完整版)抛物线知识点归纳总结
- 格式:docx
- 大小:37.25 KB
- 文档页数:3
第二章 2.4 抛物线抛物 线)0(22>=p pxy)0(22>-=p pxy)0(22>=p pyx)0(22>-=p pyx定义平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线,点F 叫做抛物线的焦点,直线l 叫做抛物线的准线。
{MF M =点M 到直线l 的距离}范围 0,x y R ≥∈ 0,x y R ≤∈ ,0x R y ∈≥ ,0x R y ∈≤对称性关于x 轴对称关于y 轴对称焦点(2p ,0) (2p -,0) (0,2p ) (0,2p -) 焦点在对称轴上顶点 (0,0)O离心率 e =1准线 方程 2p x -= 2p x =2p y -= 2p y =准线与焦点位于顶点两侧且到顶点的距离相等。
顶点到准线的距离 2p 焦点到准线的距离pxyO lFxyOl FlF x y Oxy O l F焦半径11(,)A x y12p AF x =+12p AF x =-+12p AF y =+12p AF y =-+焦 点弦 长AB12()x x p ++12()x x p -++ 12()y y p ++ 12()y y p -++焦点弦AB 的几条性质11(,)A x y 22(,)B x y以AB 为直径的圆必与准线l 相切若AB 的倾斜角为α,则22sin pAB α=若AB 的倾斜角为α,则22cos pAB α=2124p x x = 212y y p =-112AF BF AB AF BF AF BF AF BF p++===∙∙ 切线 方程 00()y y p x x =+00()y y p x x =-+00()x x p y y =+00()x x p y y =-+1. 直线与抛物线的位置关系 直线,抛物线,ox ()22,B x y Fy ()11,A x y,消y 得:(1)当k=0时,直线l 与抛物线的对称轴平行,有一个交点; (2)当k ≠0时,Δ>0,直线l 与抛物线相交,两个不同交点; Δ=0, 直线l 与抛物线相切,一个切点; Δ<0,直线l 与抛物线相离,无公共点。
抛物线知识点总结抛物线是数学函数中的基础,而相关的知识点也有一定的难度。
下面是小编推荐给大家的抛物线知识点总结,希望能带给大家帮助。
抛物线知识点总结1.抛物线是轴对称图形。
对称轴为直线x=-b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为:P(-b/2a,(4ac-b^2)/4a)当-b/2a=0时,P在y轴上;当=b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a0时,抛物线向上开口;当a0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab0),对称轴在y轴左;当a与b异号时(即ab0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)6.抛物线与x轴交点个数=b^2-4ac0时,抛物线与x轴有2个交点。
=b^2-4ac=0时,抛物线与x轴有1个交点。
=b^2-4ac0时,抛物线与x轴没有交点。
X的取值是虚数(x=-bb^2-4ac的值的相反数,乘上虚数i,整个式子除以2a) 抛物线y = ax^2 + bx + c (a≠0)就是y等于a乘以x 的平方加上 b乘以x再加上 c置于平面直角坐标系中a > 0时开口向上a < 0时开口向下(a=0时为一元一次函数)c>0时函数图像与y轴正方向相交c< 0时函数图像与y轴负方向相交c = 0时抛物线经过原点b = 0时抛物线对称轴为y轴(当然a=0且b≠0时该函数为一次函数)还有顶点公式y = a(x+h)* 2+ k ,(h,k)=(-b/(2a),(4ac-b^2)/(4a)) 就是y等于a乘以(x+h)的平方+k-h是顶点坐标的xk是顶点坐标的y一般用于求最大值与最小值和对称轴抛物线标准方程:y^2=2px (p>0)它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py。
