第七届“学用杯”全国数学知识应用竞赛八年级初赛试题B
- 格式:doc
- 大小:98.50 KB
- 文档页数:6
第六届“学用杯”全国数学知识应用竞赛八年级初赛试题(A )卷(本题满分150分,考试时间120分钟)题号 一 二 三 四 总分 得分温馨提示:亲爱的同学们,这份试卷将记录你的自信、沉着与智慧.愿你能够放松心情,认真审题,缜密思考,细心演算,交一份满意的答卷. (注:可使用计算器)一、选择题(每小题6分,共30分)1.唐伯虎点秋香的故事家喻户晓了,现在我们来做一个推理:“唐伯虎点秋香”【规则】下面有四个人,其中一个人是秋香,请你通过下面提示辨别出谁是秋香. 友情提示:这四个人分别是:春香、夏香、秋香、冬香. 【所给人物】A 、B 、C 、D①A 不是秋香,也不是夏香;②B 不是冬香,也不是春香;③如果A 不是冬香,那么C 不是夏香;④D 既不是夏香,也不是春香; ⑤C 不是春香,也不是冬香.若上面的命题都是真命题,则秋香是( ) A .A B .B C .C D .D 2.如图1,在一个规格为6×12(即6×12个小正方形)的球台上,有两个小球A ,B .若击打小球A ,经过球台边的反弹后,恰好击中小球B ,那么小球A 击出时,应瞄准球台边上的点( )A .1PB .2PC .3PD .4P3.时至父亲节,某大学校园“文苑”专栏登出了一位同学回忆父亲的小诗:“同辞家门赴车站,别时叮咛语千万,学子满载信心去,老父怀抱希望还.”如果用纵轴y 表示父亲和学子在行进中离家的距离,横轴t 表示父子同时离家后的时间,那么下面与上述诗意大致相吻合的图象是( )4.如图2,小明和小亮玩一种“机器人迈步游戏”,某一个机器人在图中的1号位置上,按顺时针方向,第一次跳一步到2号位置上,第二次跳两步跳到4号位置上,第三次跳三步又跳到了1号位置上,第四次跳四步……一直进行下去,那么如果第2006次跳2006步,所跳到的位置号是()A.2 B.4 C.5 D.65.某市进行青年歌手大奖赛预赛,评委给每位选手打分时,最高分不超过10分,所有评委的评分中去掉一个最高分,去掉一个最低分后的平均分即为选手的最后得分.李华的最后得分为9.68分,若只去掉一个最低分,李华的得分为9.72分,若只去掉一个最高分,李华的得分为9.66分,那么可以算出这次比赛的评委有()A.9名B.10名C.11名D.12名二、填空题(每小题6分,共30分)6.卡车司机小张开车在高速公路上以100km/h的速度行驶,听到车后有另一汽车的喇叭声,他即刻从反射镜中看到他车后约40米处有一辆轿车疾驰而来,他让开快车道,轿车很快赶上并超越了小张的卡车.若从小张的反射镜中看到轿车到轿车和卡车并行时经过了7秒钟,设轿车的速度为x km/h,那么,它应当满足方程.7.学校广播室要从八年级(2)班选一名广播员,小明、小华和小英普通话都不相上下,并且都争着要去.老师决定用抽签的办法确定,结果三个人都争着先抽,以为第一个抽签的人抽中的可能性大一些;这时,小华从兜里拿出两枚一元的硬币,并说将两枚硬币同时向上抛出,如果两个都是正面朝上,小明去;如果两个都是反面朝上,小英去;如果两个一正一反,小华自己去.那么,你认为(填“老师”或“小华”)的办法公平合理,理由是.8.在一张长26cm,宽19cm的绘图纸上按1∶100的比例尺绘制出某一池塘的图形(不规则).现将这张图纸复印数张,称得总质量为20g,再将称过质量的这些图纸沿池塘边缘剪掉多余部分后,称得质量为13g.那么根据这些数据,我们可以算出池塘的实际面积m(假设复印纸与图纸材料相同,结果精确到0.1).为29.某水库正常情况下,每天流入一定量的河水,可供城市用水80天,今年因天气干旱流入量减少20%,每天按原供水量只能用60天,如果仍计划用80天,每天供水量需要减少(填百分比);当库存水量剩一半时,由于雨季到来流入量比正常时增加了20%,若仍按天旱时的供水量供水还可供水天.10.小明的爸爸想买股票,星期一,他发现证券交易所中有三种股票情况如下:种类面值(元)现价(元)股息周期股息比率甲50 48 季3%乙100 104 半年 6.5%丙500 600 年15%晚上回家后,他想考考小明,让他计算一下假如一年前投入相同的资金购买这三种股票,现在同时出售,种股票(填“甲”、“乙”或“丙”)所得的收益最多.三、解答题(每小题15分,共60分)11.判断说理:元旦联欢会上,八年级(1)班的同学们在礼堂四周摆了一圈长条桌子,其中北边条桌上摆满了苹果,东边条桌上摆满了香蕉,礼堂中间B处放了一把椅子,游戏规则是这样的:甲、乙二人从A处(如图3)同时出发,先去拿苹果再去拿香蕉,然后回到B处,谁先坐到椅子上谁赢.