3 3.下面表示同一集合的是( )(A )M={(1,2)},N={(2,1)} (B )M={1,2},N={(1,2)} (C )M=Φ,N={Φ} (D )M={x|2210}x x -+=,N={1}4.若P ⊆U ,Q ⊆U ,且x ∈C U (P ∩Q ),则( )(A )x ∉P 且x ∉Q (B )x ∉P 或x ∉Q (C )x ∈C U (P ∪Q) (D )x ∈C U P 5. 若M ⊆U ,N ⊆U ,且M ⊆N ,则( )(A )M ∩N=N (B )M ∪N=M (C )C U N ⊆C U M (D )C U M ⊆C U N 6.已知集合M={y|y=-x 2+1,x ∈R},N={y|y=x 2,x ∈R},全集I=R ,则M ∪N 等于( )(A ){(x,y)|x=21,,}22y x y R ±=∈ (B ){(x,y)|x 21,,}22y x y R ≠±≠∈(C ){y|y ≤0,或y ≥1} (D ){y|y<0, 或y>1}7.50名学生参加跳远和铅球两项测试,跳远和铅球测试成绩分别及格40人和31人,两项测试均不及格的有4人,则两项测试成绩都及格的人数是( )(A )35 (B )25 (C )28 (D )15⊂ ≠⊂ ≠8.设x,y ∈R,A={}(,)x y y x =,B= {}(,)1y x y x=,则A 、B 间的关系为( )(A )AB (B )BA (C )A=B (D )A ∩B=Φ9. 设全集为R ,若M={}1x x ≥ ,N= {}05x x ≤<,则(C U M )∪(C U N )是( )(A ){}0x x ≥ (B ) {}15x x x <≥或 (C ){}15x x x ≤>或 (D ) {}05x x x <≥或 10.已知集合{|31,},{|32,}M x x m m Z N y y n n Z ==+∈==+∈,若00,,x M y N ∈∈ 则00y x 与集合,M N 的关系是 ( )(A )00y x M ∈但N ∉(B )00y x N ∈但M ∉(C )00y x M ∉且N ∉(D )00y x M ∈且N ∈11.集合U ,M ,N ,P 如图所示,则图中阴影部分所表示的集合是( ) (A )M ∩(N ∪P ) (B )M ∩C U (N ∪P ) (C )M ∪C U (N ∩P ) (D )M ∪C U (N ∪P ) 12.设I 为全集,A ⊆I,B A,则下列结论错误的是( )(A )C I AC I B (B )A ∩B=B (C )A ∩C I B =Φ (D ) C I A ∩B=Φ13.已知x ∈{1,2,x 2},则实数x=__________.14.已知集合M={a,0},N={1,2},且M ∩N={1},那么M ∪N 的真子集有 个. 15.已知A={-1,2,3,4};B={y|y=x 2-2x+2,x ∈A},若用列举法表示集合B ,则B= . 16.设{}1,2,3,4I =,A 与B 是I 的子集,若{}2,3A B =I ,则称(,)A B 为一个“理想配集”,那么符合此条件的“理想配集”的个数是 .(规定(,)A B 与(,)B A 是两个不同的“理想配集”)17.已知全集U={0,1,2,…,9},若(C U A)∩(C U B)={0,4,5},A ∩(C U B)={1,2,8},A ∩B={9}, 试求A ∪B .18.设全集U=R,集合A={}14x x -<<,B={}1,y y x x A =+∈,试求C U B, A ∪B, A ∩B,A ∩(C U B), ( C U A) ∩(C U B).19.设集合A={x|2x 2+3px+2=0};B={x|2x 2+x+q=0},其中p ,q ,x ∈R ,当A ∩B={}12时,求p 的值和A ∪B .20.设集合A={22(,)4642x y y x x b b ac a=++-±-,B={}(,)2x y y x a =+,问:NU PM(1) a 为何值时,集合A ∩B 有两个元素; (2) a 为何值时,集合A ∩B 至多有一个元素.21.已知集合A={}1234,,,a a a a ,B={}22221234,,,a a a a ,其中1234,,,a a a a均为正整数,且1234a a a a <<<,A ∩B={a 1,a 4}, a 1+a 4=10, A ∪B 的所有元素之和为124,求集合A 和B .22.