关于抛物线的知识点总结抛物线是数学中一个重要的曲线形状,它具有独特的特性和应用。
本文将围绕抛物线展开,总结其中的知识点。
一、定义和性质抛物线是平面几何中的一种曲线,其定义为平面上到一个定点距离与到一条定直线距离相等的点的轨迹。
抛物线是对称的,其对称轴是垂直于定直线且过定点的直线。
抛物线上的点与对称轴的距离称为焦距,记作f。
焦距与抛物线的形状有关,决定了抛物线的开口方向。
二、抛物线的方程抛物线的方程通常使用二次函数的形式表示,即y=ax²+bx+c。
其中,a、b、c是常数,a决定了抛物线的开口方向和形状,b决定了抛物线在x轴上的平移,c决定了抛物线在y轴上的平移。
三、焦点和直径抛物线的焦点是定点到抛物线上任意一点的距离与该点到对称轴的距离相等的点。
焦点在对称轴上,距离定点的距离为焦距f。
抛物线上的任意一条线段,其两个端点都在焦点上,称为抛物线的直径。
抛物线的焦点和直径是抛物线的重要特性,具有重要的几何和物理应用。
四、焦点和顶点的关系抛物线的顶点是抛物线的最高(或最低)点,位于抛物线的对称轴上。
抛物线的焦点与顶点的距离等于焦点与定直线的距离。
这个性质对于确定抛物线的焦点位置很有帮助。
五、抛物线的应用抛物线在现实生活中有广泛的应用。
例如,某些天体运动的轨迹可以用抛物线来描述,比如抛出的物体在无阻力情况下的运动轨迹。
此外,抛物线在建筑设计、射击、摄影等领域也有应用。
抛物线的特性使得它在某些问题的求解中更加简便和直观。
六、抛物线与其他曲线的关系抛物线与其他曲线有一些相似和相关的特性。
例如,当a=0时,抛物线退化为直线;当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
此外,抛物线也可以看作是椭圆的特殊情况,其离心率为1。
抛物线是数学中一个重要的曲线形状,具有独特的特性和应用。
通过了解抛物线的定义、方程、焦点和直径等知识点,我们可以更好地理解和应用抛物线。
抛物线在数学和实际问题中都有广泛的应用,是我们学习和研究的重要对象之一。
抛物线知识点归纳总结抛物线,又称双曲线,是一类几何图形,它具有以下共同特征:它是一条二次曲线,在平面直角坐标系中可以表示成一般方程y=ax^2+bx+c(a != 0)的形式。
抛物线的几何特性 1、抛物线的定义式:y=ax^2+bx+c (a≠0) 2、抛物线的射线法则:任意一点P到该抛物线上的每一点Q,连接PQ的竖直平分线与抛物线交于一点R,PR/RQ=1:-1 3、抛物线的焦点:抛物线的焦点是F(h,k),其中h为抛物线的x轴截距,k为抛物线的y轴截距 4、抛物线的准线:抛物线的准线的斜率为-b/(2a),且准线通过焦点F(h,k) 5、抛物线的对称轴:抛物线的对称轴的斜率为-b/(2a),且对称轴的方程是x=h抛物线的应用 1、抛物线的主要应用是求解一元二次方程,当a≠0时,一元二次方程可以化为y=ax^2+bx+c的标准型,一元二次方程的解为抛物线上的水平线与抛物线的交点,根据抛物线的焦点法则可以求出其解; 2、抛物线在工程学和物理学中也有重要的应用,如弹道学中的弹道运动就是抛物线的特例; 3、抛物线在经济学上也有应用,如货币价值的变动曲线,可以看作是抛物线; 4、抛物线也可以用来描述某些统计数据,如商品价格随时间变化的曲线,某种疾病在不同地区发病率之间的变化曲线等; 5、抛物线也可以用来描述某些社会现象,如教育水平与社会地位之间的关系,收入水平与消费水平之间的变化等。
抛物线的图形特性 1、抛物线的几何形状:抛物线的几何形状取决于参数a的正负,当a>0时,抛物线的几何形状为凸弯;当a<0时,抛物线的几何形状为凹弯; 2、抛物线的斜率:抛物线上任一点P(x,y)处的斜率为dy/dx=-2ax-b; 3、抛物线的单调性:当a>0时,抛物线呈递增趋势;当a<0时,抛物线呈递减趋势; 4、抛物线的对称性:抛物线的准线和对称轴都是抛物线的对称轴;5、抛物线的射线法则:任意一点P到该抛物线上的每一点Q,连接PQ的竖直平分线与抛物线交于一点R,PR/RQ=1:-1。
抛物线知识点总结定义与性质:抛物线是该平面中与准线和焦点等距的点的轨迹。
焦点并不在准线上。
抛物线在合适的坐标变换下,也可看成二次函数图像。
抛物线具有镜像对称性,其形状大致为U形。
垂直于准线并通过焦点的线被称为“对称轴”。
与对称轴相交的抛物线上的点被称为“顶点”,是抛物线最锋利弯曲的点。