张晓和李岚比赛,比赛一开始,只见张晓直奔东北两张条桌的交点处,左手抓苹果,右手拿香蕉,回头直奔B处,可是还未跑到B处,只见李岚已经手捧苹果和香蕉稳稳地坐在B 处的椅子上了.如果李岚不比张晓跑得快,张晓若想获胜有没有其他的捷径?若有,请说明你的捷径,若没有,请说明理由.12.信息处理:2006年8月25日颜老师带身份证去中国银行取女婿李建的跨国劳务工资6 300美元,银行告知身份证的名字与汇款名字不符,“李建”写成了“李健”.颜老师将这一情况转告李建,李建等原汇款退回之后,于9月25日将工资重新汇款到国内(汇费另付),由于这几天人民币的升值,颜老师赶紧将美元兑换成了人民币,然后转存成3年定期存款.已知8月25日、9月25日100美元分别兑换人民币797.15元、791.96元,美元从国外汇到国内需要付汇款金额的1‰,即最低50元、最高260元人民币的手续费,另外收取电讯费150元人民币.已知3年定期存款的利率为3.69%,且需付20%的利息税,请问李建这次汇费与损失折算成人民币共多少元?13.方案设计:新疆是我国风力资源最丰富的地区之一,风力发电也将成为新疆未来重要的替代能源.新疆某地一年内日平均风速不小于3米/秒的时间共约160天,其中平均风速不小于6米/秒的时间约占60天.为了充分利用“风能”这种“绿色能源”,该地拟建一个小型风力发电厂,决定选用A 、B 两种型号的风力发电机.根据产品说明,这两种风力发电机在各根据上面的数据回答:(1)若这个发电厂购买x 台A 型风力发电机,则预计这些A 型风力发电机一年的发电总量至少为多少千瓦时?(2)已知A 型风力发电机每台0.3万元,B 型风力发电机每台0.2万元,该发电厂欲购置风力发电机共10台,希望购机的费用不超过2.6万元,而建成的风力发电厂每年的发电量不少于102 000千瓦时,请你提供符合条件的购机方案.14.实践探究:八年级(7)班为了从张帆、杨君两位同学中选出班长,进行了一次演讲答辩与民主测评,请数学、语文、政治、历史、英语科目的五位老师作为评委,对“演讲答辩”情况进行评价,全班50位同学参与了民主测评.结果如下表所示: 表1表2规定:演讲答辩得分按“去掉一个最高分和一个最低分再算平均分”的方法确定: 民主测评得分=“好”票数×2分+“较好”票数×1分+“一般”票数×0分 综合得分=演讲答辩得分×(1a -)+民主测评得分 (0.50.8)a a ⨯≤≤(1)当0.6a =时,张帆的综合得分是多少?(2)a 在什么范围内,张帆的综合得分高?a 在什么范围内,杨君的综合得分高?四、开放题(本题30分)15.2006年10月20日,《数学专页》顾问、中科院院士林群到报社指导工作时,谈及“为什么学数学”这个话题,举了一个这样的例子:测一棵树高,如果没有数学,必须把树砍倒,或爬到树尖,而一旦有了数学,只需用直尺和测角仪就可计算出树的高度.一个小小的例子就让我们大家明白了“为什么学数学”,也告诉了我们生活处处有数学.现在请你联想实际编写一道生活中的数学问题,并解释用了什么样的数学道理.卷参考答案一、选择题(每小题6分,共30分)1.C2.B 3.C 4.B 5.A二、选择题(每小题6分,共30分)6.10001000007740 36003600x⨯=⨯+7.老师.因为老师的办法,不管谁先抽均有13的机会;小华的办法中,小明和小英的机会各占14,而小华的机会占12.(注:本题只要说明老师的办法中,三人的机会相等,而小华的办法中,三人机会不均等即可得分.)8.2321.1m9.12.5%,12010.甲三、解答题(每小题15分,共60分)11.解:如下图,假设北边和东边条桌各为一个平面镜,光线经过两次反射到达B点.因此,分别以北条桌和东条桌为对称轴,找到A,B的对称点A',B',连接A B'',交两长条桌于C,D两点,则折线ACDB就是捷径.(本题说出方案可得10分,再画上图可给满分,若只画出图可给10分,其他较近捷径可适当给分.)12.