已知集合A={x|x 2-3x+2=0},B={x|x 2-ax+3a -5},若A ∩B=B ,求实数a 的值.第2章 函数概念与基本初等函数Ⅰ§2.1.1 函数的概念和图象重难点:在对应的基础上理解函数的概念并能理解符号“y =f (x )”的含义,掌握函数定义域与值域的求法; 函数的三种不同表示的相互间转化,函数的解析式的表示,理解和表示分段函数;函数的作图及如何选点作图,映射的概念的理解.考纲要求:①了解构成函数的要素,会求一些简单函数的定义域和值域;②在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数;③了解简单的分段函数,并能简单应用;经典例题:设函数f (x )的定义域为[0,1],求下列函数的定义域: (1)H (x )=f (x 2+1);(2)G (x )=f (x +m )+f (x -m )(m >0).当堂练习:1. 下列四组函数中,表示同一函数的是( )A .(),()f x x g x ==.2(),()f x x g x ==C .21(),()11x f x g x x x -==+- D .()()f x g x ==2.函数()y f x =的图象与直线x a =交点的个数为( )A .必有一个B .1个或2个C .至多一个D .可能2个以上 3.已知函数1()1f x x =+,则函数[()]f f x 的定义域是( )A .{}1x x ≠B .{}2x x ≠-C .{}1,2x x ≠--D .{}1,2x x ≠-4.函数1()1(1)f x x x =--的值域是( )A .5[,)4+∞B .5(,]4-∞ C . 4[,)3+∞ D .4(,]3-∞5.对某种产品市场产销量情况如图所示,其中:1l 表示产品各年年产量的变化规律;2l 表示产品各年的销售情况.下列叙述: ( )(1)产品产量、销售量均以直线上升,仍可按原生产计划进行下去; (2)产品已经出现了供大于求的情况,价格将趋跌;(3)产品的库存积压将越来越严重,应压缩产量或扩大销售量;(4)产品的产、销情况均以一定的年增长率递增.你认为较合理的是( ) A .(1),(2),(3) B .(1),(3),(4) C .(2),(4) D .(2),(3)6.在对应法则,,,x y y x b x R y R →=+∈∈中,若25→,则2-→ , →6. 7数()f x 对任何x R+∈恒有1212()()()f x x f x f x ⋅=+,已知(8)3f =,则(2)f = .8.规定记号“∆”表示一种运算,即a b ab a b a b R +∆=++∈,、. 若13k ∆=,则函数()f xk x=∆的值域是___________.9.已知二次函数f(x)同时满足条件: (1) 对称轴是x=1; (2) f(x)的最大值为15;(3) f(x)的两根立方和等于17.则f(x)的解析式是 . 10.函数2522y x x =-+的值域是 .11. 求下列函数的定义域 : (1)()121x f x x =-- (2)0(1)()x f x x x+=-12.求函数32y x x =--的值域.13.已知f(x)=x 2+4x+3,求f(x)在区间[t,t+1]上的最小值g(t)和最大值h(t).14.在边长为2的正方形ABCD 的边上有动点M ,从点B 开始,沿折线BCDA 向A 点运动,设M 点运动的距离为x ,△ABM 的面积为S . (1)求函数S=的解析式、定义域和值域; (2)求f[f(3)]的值.第2章 函数概念与基本初等函数Ⅰ§2.1.2 函数的简单性质重难点:领会函数单调性的实质,明确单调性是一个局部概念,并能利用函数单调性的定义证明具体函数的单调性,领会函数最值的实质,明确它是一个整体概念,学会利用函数的单调性求最值;函数奇偶性概念及函数奇偶性的判定;函数奇偶性与单调性的综合应用和抽象函数的奇偶性、单调性的理解和应用;了解映射概念的理解并能区别函数和映射.考纲要求:①理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解函数奇偶性的含义;并了解映射的概念;②会运用函数图像理解和研究函数的性质.