沿着对称轴测量的顶点和焦点之间的距离是“焦距”。
“直线”是抛物线的平行线,并通过焦点。
抛物线可以向上、向下、向左、向右或向另一个任意方向打开。
标准方程:抛物线有多种标准方程形式,根据开口方向和焦点位置的不同,可以分为右开口、左开口、上开口和下开口抛物线。
例如,右开口抛物线的标准方程为y²=2px(p>0),其中p为焦准距。
焦点与准线:焦点是抛物线上所有点到准线距离相等的点。
准线是抛物线上所有点到焦点距离相等的直线。
焦点和准线的位置关系决定了抛物线的开口方向和大小。
焦半径公式:对于抛物线y²=2px(p>0),任意一点M(x0,y0)到焦点的距离(焦半径)为|MF|=2x0。
焦点弦:焦点弦是过焦点的任意一条弦,其长度可以用焦点坐标和弦端点坐标之间的关系来表示。
焦点弦的长度与焦点到弦的端点的距离之和是一个定值。
应用:抛物线在几何光学和力学中有重要的用处,特别是反射光的材料制成的抛物面天线或抛物线麦克风等。
抛物线也广泛应用于工程学和建筑学中,如建筑设计中的门廊、拱桥等结构的设计,以及照明设计中的抛物面反射等。
在数学教育中,抛物线作为一个经典的数学曲线,对于培养学生的几何直观和空间想象能力具有重要作用。
总之,抛物线是一个具有丰富性质和应用价值的数学曲线,在各个领域都有广泛的应用。
通过深入学习和理解抛物线的性质和应用,可以更好地掌握相关领域的知识和技能。
抛物线的知识点总结大全抛物线的知识点总结大全抛物线是高考数学的一个重要考点。
抛物线是指平面内到一个定点F和一条定直线l距离相等的点的轨迹。
下面是小编为大家整理的抛物线的知识点总结,欢迎参考~抛物线的焦点弦的性质:关于抛物线的几个重要结论:(1)弦长公式同椭圆.(2)对于抛物线y2=2px(p>0),我们有P(x0,y0)在抛物线内部P(x0,y0)在抛物线外部(3)抛物线y2=2px上的点P(x1,y1)的切线方程是抛物线y2=2px(p>,高二;0)的斜率为k的切线方程是y=kx+(4)抛物线y2=2px外一点P(x0,y0)的切点弦方程是(5)过抛物线y2=2px上两点的两条切线交于点M(x0,y0),则(6)自抛物线外一点P作两条切线,切点为A,B,若焦点为F, 又若切线PA⊥PB,则AB必过抛物线焦点F.利用抛物线的几何性质解题的方法:根据抛物线定义得出抛物线一个非常重要的几何性质:抛物线上的点到焦点的距离等于到准线的距离.利用抛物线的几何性质,可以进行求值、图形的判断及有关证明.抛物线知识点总结1.抛物线是轴对称图形。
对称轴为直线x=-b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为:P(-b/2a,(4ac-b^2)/4a)当-b/2a=0时,P在y轴上;当=b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a0时,抛物线向上开口;当a0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab0),对称轴在y轴左;当a与b异号时(即ab0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)6.抛物线与x轴交点个数=b^2-4ac0时,抛物线与x轴有2个交点。
抛物线方程知识点总结1.抛物线的定义和性质:抛物线可以由一个定点(焦点)和一条定直线(准线)确定。
抛物线上的点到焦点和准线的距离相等。
抛物线对称于准线,焦点位于抛物线的对称轴上。
2.抛物线的标准方程:抛物线的标准方程是 y = ax^2 + bx + c,其中 a、b 和 c 是常数。
这个方程表示了抛物线的形状和位置。
a 决定了抛物线的开口方向和形状,b 决定了对称轴的位置,c 决定了抛物线的纵轴截距。
3.抛物线的顶点和焦点:抛物线的顶点是抛物线的最高(或最低)点,它位于抛物线的对称轴上。
顶点的坐标可以通过将抛物线方程转换成顶点形式来简化计算。
焦点是抛物线的焦点,它位于抛物线的对称轴上,并且与顶点的距离称为焦距。
4.抛物线的焦距和准线:抛物线的焦距是焦点到抛物线的最高(或最低)点的距离,它等于抛物线参数a的倒数的绝对值。
准线是抛物线上的一条直线,与对称轴平行且与焦点和顶点的距离相等。
准线的公式可以通过将焦点的坐标与焦距相加或相减得到。