解:第一次汇费:6 300×7.971 5×1‰+150≈200.22(元); ······························2分第二次汇费:6 300×7.919 6×1‰≈49.89(元)<50元,因此第二次汇费为200元. ·············································································6分两次汇率差造成的损失:6 300×(7.971 5-7.919 6)=326.97(元). ·························································9分一个月利息:6 300×7.971 5×3.69%×112×(1-20%)≈123.54(元). ······································· 12分200.22200326.97123.54850.73+++=(元). ···················································· 14分答:李建这次汇费和损失折算成人民币共850.73元. ········································· 15分13.解:(1)[36×(160-60)+150×60]x=12 600x(千瓦时); ·································4分(2)设购买A型发电机x台,则购买B型发电机(10-x)台.根据题意,得512 600[24(16060)9060](10)102 00090.30.2(10) 2.6x x x x +⨯-+⨯-+-⎧⎨⎩分≥.分≤,解得56x ≤≤. ························································································· 13分 所以可购A 型发电机5台,B 型发电机5台;或购A 型发电机6台,B 型发电机4台. ················································································································· 15分 14.解:设综合得分为T ,演讲得分为1T ,民主测评得分为2T .(1)张帆同学:1T ≈93.67,2T =87, ································································· 4分 0.6a =时,T 张帆93.67(106)870690=⨯-+⨯..≈; ··············································· 6分 (2)杨君同学:1T ≈91.33,2T =88, ······························································· 10分T 杨君=91.33(1-a )+88a=91.33-3.33a ,又∵T 张帆=93.67(1-a )+87a =93.67-6.67a , ························································· 12分 若T 张帆>T 杨君,则有93.67-6.67a>91.33-3.33a . 解得0.7a <. ····························································································· 14分 ∴0.50.7a <≤时,张帆的综合得分高,0.70.8a ≤≤时,杨君的综合得分高. ···· 15分四、开放题(本题30分) 15.答案不惟一.(本题编写出题目可给15分,解释了其中的道理或给出详解可得满分,其他情况可酌情给分.)。
第七届“学用杯”全国数学知识应用竞赛九年级初赛试题(A)卷(本卷满分150分,考试时间120分钟)温馨提示:亲爱的同学们,这份试卷将记录你的自信、沉着与智慧.愿你能够放松心情,认真审题,缜密思考,细心演算,交一份满意的答卷.一、选择题(每小题6分,共30分)1.校园内一个半径为10米的圆形草坪,如图1,一部分学生为走“捷径”,走出了一条小路AB.通过计算可知,这些学生踩坏了花草,其实仅仅少走了(假设2步为1米,结果保留整数)()A.4步B.5步C.6步D.7步2.小红的妈妈做了一个矩形枕套(长、宽不等),又在枕套四周镶上了相同宽度的花边,如图2所示,关于两个矩形,下列说法正确的是()A.两个矩形相似B.两个矩形不一定相似C.两个矩形一定不相似D.无法判断两个矩形是否相似3.如图3,方台村为了抽取水库的水来浇灌山上的果木树,准备在山坡上建一个抽水泵站.已知山坡上有A、P、Q三处可供选择,且测得A到水库C的距离为50m,P到C的距离为40m,Q到C的距离为35m,山坡的坡角∠ACB=15°.