经典例题:定义在区间(-∞,+∞)上的奇函数f (x )为增函数,偶函数g (x )在[0,+∞ )上图象与f (x )的图象重合.设a >b >0,给出下列不等式,其中成立的是① f (b )-f (-a )>g (a )-g (-b ) ②f (b )-f (-a )<g (a )-g (-b ) ③f (a )-f (-b )>g (b )-g (-a ) ④f (a )-f (-b )<g (b )-g (-a )A .①④B .②③C .①③D .②④当堂练习:1.已知函数f (x )=2x 2-mx +3,当()2,x ∈-+∞时是增函数,当(),2x ∈-∞-时是减函数,则f (1)等于 ( )A .-3B .13C .7D .含有m 的变量B2.函数2211()11x x f x x x ++-=+++是( )A . 非奇非偶函数B .既不是奇函数,又不是偶函数奇函数C . 偶函数D . 奇函数 3.已知函数(1)()11f x x x =++-, (2)()11f x x x =-+-,(3)2()33f x x x =+(4)0()()1()R x Q f x x C Q ∈=∈⎧⎨⎩,其中是偶函数的有( )个A .1B .2C .3D .44.奇函数y =f (x )(x ≠0),当x ∈(0,+∞)时,f (x )=x -1,则函数f (x -1)的图象为 ( )5.已知映射f:A →B,其中集合A={-3,-2,-1,1,2,3,4},集合B 中的元素都是A 中元素在映射f 下的象,且对任意的A a ∈,在B 中和它对应的元素是a ,则集合B 中元素的个数是( )A .4B .5C .6D .76.函数2()24f x x tx t =-++在区间[0, 1]上的最大值g(t)是 . 7. 已知函数f(x)在区间(0,)+∞上是减函数,则2(1)f x x ++与()34f 的大小关系是 .8.已知f(x)是定义域为R 的偶函数,当x<0时, f(x)是增函数,若x 1<0,x 2>0,且12x x <,则1()f x 和2()f x 的大小关系是 .9.如果函数y =f (x +1)是偶函数,那么函数y =f (x )的图象关于_________对称. 10.点(x,y)在映射f 作用下的对应点是33(,)22x y y x +-,若点A 在f 作用下的对应点是B(2,0),则点A 坐标是 .13. 已知函数2122()x x f x x++=,其中[1,)x ∈+∞,(1)试判断它的单调性;(2)试求它的最小值.14.已知函数2211()a f x aa x+=-,常数0>a 。
高一数学复习教案通用5篇高一数学复习教案通用5篇高一数学教案怎么写。
如果教师有一份明确的说课稿,将会大大提升教学效率,提升课堂活跃性,提升学生学习兴趣。
下面小编给大家带来关于高一数学复习教案,希望会对大家的工作与学习有所帮助。
高一数学复习教案(篇1)高一第一学期是初中向高中的重要转折点,学生能否在短期内快速适应高中英语学习是摆在我们面前的重要任务,特制定高一英语教学计划如下:一、指导思想以学校工作计划为指导思想,全面贯彻落实新课程改革和素质教育的精神,落实学科教学常规,营造良好的教研氛围,不断改革课堂教学,探究科学有效的教学形式。
针对高一新生普遍英语底子差,基础薄的实际,打算在高一起始阶段的英语教学中,本着低起点,爬坡走,抓习惯的原则,长期不懈地抓好学生的学习英语的的兴趣和习惯养成。
在本学期的英语教学中,要坚持以下理念的应用:1、坚定不移地突出学生主体,让学生成为学习的主人。
2、面向全体学生,关注每个学生的情感,激发他们学习英语的兴趣,帮助他们建立学习的成就感和自信心。
3、尊重个体差异,让学生在老师的指导下构建知识,提高技能,磨练意志,活跃思维,展现个性,发展心智和拓展视野;4、让学生在使用英语中学习英语,让他们在使用和学习英语的过程中,体味到轻松和成功的快乐。
二、工作重点全面做好初高中衔接工作初中和高中在教学对象、教学内容、教学要求、教学方式和学习方式方面均存在着一定的差异,因此,帮助高一新生了解这些差异,引导他们尽快适应高中的学习与生活,是摆在新学期高一教师面前的迫在眉睫的任务。
具体来说我们要做好以下工作:知识衔接(词汇补充、语法回顾)。
在开新课之前,拿出一周左右的时间搞好高初中之间的词汇衔接和语法衔接,为开新课做好准备。