5.抛物线的对称性:抛物线是关于对称轴对称的。
这意味着如果(x,y)是抛物线上的一个点,那么对称轴上的点(-x,y)也是抛物线上的一个点。
6.抛物线的与坐标轴的交点:抛物线与x轴的交点称为横轴截距,可以通过令y=0解方程得到。
抛物线与y轴的交点称为纵轴截距,它等于常数项c。
7.抛物线的方程转化和变形:8.二次函数和抛物线的关系:以上是抛物线方程的关键知识点总结。
掌握了这些知识,我们就能够理解和计算抛物线上的点的坐标,进一步应用到实际问题中。
抛物线的知识点总结抛物线是一种二次函数,具有以下特点:1. 方程和形式:抛物线的一般方程是y=ax^2+bx+c,其中a、b和c是实数,a不等于0。
a决定了抛物线的开口方向:a>0时,抛物线开口向上;a<0时,抛物线开口向下。
2. 零点:抛物线与x轴的交点称为零点,可以通过求解方程ax^2+bx+c=0得到。
如果方程无实根,说明抛物线与x轴没有交点。
3.頂点:抛物线的最高点或最低点称为顶点。
当a>0时,顶点是抛物线的最低点;当a<0时,顶点是抛物线的最高点。
顶点的横坐标为x=-b/2a,纵坐标为y=f(-b/2a)。
4.对称轴:抛物线的对称轴是过顶点且垂直于x轴的直线。
对称轴的方程是x=-b/2a。
5. 判别式:抛物线方程的判别式Δ=b^2-4ac可以用来确定抛物线的性质。
当Δ>0时,抛物线与x轴有两个交点,开口向上或向下;当Δ=0时,抛物线与x轴有一个交点,开口向上或向下;当Δ<0时,抛物线与x轴没有交点,开口向上或向下。
6.曲线的性质:抛物线在顶点处取得极值。
当a>0时,极小值为顶点的纵坐标;当a<0时,极大值为顶点的纵坐标。
抛物线在对称轴两侧的函数值相等。
7.平移与缩放:对抛物线进行平移和缩放会改变抛物线的位置和形状。
平移可以通过在x和y上加上常数来实现;缩放可以通过对a、b和c乘以常数来实现。
8.抛物线的应用:抛物线在物理、数学和工程领域有广泛的应用。
在物理学中,抛物线可以描述物体抛出和自由落体的轨迹。
在数学中,抛物线是二次函数的一个特例,可以用来研究函数的性质。
在工程中,抛物线可以用来设计桥梁、建筑和道路等。
9.拟合与插值:抛物线可以用来拟合和插值一组给定的数据点。
通过最小二乘法,可以找到最佳的抛物线模型来拟合数据。
10.抛物线的求导:抛物线的导函数是一次函数,通过对抛物线方程进行求导来得到。
导函数描述了抛物线在每个点的斜率。
总结起来,抛物线是一种二次函数,具有开口方向、零点、顶点、对称轴、判别式和曲线性质等特点。
抛物线及其性质1.抛物线定义:平面内到一定点F和一条定直线l的距离相等的点的轨迹称为抛物线.2.抛物线四种标准方程的几何性质:图形参数p几何意义参数p表示焦点到准线的距离,p越大,开口越阔.开口方向右左上下标准方程22(0)y px p=>22(0)y px p=->22(0)x py p=>22(0)x py p=->焦点位置X正X负Y正Y负焦点坐标(,0)2p(,0)2p-(0,)2p(0,)2p-准线方程2px=-2px=2py=-2py=范围0,x y R≥∈0,x y R≤∈0,y x R≥∈0,y x R≤∈对称轴X轴X轴Y轴Y轴顶点坐标(0,0)离心率1e=通径2p焦半径11(,)A x y12pAF x=+12pAF x=-+12pAF y=+12pAF y=-+焦点弦长AB12()x x p++12()x x p-++12()y y p++12()y y p-++焦点弦长AB的补充以AB为直径的圆必与准线l相切若AB的倾斜角为α,22sinpABα=若AB的倾斜角为α,则22cospABα=11(,)A x y22(,)B x y2124p x x = 212y y p =-112AF BF AB AF BF AF BF AF BF p++===•• 3.抛物线)0(22>=p px y 的几何性质:(1)范围:因为p>0,由方程可知x ≥0,所以抛物线在y 轴的右侧, 当x 的值增大时,|y |也增大,说明抛物线向右上方和右下方无限延伸.(2)对称性:对称轴要看一次项,符号决定开口方向. (3)顶点(0,0),离心率:1=e ,焦点(,0)2p F ,准线2px -=,焦准距p . (4) 焦点弦:抛物线)0(22>=p px y 的焦点弦AB ,),(11y x A ,),(22y x B ,则p x x AB ++=21||. 弦长|AB|=x 1+x 2+p,当x 1=x 2时,通径最短为2p 。