由于大气压的影响,此种水泵的实际吸水扬程AB不能超过10m,否则无法抽取水库的水,则水泵站应建在(sin15°=0.258 8,cos15°=0.965 9,tan15°=0.267 9)()A.A处B.P处C.Q处D.A、P、Q均可4.宏光学校有一面积为100米2的正方形展厅,计划铺满统一大小的正方形地板砖,现市场上有大、小两种规格产品:大地板砖对角线长为50cm,每块0.8元;小地板砖对角线长为40cm,每块0.6元,甲公司的优惠办法是:凡购买大地板砖700块以上者给予9折优惠,凡购买小地板砖1 000块以上者给予7折优惠;乙公司的优惠办法是:凡购买700元以上者,不管购买大块还是小块均按8折优惠.在质量、服务条件相同的情况下,为使学校支付的费用最少,请你为该校选择最佳购买方案()A.到甲公司购买大块地板砖B.到乙公司购买大块地板砖C.到甲公司购买小块地板砖D.到乙公司购买小块地板砖5.如图4,在某条公路上,从里程数8m开始到4 000m止,每隔8m将树与灯按图中的规则设立:在里程数8m处种一棵树,在16m处立一盏灯,在24m处种一棵树(相邻的树与树、树与灯之间的距离都是8米)……,且每两盏灯之间的距离相等.依此规则,下列里程数800m~824m之间树与灯的排列顺序中正确的是()二、填空题(每小题6分,共30分)6.王强毕业于农业技术职业学校,毕业后采用大棚栽培技术种植了一亩地的良种西瓜,第一年这亩地产西瓜625个,为了估计这亩地的收成,王强在西瓜大批上市前随机摘下10个成熟的西瓜,称重如下:西瓜质量(单位:千克)西瓜个数(单位:个) 1 2 3 2 1 1根据以上信息可以估计这亩地的西瓜质量约是千克.7.你是否用电脑进行过图案设计?图5(1)是小明在电脑上设计的小房子,然后他又进行变化,得到图5(2);小亮也在电脑上设计了一个图案,如图5(3),如果小亮也按小明变化图形时的规律对图5(3)进行变化,得到的图案是(画出简图).8.某希望小学刚刚建起,田径场还没建好,秋季运动会时,临时设置简易跑道如图6所示,两端由两个半圆组成,一周约250米,在一次400米跑比赛中,第一道从起点A要跑一圈半到终点C.第二道终点不变,且中途不准抢道(每道宽1米).为公平起见,第二跑道起点B应比第一跑道向前移动.9.自行车轮胎安装在前轮上行驶6 000千米后报废,若安装在后轮上只能行驶4 000千米.为了行驶尽可能远的路程,如果采用当自行车行驶一定路程后将前、后轮胎调换使用的方法,那么安装在自行车上的一对新轮胎最多可行驶千米.10.已知,如图7,斜坡PQ坡度为41:3i ,坡脚Q旁的点N处有一棵大树MN.近中午的某个时刻,太阳光线正好与斜坡PQ垂直,光线将树顶M的影子照射在斜坡PQ上的点A处.如果AQ=4米,NQ=1米,则大树MN的高度为.三、解答题(本大题共60分)11.(本题10分)判断决策:三个无线电厂家在广告中都声称,它们的半导体收音机产品在正常情况下,产品的平均寿命是8年,商品检验部门为了检查他们宣传的真实性,对三个厂家出售的半导体收音机寿命进行了抽样统计,结果如下(单位:年):甲厂:3、4、5、5、5、7、9、10、12、13、15;乙厂:3、3、4、5、5、6、8、8、8、10、11;丙厂:3、3、4、4、4、8、9、10、11、12、13;请你利用所学统计知识,对上述数据进行分析并回答以下问题:(1)这三个厂家的广告,分别利用了哪一种反映数据集中趋势的特征数?(2)如果你是顾客,应选购哪个厂家的产品?为什么?12.(本题15分)方案设计:东风汽车租赁公司共有30辆出租汽车,其中甲型汽车20辆,乙型汽车10辆.现将这30辆汽车租赁给A、B两地的旅游公司,其中20辆派往A地,10辆派往B地,两地旅游公司与汽车租赁公司商定每天价格如下表:(1)设派往A地的乙型汽车x辆,租赁公司这30辆汽车一天共获得的租金为y(元),求y与x之间的函数解析式,并写出自变量x的取值X围;(2)若要使租赁公司这30辆汽车一天所获得的租金总额不低于26 800元,请你说明有多少种分派方案,并将各种方案设计出来;(3)如果要使这30辆汽车每天获得的租金最多,请你为租赁公司提出合理的分派方案.13.(本题15分)实践应用:下承式混凝土连续拱圈梁组合桥,其桥面上有三对抛物线形拱圈.图8(1)是其中一个拱圈的实物照片,据有关资料记载此拱圈高AB为(含拱圈厚度和拉杆长度),横向分跨CD为.(1)试在示意图(图8(2))中建立适当的直角坐标系,求出拱圈外沿抛物线的解析式;(2)在桥面M(BC的中点)处装有一盏路灯(P点),为了保障安全,规定路灯距拱圈的距离PN不得少于1.1m,试求路灯支柱PM的最低高度.