1、培养习惯,打好基础。
培养基础与指导学法是一致的,培养习惯的过程也是打下扎实基础的过程。
高一起始教学阶段,除重视基础知识的落实巩固,基本技能的培养训练外,最主要的是培养良好的学习习惯和正确的学习方法。
以下是⽆忧考为⼤家整理的关于《⾼⼀数学必修⼀全册教案(⼈教A版)》,供⼤家学习参考!4、2⼀元⼆次⽅程根的问题4、2、1 ⼀元⼆次⽅程根的分布(1)第⼀部分⾛进复习【复习】1、⼀元⼆次⽅程的解法(1)因式分解法例如:解⽅程(1),(2)(2)求根公式法例如:解⽅程(1),(2)2、⼀元⼆次⽅程根的判别式对⼀元⼆次⽅程当△= 时,⽆实数根当△= 时,有两个相等实根。
当△= 时,有两个不等实根。
3、⼀元⼆次⽅程根与系数的关系(韦达定理)设、是⼀元⼆次⽅程的两个根,则,4、⼆次函数⼆次函数的性质(1)当时,图象开⼝向上,,当时,图象开⼝向下,,(2)⼆次函数图象是抛物线,顶点为,,对称轴为(3)当时,若,随的增⼤⽽增⼤,若,随的增⼤⽽减⼩。
当时,若,随的增⼤⽽减⼩,若,随的增⼤⽽增⼤。
5、⼀元⼆次不等式应会解不等式:(1)(2)(3)(4)(5)第⼆部分⾛进课堂【探索新知】(⼀)⼀元⼆次⽅程根的根有正有负例1.已知⽅程,分别在下列情况下求实数的取值范围。
①⽆实数根②有解③有两个不等的实根④⽆正根⑤只有⼀个正根⑥有两个不等正根⑦有两个不等的⾮负根⑧有⼀个正根⼀个负根,且负根的绝对值⼤⑨⾄少有⼀个正根⑩⾄多有⼀个正根(⼆)⼀元⼆次⽅程的根控制在⼀个区间内例2已知⽅程,分别在下列情况下求参数的取值范围。
①根都在(,4)内②根都⼤于例3已知⽅程,分别在下列情况下求参数的取值范围。
①在[-1,2]内⽆解②在[-1,2]内只有⼀个解反思总结:第三部分⾛向课外【课后作业】1.已知A= ,,若A∩ =φ,求实数的取值范围。
2.当为何值时,⽅程的根(1)在,内;(2)都⼤于2 ?3.⽅程在,有实数解,求实数的取值范围。
4、2、2⼀元⼆次⽅程根的分布(2)第⼀部分⾛进复习【复习】1、⼀元⼆次⽅程根的分布问题①⽆正根②只有⼀个正根③有两个不等正根④有两个不等的⾮负根⑤有⼀个正根⼀个负根,且负根的绝对值⼤⑥⾄少有⼀个正根⑦⾄多有⼀个正根⑧根都在(,4)内⑨根都⼤于2、⼀元⼆次⽅程根在⼀个区间内的问题①在[-1,2]内⽆解②在[-1,2]内只有⼀个解③在[-1,2]内有两个不同的解④在[-1,2]内有解第⼆部分⾛进课堂【探索新知】(⼀)先求补集(补集思想)例1、已知下列三个⽅程:,,⾄少有⼀个⽅程有实根,求实数的取值范围。
一、教学内容:必修一总复习 [本讲的主要内容] 1、集合及其基本运算2、函数的概念及其基本性质3、二次函数与幂、指、对数函数4、函数的应用二、学习目标1、了解集合语言是现代数学语言的重要组成部分,可以简洁、准确地表述数学对象和结构;学会运用集合等数学语言来刻画世界和运用数学语言学习数学、进行交流的能力;2、加深对函数概念本质的认识和理解;加强对变量数学的认识,认识到函数是描述客观世界变化规律的重要数学模型;并能结合实际问题,感受运用函数概念建立模型的过程与方法,了解指数函数、对数函数和幂函数是三类不同的函数增长模型;通过收集函数的应用实例,了解函数模型的广泛应用。
三、知识要点1、集合的概念与基本运算①一组对象的全体形成一个集合;常用大写拉丁字母来标记,如集合M ,集合A …… ②集合中的元素有三大特征,即无序性、确定性和互异性,这是判断集合形成和区分集合的重要依据;③集合的表示:穷举法、描述法和图示法④集合的运算:指的是子、交、并、补四种运算,其结果仍然是一个集合;,{|}{|}{|}U A B x A x B C A B C x x A x B C AB C x x A x B M C A M x x U x A ⊆⇔∀∈∈=⇔=∈∈=⇔=∈∈=⇔=∈∉都有且或且⑤以下题型的结果要用集合表述:求定义域、求值域、求不等式的解集、求方程(组)的解集以及集合运算的结果等。
2、函数的概念与基本性质①函数概念的三种表述:运动的观念,集合的观念,映射的观念; ②函数的两大要素:定义域和对应法则;③函数的三种表示方法:解析法,列表法和图像法; ④函数的两大重要性质:奇偶性和单调性; ⑤对分段函数、复合函数的认识。