高三物理抛物线知识点总结抛物线是高中物理中一个重要的概念,掌握了抛物线的知识,对于解决与运动相关的物理问题有着非常重要的作用。
下面将对高三物理中关于抛物线的知识点进行总结和归纳。
一、抛物线的定义与性质抛物线是指由动点在两个相互垂直的方向上的运动叠加而成的轨迹。
其具有以下性质:1. 对称性:抛物线是关于直线称为准线的对称图形,准线是与抛物线的轴垂直,并通过抛物线的焦点。
2. 定义方程:一般情况下,抛物线的定义方程是 y = ax^2 + bx + c,其中 a、b 和 c 是常数。
二、抛物线的焦点和准线抛物线的焦点和准线是抛物线的两个重要概念。
1. 焦点:焦点是抛物线上使得光线在抛物线上反射的点。
焦点到准线的距离称为焦距,通常用字母 p 表示。
2. 准线:准线是与抛物线的轴垂直,并通过焦点的直线。
三、抛物运动的相关知识1. 抛体的运动规律:在抛体的自由落体过程中,竖直方向的运动是匀加速直线运动,而水平方向的运动是匀速直线运动。
2. 空中平抛运动:当物体以一定速度水平抛出时,整个运动轨迹是一个抛物线,而垂直方向的加速度是重力加速度。
3. 斜抛运动:当物体斜向抛出时,可以将其分解为水平方向和垂直方向的两个独立运动,而垂直方向的运动轨迹是一个抛物线。
4. 最大射程和最大高度:在斜抛运动中,物体的最大射程和最大高度分别对应抛物线的顶点和两个焦点。
四、抛物线的应用抛物线在现实生活中有广泛的应用,下面列举几个常见的例子:1. 投射体运动的分析和计算:通过抛物线运动的原理,可以对投射体的轨迹、时间、速度等进行分析和计算。
2. 卫星轨道:卫星绕行地球的轨道可以近似为一个抛物线,该知识点在航天科学中有重大意义。
3. 炮弹轨迹:军事中常常需要分析炮弹的运动轨迹,通过抛物线的知识可以进行精准计算。
4. 瀑布流和喷泉:流体力学中的瀑布流和喷泉的流动形式也可以近似为抛物线。
以上就是高三物理中关于抛物线的知识点总结。
通过对抛物线的定义、性质和应用的学习,我们能够更好地理解和解决与抛物线相关的物理问题。
抛物线的常见结论一、知识点总结 1. 抛物线的弦长公式2122122124)(11x x x x k x x k l -+•+=-+=,其中k 是弦所在直线的斜率,21,x x 是交点的横坐标,本表达式不包含斜率不存在的情况。
2122122124)(11y y y y m y y m l -+•+=-+=,其中弦长所在直线方程为b my x +=,21,y y 是交点的纵坐标,本表达式包含斜率不存在的情况。
2. 抛物线的焦点弦对于抛物线,022>=p px y ,,倾斜角为α的直线过抛物线的焦点,与抛物线交于A ,B 两点,过A,B 做抛物线准线的垂线,垂足分别为C,D ,那么有:①221221,4p y y p x x -== ABF CDOα由⎪⎩⎪⎨⎧+==222p my x pxy 得0222=--p pmy y (*),因此⎪⎩⎪⎨⎧==-=44)(2222121221p p y y x x p y y ②焦点弦长p x x AB ++=21,焦点弦长α2sin 2P AB =ααsin 4)(sin 2122121y y y y y y AB -+=-=,结合(*)式与αtan 1=m 得: ααααααααααsin sin sin sin cos 2sin 1tan 12sin 4tan 4sin 4422222222222+=+=+=+=p p p p p m p ABααα22sin 2sin sin 12p p ==③PBF AF 211=+ 简单证明如下:p p p y y p y y PBF AF BF AF BF AF 222sin sin sin 211221212====+=+ααα ④焦点三角形面积αsin 22P S =简单证明如下:以AB 为底,以O 到AB 的距离为高,该三角形面积课表示为:ααααsin 2sin 2sin 221sin 2122p p p OF AB S AOB=⨯⨯== ⑤焦点弦相关的几何关系: a. 以AF/BF 为直径的圆与y 轴相切b. 以AB 为直径的圆与准线相切,切点与焦点连线垂直于AB.c. 以CD 为直径的圆与AB 相切d. A,B 在准线上的投影对F 的张角为90°,︒=∠90CFDe.以A,B 为切点分别做两条切线,两切线的交点在准线上;在准线上取一点做抛物线的切线,两切点所在直线一定经过抛物线的焦点。