(结果精确到0.1m)14.(本题20分)归纳猜想:同学们,让我们一起进行一次研究性学习:(1)如图9,已知正三角形ABC的中心为O,半径为R,将其沿直线l向右翻滚,当正三角形翻滚一周时,其中心O经过的路程是多少?(2)如图10,将半径为R的正方形沿直线l向右翻滚,当正方形翻滚一周时,其中心O经过的路程是多少?(3)猜想:把正多边形翻滚一周,其中心O所经过的路程是多少(R为正多边形的半径,可参看图11)?请说明理由.(4)进一步猜想:任何多边形都有一个外接圆,若将任意圆内接多边形翻滚一周时,其外心所经过的路程是否是一个定值(R为多边形外接圆的半径)?为什么?请以任意三角形为例说明(如图12).通过以上猜想你可得到什么样的结论?请写出来.四、开放题(本题30分)15.杨子晚报报道《你家用“峰谷电”合不合算?》:“峰谷电”的含义是这样的,每天8∶00到22∶00用电每千瓦时是0.56元(峰电);22∶00至次日8∶00每千瓦时是0.28元(谷电).注:平时居民用电每千瓦时是0.52元.(1)根据你家的平时用电情况,算一算,你家用这样的“峰谷电”合算吗?(2)请根据“峰谷电”的使用,编拟一道数学实际应用问题,并给出解题过程,注明用的什么数学知识.第七届“学用杯”全国数学知识应用竞赛九年级初赛试题(A)卷参考答案一、选择题(每小题5分,共30分)1.B 2.C 3.C 4.C 5.D二、填空题(每小题5分,共30分)6.3 1257.8.2π米9.4 80010.8米三、解答题(每小题15分,共60分)11.解:(1)因为甲厂的收音机寿命的平均数是8年,众数是5年,中位数是7年;乙厂的收音机寿命的平均数约是6.45年,众数是8年,中位数是6年;丙厂的收音机寿命的平均数约是7.36年,众数是4年,中位数是8年. ················ 6分 所以,甲厂选用平均数,乙厂选用众数,丙厂选用中位数; ··········· 8分(2)因为甲厂收音机的平均寿命比乙厂、丙厂的都高,因此,顾客应选购甲厂的产品.··········· 10分12.解:(1) 1 000(20)900800600(10)26 000100(010)y x x x x x x =-+++-=+≤≤;·········· 6分(2)依题意,得26 00010026 800x +≥,又因为010x ≤≤,∴810x ≤≤.因为x 是整数,∴x =8,9,10,方案有3种. ················ 9分 方案1:A 地派甲型车12辆,乙型车8辆;B 地派甲型车8辆,乙型车2辆;方案2:A 地派甲型车11辆,乙型车9辆;B 地派甲型车9辆,乙型车1辆;方案3:A 地派甲型车10辆,乙型车10辆;B 地派甲型车10辆. ········ 12分(3)∵26 000100y x =+是一次函数,且1000k =>,∴y 随x 的增大而增大. ∴当10x =时,这30辆车每天获得的租金最多.∴合理的分配方案是A 地派甲型车10辆,乙型车10辆;B 地派甲型车10辆. ··· 15分13.(1)如右图,以A 为坐标原点,BA 所在直线为y 轴建立直角坐标系xAy ,因拱圈外沿所在的抛物线过原点,且以y 轴为对称轴,故可设抛物线解析式为:2y ax =, ··············· 4分由题意抛物线过点(2010)D -,,代入得140a =-,故拱圈外沿抛物线的解析式为: 2140y x =-. ······························· 8分 (2)设(10)N k -,,则:21(10) 2.5(m)40k =-⨯-=-,∴107.5(m)MN k =+=, ························· 12分 ∴7.5 1.18.6PM MN PN =++=≥(m ),即路灯支柱PM 的最低高度为.(其余解法可类似给分). ············ 15分14.