3、二次函数与幂、指、对数函数 ①二次函数学习中的几个要点:二次函数解析式的三种形式;二次函数的图像的开口方向、位置、零点及最值与系数的关系;含参数的二次函数的研究(参数分别在函数式中和定义区间中);三个二次的关系;②幂函数学习中的要点:幂函数的定义;幂函数的图像与性质;在同一坐标系中不同指数的幂函数的图像的位置关系;③指数函数学习中的要点:指数式的运算;指数函数的定义;指数函数的图像与性质;在同一坐标系中不同底的指数函数图像的位置关系;④对数函数学习中的要点:对数式的运算;对数函数的定义;对数函数的图像与性质;在同一坐标系中不同底的对数函数图像的位置关系;对数函数与指数函数互为反函数的关系。
4、函数的应用:函数的应用主要包括两种类型,其一是函数与方程思想在解题中的综合应用;其二是函数模型在解决实际问题中的应用,常见的有效益最大化和成本最低问题。
四、考点解析与典型例题 考点一对集合概念的考查例1. 试写出如图阴影部分所表示的集合①②③解:各阴影部分的表示方法均不唯一。
① [(A ∩B )∩C ∪C]∪[(A ∩C )∩C ∪B]∪[(B ∩C )∩C ∪A] ② [C ∪(A ∩B ∩C )]∩(A ∪B ∪C ) ③A ∪(B ∩C )考点二对集合运算的考查例2. 试写出下列集合运算的结果{}.{|66},|,,?44.{|16},|50,?{|463},?R A x x B x k x k k Z A B A x x B x x x A B A x x x C A ππππ⎧⎫=-<<=-+<<+∈=⎨⎬⎩⎭=-<<=><==<<<=①②或③.或解:355377.|6644444444.{|3346}R A B x x x x x x A B RC A x x x x ππππππππ-⎧⎫=-<<<<-<<-<<-<<⎨⎬⎩⎭==≤-≤≤≥①或或或或②③.或或考点三对函数概念的考查例3. 求形如2222,0ax bx c y a d dx ex f++=+≠++的函数值域时,可以先将该函数式变形为一个关于x 的一元二次方程,然后再令判别式0≥∆即可求出该函数的值域。
试说明为什么会有0≥∆?答:由于函数2222,0ax bx c y a d dx ex f++=+≠++是建立在两个非空数集上的映射,故对由其变形得到的关于x 的一元二次方程而言,其解集非空,故有0≥∆。
考点四求函数的定义域例4. 求函数0.5()log (43)f x x =-的定义域。
解:0.5430304311log (43)04x x x x ->⎧⇒<-≤⇒<≤⎨-≥⎩ 故该函数的定义域为:3|14x x ⎧⎫<≤⎨⎬⎩⎭。
考点五求函数的值域 例5. 求函数()234f x x x =+-+的值域。
解:令222,0t x x t t =+⇒=-≥代入函数解析式可得:2()310,0f x t t t =-++≥,故可求得其值域为121|12y y ⎧⎫≤⎨⎬⎩⎭考点六对函数的两个重要性质的考查例6. 奇函数()y f x =满足:①(3)0f -=;②当0()x y f x >=时为增函数,试解不等式()0.x f x ⋅<解:由奇函数的对称性:(3)0f =;例7 试判断函数2231()2x x f x -+⎛⎫= ⎪⎝⎭的单调性。
解:设21,232uy u x x ⎛⎫==-+ ⎪⎝⎭,则函数2231()2x x f x -+⎛⎫= ⎪⎝⎭可视为这两个函数的复合函数,且知外函数12uy ⎛⎫= ⎪⎝⎭是减函数。
又因为:221:23;1:23x u x x x u x x <=-+≥=-+时单调减时单调增故知:2231()2x x f x -+⎛⎫= ⎪⎝⎭当x <1时为增函数;当x ≥1时为减函数。
考点七函数的作图例8. 如何由函数y =f (x -1)-2的图像得到函数y =f (x +1)+2的图像?解:y =f (x +1)+2可变形为(y -4)=f[(x +2)-1]-2,则知可将函数y =f (x -1)-2的图像向左平移2个单位、再向上平移4个单位即可得到y =f (x +1)+2的图像。
考点八含参的二次函数的研究一般地,含参的二次函数有三种情形,其一是函数式中含参,其二是定义区间含参;这两种情形的基本做法都是将函数的对称轴与定义区间的位置关系进行讨论;其三是涉及含参的二次方程的根的分布问题,一般可结合图像研究。
例9. 已知函数2()(3)1f x mx m x =+-+的图像与x 轴的交点至少有一个在原点的右侧,某某数m 的取值X 围。