抛物线知识点总结_高三数学知识点总结
抛物线是二次函数的图像,其数学表达式为y=ax²+bx+c,其中a不等于0。
下面是抛物线的主要知识点总结:
1. 抛物线的开口方向与二次项系数a的正负有关。
当a>0时,抛物线开口向上;当
a<0时,抛物线开口向下。
2. 抛物线的顶点即为其最低点或最高点,可通过求解二次函数的极值得到。
顶点的
坐标为(-b/2a, f(-b/2a))。
3. 抛物线的对称轴是确定抛物线左右对称性的一个直线,其方程为x=-b/2a。
4. 抛物线的判别式为Δ=b²-4ac,可以判断抛物线的图像与x轴的交点个数。
当Δ>0时,抛物线与x轴有两个交点;当Δ=0时,抛物线与x轴有一个交点;当Δ<0时,抛物
线与x轴没有交点。
5. 抛物线的零点是指函数与x轴相交的点,即函数f(x)=0的解。
可通过求解二次方
程ax²+bx+c=0得到零点。
6. 抛物线的焦点是指所有与抛物线上每一点距离相等的点所构成的图形。
焦点到顶
点的距离称为焦距,其计算公式为f=1/(4a)。
7. 抛物线方程经过给定点(x0, y0)的条件是,将该点的坐标带入抛物线方程得到的等式成立。
8. 抛物线与直线的交点可以通过将抛物线方程与直线方程相等,得到一个二次方程,通过求解这个二次方程得到。
9. 抛物线的图像是平面内到焦点的距离和到直线的距离相等的点组成的图形。
抛物
线还具有平移、缩放和翻转等性质。
10. 抛物线可以用于描述抛射物运动的轨迹、天文学中行星的运动轨迹等。
高三抛物线的知识点归纳抛物线是高中数学中一个重要的几何形状,它具有很多特殊的性质和应用。
本文将对高三阶段学习抛物线时需要掌握的知识点进行归纳和总结。
一、抛物线的基本定义与性质1. 抛物线的定义:抛物线是平面上到一个定点F(焦点)和一条定直线D(准线)的距离之比为定值(离心率)的点集合。
2. 抛物线的几何特征:对称轴、焦点、准线、顶点。
3. 抛物线的方程:标准形式、一般形式。
4. 抛物线的性质:对称性、单调性、开口方向、顶点坐标计算等。
5. 抛物线的图像与实际应用:拱桥、炮弹运动路径等。
二、抛物线的顶点和焦点1. 抛物线的顶点:抛物线的顶点是抛物线曲线的最高或最低点,对称轴上的点。
2. 求抛物线的顶点:配方法、二次函数的顶点公式。
3. 抛物线的焦点:焦点是指满足抛物线定义的那个固定点,与准线和顶点构成一个等边三角形。
三、抛物线的对称性与轴线方程1. 抛物线的对称轴:对称轴是抛物线的一个特殊直线,使抛物线左右对称。
2. 对称轴的性质:过焦点、顶点的直线,与抛物线的曲线图像有对称关系。
3. 对称轴的方程:求解对称轴的方程,考虑焦点坐标、顶点坐标等信息。
四、抛物线的判定条件1. 抛物线的离心率:离心率决定了抛物线的形状和特征。
2. 离心率的计算和判定:通过焦点和顶点的距离关系计算离心率,在图像上判断抛物线的形状和方向。
五、抛物线的方程及其应用1. 抛物线的标准方程:y = ax^2 + bx + c,其中a、b、c为实数且a不为零。
2. 抛物线方程的求解:已知焦点和准线,求解抛物线的方程。
3. 抛物线方程的应用:物体的抛射运动、摄影、建筑设计等领域。
六、抛物线与其他数学概念的关系1. 抛物线与二次函数:抛物线可以看作是二次函数的一种特殊形式。
2. 抛物线与直线:抛物线与直线有着密切的联系,焦点、准线与直线的交点等。
3. 抛物线与导数:通过求解抛物线的导函数,可以得到切线的斜率和切线方程。
七、抛物线的综合应用1. 抛物线在物理学中的应用:炮弹的抛射运动、天体的运动轨迹等。
抛物线知识点总结y 22 px( p 0)y 22 px( p 0)x 22 py( p 0)x 2 2 py( p0)y y y图象ylllFOxO Fx F OxOxFl定义 范围 对称性焦点极点离心率 准线 方程极点到准 线的距离 焦点到准 线的距离焦半径A(x 1, y 1 )平面内与一个定点 F 和一条定直线 l 的距离相等的点的轨迹叫做抛物线, 点 F 叫做抛物线的焦点,直线 l 叫做抛物线的准线。