解:(1)当正三角形ABC 向右翻滚一周时,其中心O 经过的路线是三条等弧,所以其中心O 经过的路程为:120π32π180R R ⨯=. ·················· 3分 (2)中心O 经过的路程为90π42π180R R ⨯=. ················· 6分 (3)当n 边形向右翻滚一周时,其中心O 经过的路线是n 条等弧,这些弧的半径为R ,所对的圆心角为360n ,所以中心O 经过的路程为360π2π180R n n R ⨯=. ······· 10分 (4)是定值2πR ,理由如下:在△ABC 中,设A B C αβγ∠=∠=∠=,,,△ABC 的外接圆⊙O 的半径为R ,把△ABC 沿直线l 向右翻滚一周时,其外心O 经过的路线是三条弧,当AC 边与直线l 重合时,C 与C '重合,A 与A '重合,B 与B '重合,连接CO 、C O '',则ACO A C O '''∠=∠,所以180OCO ACA γ''∠=∠=-,所以(180)π180R l γ-=,同理,另两条弧长分别为:(180)π180R α-,(180)π180R β-,所以外心O 所经过的路程为2πR . ········ 16分 通过以上猜想可得结论为:把圆内接多边形翻滚一周时,多边形的外心所经过的路程是一个定值. ······························· 20分四、开放题(本题30分)15.(1)答案不惟一,可选择自己家每月(或平均每天)的用电情况,计算说明.只要合理即可得分.(本小问10分);(2)答案不惟一,本小问共20分,编写题目合理可得10分,再写出解题过程,并说明所用数学知识可得20分,以下题目可参考.题1:(用一元一次方程知识编拟)某户居民今年二月份起使用“峰谷电”,三月份经记录这两个月使用“谷电”150千瓦时,已知两月共付电费112元.问该居民使用“峰谷电”多少千瓦时?费用比原来节约了多少?(“峰谷电”中,“峰电”是8∶00到22∶00用电,“谷电”是22∶00到次日8∶00,下同)题2:(用二元一次方程知识编拟)某户居民今年三月份使用“峰谷电”,付电费112元,比原来节约了60.8元,问该户居民使用“峰电”,“谷电”各多少千瓦时?题3:(用不等式知识编拟)某户居民今年三月份使用电量300千瓦时,当“峰电”占总电量的多少时,使用“峰谷电”才合算?题4:(用函数知识编拟)某户居民今年三月份起使用“峰谷电”,平均每天使用“峰电”8千瓦时,写出三月份(31天)该户居民的电费(y元)与每天“谷电”的用电量x(千瓦时)之间的函数关系式.。
第七届“学用杯”全国数学知识应用竞赛七年级初赛B.卷试题一、填空题(每小题6分,共30分)1.数学谜语,既能激发好奇心,增强想象力,又能拓宽视野,丰富知识.下面的两则数学谜语,你能写出谜底吗?(1)七六五四三二一(打一数学名词):;(2)只识0和1,能算万和亿,软硬我都有,猜我很容易(打一计算工具):.2.在七年级的一次数学活动课中,为了让同学们感受身边的数据,刘老师要求大家借助学校的篮球场,每一活动小组自己发现数据,并测量记录数据.某活动小组测得学校的篮球场长为A 米,宽为B 米,且长比宽多C 米,周长是D 米,面积是E 平方米,篮球架高F 米.测量到的数据有:86,13,420,15,28,3.由于记录疏忽把数据弄乱了.你能帮他们整理一下吗? A = ,B = ,C = ,D = ,E = ,F = .3.你玩过“数字黑洞”的游戏吗?“数字黑洞”,即满足某种条件的所有数,通过一种运算,都能被它“吸”进去,无一能逃脱它的魔掌.下面我们就来玩一种数字游戏,它可以产生“黑洞数”,操作步骤如下:第一步,任意写出一个自然数(以下称为原数);第二步,再写出一个新的三位数,它的百位数字是原数中偶数数字的个数,十位数字是原数中奇数数字的个数,个位数字是原数的位数;以下每一步,都对上一步得到的数按照第二步的规则继续操作,直至这个数不再变化为止.不管你开始写的是一个什么数,几步之后变成的自然数总是相同的,最后这个总相同的数就称为“黑洞数”.请你以2008为例尝试一下:第一步写出2008,第二步之后变为 ,再变为 ,再变为 ,再变为 ,再变为 ,……所以这个数字游戏的“黑洞数”是 .4.将3个相同的长为2厘米、宽为1厘米、高为3厘米的小长方体拼成一个大长方体,共有种拼法;如果用包装纸把拼成的长方体包起来,最少需要平方厘米的包装纸.5.公园里准备修六条直的走廊,并且在走廊的交叉路口处设一个报亭,这样的报亭最多可设_______个.二、选择题(每小题6分,共30分)6.同学们,你经常上网浏览新闻吗?据新华网消息:2007年7月19日,国务院新闻办公室举行新闻发布会,国家统计局发言人介绍了2007年上半年国民经济运行情况,其中在谈到农业方面时提到,2007年上半年我国农业生产再获丰收,夏粮单产创历史新高.初步统计,全国夏粮产量达到11534万吨,增产146万吨,增长1.3%,连续四年获得丰收.用科学记数法表示2007年上半年的夏粮产量为(保留4个有效数字)( ) A.81.153410⨯吨B.71.153410⨯吨 C.71.15010⨯吨D.81.15310⨯吨7.某城市新建了一座游乐场,即日将完工.