解:若m =0,则()31f x x =-+,显然满足条件;若m≠0,有两种情形:①原点的两侧各有一个交点,则②都在原点的右侧,则:例10. 函数2()44f x x x =--在闭区间[t ,t +1](t ∈R )上的最小值记为g (t )。
(I )试写出g (t )的函数表达式; (II )求出g (t )的最小值。
解:(II )g (t )min =-8。
考点九函数与方程思想的考查例11 (2007年某某卷)已知a 是实数,函数2()223f x ax x a =+--,如果函数()y f x =在区间[-1,1]上有零点,求a 的取值X 围。
解:函数()y f x =在区间[-1,1]上有零点,即方程2()2230f x ax x a =+--=在[-1,1]上有解。
当a =0时,不符合题意,所以a ≠0。
方程2()2230f x ax x a =+--=在[-1,1]上有解考点十函数应用题例12. 某地现有耕地10 000公顷,规划10年后粮食单产比现在增加22%,人均粮食占有量比现在提高10%。
如果人口年增长率为1%,那么耕地平均每年至多减少多少公顷(精确到1公顷)?解:M 吨/公顷。
依题意得人均粮食占有量:4410103(122%)(1010)10(110%)(11%)1.1(10.01)10[1] 4.11.22M x M P P x +-⋅≥⨯++⨯+⇒≤⨯-≈故平均每年至多只能减少4.1公顷。
四、数学思想方法本模块主要涉及集合及函数的基本概念与性质,以及几个常见的函数如二次函数与幂、指、对数函数。
主要数学思想方法有: 1、函数与方程的思想:在本模块学习过程中,要充分认识函数与方程内在的联系,善于借助这种联系,将函数问题转化为方程问题,或将方程问题转化为函数问题进行处理。
如将方程的根的分布问题与函数的零点的分布问题进行转化。
2、数形结合的思想:这既是重要的数学思想,也是一种重要的数学方法。
学习中一要注意利用函数图像研究函数性质,二要注意利用函数图像解决有关最值、不等关系、参数X 围等问题。
3、分类讨论的思想:对含有参变量的函数或集合的研究往往要进行分类讨论,要注意最后结果的表述。
一般地,对一个变量进行讨论求解另一个变量的X 围时,一定要就第一个变量的不同取值X 围进行分开表述;如果就变量本身进行讨论求解其X 围,最后必须对所求X 围进行求并集运算。
【模拟试题】(答题时间:40分钟)一、选择题1. (2008全国一1)函数y =的定义域为()A.{}|0x x ≥B.{}|1x x ≥C.{}{}|10x x ≥D.{}|01x x ≤≤2. (2008全国一6)若函数(1)y f x =-的图像与函数1y =的图像关于直线y x=对称,则()f x =()A.21x e -B.2x eC. 21x e +D. 22x e +3.(2008全国一9)设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()f x f x x --<的解集为()A. (10)(1)-+∞,,B. (1)(01)-∞-,,C. (1)(1)-∞-+∞,,D. (10)(01)-,,4. (2008全国二3)函数1()f x x x =-的图像关于()A. y 轴对称B. 直线x y -=对称C. 坐标原点对称D. 直线x y =对称5. (2008全国二4)若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则() A. a <b <cB. c <a <bC. b <a <cD. b <c <a6. (2008卷2)若0.52a =,πlog 3b =,22πlog sin5c =,则()A. a b c >>B. b a c >>C. c a b >>D. b c a >>*7、(2008某某卷11)设定义在R 上的函数()f x 满足()()213f x f x ⋅+=,若()12f =,则()99f =()A. 13B. 2C. 132D. 213二、填空题8. (2008某某卷13)已知函数2()2f x x x a =++,2()962f bx x x =-+,其中x R ∈,,a b 为常数,则方程()0f ax b +=的解集为。