{ M MF =点 M 到直线 l 的距离 }x 0, y R x 0, y R x R, y 0 x R, y 0关于 x 轴对称关于 y 轴对称( p,0)(p,0)(0, p)(0,p ) 2222焦点在对称轴上O(0,0)e=1p xp p pxy2y222准线与焦点位于极点两侧且到极点的距离相等。
p 2 pAF x 1p AFx 1p AF y 1p AFy 1p2222焦点弦长( x1 x2 ) p( x1 x2 ) p( y1 y2 ) p( y1 y2 ) p AByA x1, y1o FxB x2 , y2焦点弦AB 的几条性质以 AB 为直径的圆必与准线l相切A( x1 , y1 ) 2 p 2 p若 AB 的倾斜角为若 AB 的倾斜角为,则 AB,则 ABB (x2 , y2 )sin2cos2p22x1x2y1 y2p4切线方程11AF BF AB2AF BF AF ? BF AF ?BF py0 y p( x x0 )y0 y p( x x0 )x0 x p( y y0 )x0x p( y y0 )参数方程x 2 pt 2y 2 pt( t 为参数)1.直线与抛物线的地址关系直线,抛物线,,消y得:(1)当 k=0 时,直线l与抛物线的对称轴平行,有一个交点;(2)当 k≠0 时,>0,直线l与抛物线订交,两个不同样交点;=0,直线l与抛物线相切,一个切点;<0,直线l与抛物线相离,无公共点。
抛物线的基本知识点抛物线的基本知识点整理抛物线:y=ax^2+bx+c就是y等于ax的平方加上bx再加上ca0时开口向上a0时开口向下c=0时抛物线经过原点b=0时抛物线对称轴为y轴还有顶点式y=a(x+h)^2+k就是y等于a乘以(x+h)的平方+k-h是顶点坐标的xk是顶点坐标的y一般用于求值与最小值抛物线标准方程:y^2=2px它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0)准线方程为x=-p/2由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2pxy^2=-2p__^2=2pyx^2=-2py初中数学知识点归纳数与代数1.数与式(1)实数实数的性质:①实数a的相反数是—a,实数a的倒数是(a≠0);②实数a的____值:③正数大于0,负数小于0,两个负实数,____值大的反而小。
二次根式:①积与商的方根的运算性质:(a≥0,b≥0);(a≥0,b0);②二次根式的性质:(2)整式与分式①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即(m、n为正整数);②同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即(a≠0,m、n为正整数,mn);③幂的乘方法则:幂的乘方,底数不变,指数相乘,即(n为正整数);④零指数:(a≠0);⑤负整数指数:(a≠0,n为正整数);⑥平方差公式:两个数的和与这两个数的差的积等于这两个数的平方,即;⑦完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,即;分式①分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变,即;,其中m是不等于零的代数式;②分式的乘法法则:;③分式的除法法则:;④分式的乘方法则:(n为正整数);⑤同分母分式加减法则:;⑥异分母分式加减法则:;2.方程与不等式①一元二次方程(a≠0)的求根公式:②一元二次方程根的判别式:叫做一元二次方程(a≠0)的根的判别式:方程有两个不相等的实数根;方程有两个相等的实数根;方程没有实数根;③一元二次方程根与系数的关系:设、是方程(a≠0)的两个根,那么+=,=;不等式的基本性质:①不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;②不等式两边都乘以(或除以)同一个正数,不等号的方向不变;③不等式两边都乘以(或除以)同一个负数,不等号的方向改变;3.函数一次函数的图象:函数y=kx+b(k、b是常数,k≠0)的图象是过点(0,b)且与直线y=kx平行的一条直线;一次函数的性质:设y=kx+b(k≠0),则当k0时,y随x的增大而增大;当k0,y随x的增大而减小;正比例函数的图象:函数的图象是过原点及点(1,k)的一条直线。