当施工者准备给游乐场用砖头砌上围墙时,发现在设计图纸中的某些数据已经模糊不清了(如图1),从而无法计算出外围围墙的周长,因此无法备砖料.根据图中的标示,可计算出外围围墙的周长是 ( )A.320米 B.260米 C.160米 D.100米8.2007年8月8日是北京2008奥运会一周年倒计时的日子.小刚制作了一个侧面边长为1的等边三角形样式的纸盒(如图2),把它的侧面三角形的顶点分别标出A B C ,,三个点,让这个纸盒按照同一个方向每天在平面上滚动一次(无滑动),那么到2008年奥运会开幕那天,点A 转动的路程是( ) A.488π3 B.122π3 C.244π3 D.122π9.QQ 是一种流行的中文网络即时通讯软件.注册用户通过累积“活跃天数”就可获得相应的等级,如果用户当天(0∶00~24∶00)使用QQ 在2小时以上(包括2小时),其“活跃天数”累积为1天.一个新用户等级升到1级需要5天的“活跃天数”,这样可以得到1个星星,此后每升1级需要的“活跃天数”都比前一次多2天,每升1级可以得到1个星星,每4个星星可以换成一个月亮,每4个月亮可以换成1个太阳.网名是“未来”的某用户今天刚升到2个月亮1个星星的等级,那么他可以升到1个太阳最少还需经过的天数是( )A.205天 B.204天 C.203天 D.202天10.图3所示的九宫图中,汉字“欢迎你登录数学中国”分别表示1~9中的9个不同数字,且满足下列3个条件:(1)每个“田”字形内的4个数字之和都相等;(2)欢2=中2+国22;(3)录>数.那么“数”“学”“中”“国”这4个字所表示的数字之和是( )A.16 B.18 C.20 D.22三、解答题(每小题15分,共60分)11.李慧家有一个小型的家用烤面包器,一次只能放两片面包,每片面包烤一面需要1分钟,要烤另一面,就得取出面包片,把它翻过来,然后再放回烤面包器中.一天早晨,李慧妈妈烤了三片面包,两面都要烤,共用了4分钟(忽略取出面包片的时间).假设三片面包分别称为A B C ,,,每片面包的两面分别用1,2代表,李慧妈妈烤面包的程序是:第一分钟:烤1A 面和1B 面;第二分钟:烤2A 和2B 面;第三分钟:烤1C 面;第四分钟:烤2C面.借助这个家用烤面包器,每片面包都烤两面,你能用更短的时间将三片面包烤完吗?如果能,请写出你烤面包的程序及所用的时间;如果不能,请说明理由.12.有两个盗宝贼,偶然获得一张藏宝图,他们研究了大半天,破解了其中的秘密:在一片原始森林里,有A B C,,三棵位于同一直线上的十分显眼的参天大树,A树距B树100米,B树距C树150米,宝藏就藏在C树下面.盗宝贼跋山涉水找到那里一看,傻眼了:三棵树外形十分相似,根本不易辨认.请问:你有什么方法一次就能确定宝藏埋在哪棵树下吗?写出你的方法.13.请你阅读“龟兔赛跑新传”比赛规程,解答问题.赛程:全程5.2千米;限速:兔子每小时跑20千米,乌龟每小时跑3千米;跑法:乌龟不停的跑;但兔子却边跑边玩,它先跑了1分钟然后玩15分钟,又跑了2分钟然后玩15分钟,又跑了2分钟然后玩15分钟,再跑3分然后玩15分钟……通过计算说明:(1)它俩谁先到达终点?(2)先到达终点的比后到终点的要快多少分钟?14.翻牌游戏:在一次数学课上,老师把54张扑克牌按照1、2、3、…、54的顺序进行编号后,背面朝上摆成一排.班里正好有54名同学,同样把这54名同学按照1、2、3、…、54的顺序进行编号.游戏规则是:编号为1的同学把扑克牌中编号为1的倍数的所有牌翻一次;编号为2的同学把扑克牌中编号为2的倍数的所有牌再翻一次;编号为3的同学把扑克牌中编号为3的倍数的所有牌也翻一次……直到最后一名54号同学把54号牌翻过来游戏结束.问:游戏结束后有几张扑克牌最后被翻成正面朝上?写出它们的编号并说明理由.四、开放题(本题共30分)15.“减去一个数,等于加上这个数的相反数”.这是有理数的减法法则,在生活中应用这个法则还有一定的教育意义呢!请你编一个与此有关的富有教育意义的情景对话.第七届“学用杯”全国数学知识应用竞赛七年级初赛(B)卷试参考答案一、1.(1)倒数(2)电子计算机(电脑)2.28,15,13,86,420,33.404,303,123,123,123,1234.4,425.15(提示:六条直线,最多有15个交点,利用公式(1)2n n可以计算出).二、6.D7.B(提示:(1)图示提供的数据推知:A+B+C=50米,从而竖向的围墙总长度为100米;(2)从横的部分提供的数据推知,横向的围墙总长度为:50+A+30+50+30-A=160米,从而外围围墙的总长度为260米.