初中抛物线知识点总结一、基本概念1. 抛物线的定义:抛物线是一个平面曲线,它具有和直线对称的性质。
抛物线上的每个点到焦点的距离和到直线的距离相等。
2. 抛物线的方程:一般式为y=ax^2+bx+c,其中a≠0。
3. 抛物线的焦点和直线的关系:抛物线的焦点到直线的距离与焦点到抛物线上的点的距离相等。
二、抛物线的性质1. 定义域和值域:抛物线的定义域为实数集,值域为从最小值开始一直到无穷大。
2. 对称性:抛物线关于y轴对称,焦点关于抛物线的对称轴垂直于x轴的直线对称。
3. 最值点:抛物线的最小值为其顶点的纵坐标,最大值为无穷大。
4. 平行于坐标轴:抛物线在y轴上的交点称为焦点,x轴上的交点称为零点。
三、抛物线的常见类型1. 向上开口的抛物线:当a>0时,抛物线向上开口,顶点为最小值点。
2. 向下开口的抛物线:当a<0时,抛物线向下开口,顶点为最大值点。
3. 零点不相等的抛物线:当b^2-4ac>0时,抛物线零点不相等。
4. 零点相等的抛物线:当b^2-4ac=0时,抛物线零点相等。
5. 零点虚数的抛物线:当b^2-4ac<0时,抛物线零点为虚数。
四、抛物线的应用1. 物体的抛射运动:当物体以一定的初速度和角度抛出时,其运动轨迹为抛物线。
2. 抛物线天花板:在建筑设计中,由于抛物线的稳定性和美观性,抛物线作为天花板的设计元素被广泛应用。
3. 抛物线反射面镜:抛物线反射面镜是一种能够将光线聚焦并反射的镜子,适用于太阳能发电和望远镜等领域。
4. 抛物线型的道路设计:道路设计中经常会用到抛物线的形状,在坡度和曲线的设计中有广泛应用。
五、常见问题分析1. 已知抛物线的焦点和顶点,求抛物线的方程。
解法:由于抛物线的顶点坐标为(x0, y0),焦点坐标为(x1, y1),则抛物线的方程为(y-y0)=a(x-x0)^2,带入焦点坐标可求得a的值,从而确定抛物线的方程。
2. 已知抛物线的方程,求抛物线的焦点和顶点坐标。
完整版)抛物线知识点归纳总结
抛物线是一种经典的二次函数图像,具有许多重要的特点和性质。
以
下是对抛物线知识点的详细总结。
1.定义:抛物线是平面上一点P到定点F的距离等于点P到定直线上
一点的距离的轨迹。
2.构成:抛物线由平面上的点集组成,由对称轴与焦点决定。
3. 表达式:一般形式的抛物线方程是y=ax^2 + bx + c,其中a、b、c是实数且a不等于0。
4.开口方向:抛物线开口方向由a的正负决定,如果a大于0,抛物
线开口向上;如果a小于0,抛物线开口向下。
5.对称轴:抛物线的对称轴是一条与抛物线的开口方向垂直的直线,
由方程x=-b/2a给出。
6. 焦点:抛物线的焦点是与抛物线上任意一点的距离相等的定点F,其坐标为((-b/2a), (4ac-b^2)/4a)。
7.直径:抛物线的直径是通过焦点且与抛物线相交于两点的直线。
8.非退化抛物线:当a不等于0时,抛物线是非退化的,并且它的对
称轴是直线x=-b/2a。
9.顶点:抛物线的顶点是抛物线上最高或最低的点,它是通过对称轴
的纵坐标最小(或最大)的点。
10.切线:抛物线上任意一点的切线是通过该点并且与抛物线仅有一
个交点的直线。
11.弦:抛物线上的弦是通过抛物线上两个点并且与抛物线仅有两个交点的线段。
12. 与X轴交点:抛物线与X轴的交点可通过求解方程ax^2 + bx +
c = 0得到。
13.与Y轴交点:抛物线与Y轴的交点是抛物线上当x=0时的点,即把x替换为0后求解方程得到。
14.对称性:抛物线具有关于对称轴对称的性质,即对称轴上的一点关于对称轴上的另一点的映射是自身。
15.焦点和直角三角形:抛物线上两点和焦点构成的三角形是直角三角形。
16.抛物线的图像:抛物线的图像是一个开口朝上或朝下的弧线,形状可以通过方程中的系数来确定。
17.抛物线的平移:抛物线可以通过平移来改变其位置,平移的方式是通过方程中的常数项来实现。
18.抛物线的拉伸/压缩:通过改变抛物线方程中的a的值,可以改变抛物线的宽度。
19.抛物线与其他图形的关系:抛物线与其他图形的关系可以通过其方程和图像进行分析,例如抛物线与直线或者其他抛物线之间的交点、切点等。
总结:
抛物线是一种重要的二次函数,具有许多重要的性质和特点。
了解这些性质对于理解和分析抛物线的方程和图像非常有帮助,也为研究更高级
的数学概念奠定了基础。
通过掌握抛物线的知识点,可以更好地理解和应用数学。