故选B.)8.A(提示:一共有366天,每滚动3次为一个循环,每个循环中点A移动2次,每次移动的路程是12π3.)9.C(提示:升到2个月亮1个星星需要117天;而升到1个太阳需要320天,所以还需要203天.提示:若级数为N,天数为M,则M=N(N+4),升到1个太阳即到16级,则天数M=16(16+4)=320(天);升到2个月亮1个星星即到第9级,所用天数为:9(9+4)=117(天),所以320-117=203(天).故选C.)10.A(提示:因为欢2=中2+国2,所以52=32+42.即欢=5,中、国一个可能是3、一个可能是4.又根据已知“每个‘田’字形内的4个数字之和都相等”,所以迎+你+录+数=录+数+中+国.所以迎+你=中+国=7.则迎、你一个可能是1,一个可能是6.假设你=1,欢+登=你+数,即5+登=1+数,则数-登=4.但在余下的2、7、8、9中没有两数之差是4的,所以假设不成立.所以迎=1,你=6.又欢+迎=学+中=5+1=6,即学+中=6.而学只能是2、7、8、9中的一个数,所以学=2.则中=4,则国=3.又录>数,可见数是第二行中最小的一个数,所以数=7.又欢+登=你+数,即5+登=6+数,所以登-数=1.所以登=8.则录=9.即九宫图为:所以数+学+中+国=7+2+4+3=16.故选A.)三、11.解:3分钟.程序是:第一分钟:烤A1面和B1面,取出面包片A,把B翻个面放回烤面包器,把A放在一边而把C放入烤面包器.第二分钟:烤B2面和C1面,取出面包片B,把C翻个面放回烤面包器,把B放在一边(现在它的两面已经都烤好了),再把A放入烤面包器.第三分钟:烤A2面和C2面.12.解:可以用测量法来确定,且只需测量一次即可.方法是:测量第一棵树与第二棵树之间的距离,这个距离如果是100米,则宝藏埋在第三棵树下;这个距离如果是50米或150米,则宝藏就埋在第一棵树下(两端的两棵树均可作为第一棵树).(提示:如下图,A、B、C的位置共有四种不同的情况.无论哪种情况,只需任意测量相邻两棵树的距离,如果这个距离是100米,则宝藏埋在除这两棵树以外的第三棵树下;如果这个距离是50米或150米,则宝藏埋在这两棵树中第一棵(外端的一棵)树下.)13.解:乌龟到达终点所需时间为5.2÷3×60≈104(分钟);兔子如果不休息,则需要时间5.2÷20×60=15.6(分钟),我们注意到兔子休息的规律是跑1、2、3……分钟后,休息15分钟.于是试着将15.6表示成:15.6=1+2+3+4+5+0.6,因有5个间隔,所以休息5×15=75(分钟),于是,兔子跑到终点所需时间为15.6+75=90.6分钟;显然,兔子先到达,先乌龟104-90.6=13.4(分钟).14.解:一共有7张扑克牌最后被翻成正面朝上,编号为1、4、9、16、25、36、49.理由:扑克牌最后是否被翻成正面朝上,主要看它被翻了几次,如果被翻了偶数次则它仍然和原来一样,如果它被翻了奇数次则它最后被翻成了正面朝上.第n号牌是否被翻了过来,关键是看数字n的因数的个数是奇数还是偶数(包括1和它本身),如1只有一个因数1,2有两个因数1、2,3有两个因数1、3,4有三个因数1、2、4,……不难判断,凡是平方数的因数的个数都是奇数个,因此编号为1、4、9、16、25、36、49的扑克牌最后被翻成正面朝上.四、15.说明:答案不惟一(只要情景对话积极、健康,能将法则嵌入得比较自然,又有教育意义即可)提供一个情景对话,如:小明从老师办公室回到座位上,自言自语的说:“不就是犯了个小错吗?有什么大惊小怪的”.他的同桌小聪问:“怎么了,小明”.“作业上出现了一个小错误,被老师批一顿.咳!”小聪看了看小明的作业,发现他在计算时忽略了换算.说:“这可不是一个小错误,再说,老师对你进行批评教育是为了帮助改掉这个不良习惯呀,你知道‘减去一个数,等于加上这个数的相反数’.改掉这个不良习惯,也就相当于增加了一个好的习惯呀”.“哦!明白了,还真是这样”.看看,这个运算法则对促使小明醒悟的作用还真大呢!。
第二届“学用杯” 全国数学知识应用竞赛八年级初赛试题(B 卷)一、填空题(每小题5分,共40分)1.宁先生准备装修新房,新房的使用面积为105m 2,卫生间和厨房共15m 2,厨房和卫生间装修工料费为每平方米100元,为卫生间和厨房配套卫生洁具和厨房厨具还要用去500元,若装修费用不超过20000元,则居室和客厅装修工料费每平方米至多为 元. 2.兄弟俩举行百米赛跑,当哥哥到达终点时,弟弟才跑到95米处,如果终点位置不变,弟弟在原起跑点起跑,哥哥后退5米,兄弟俩的速度仍和原来一样,则 赢得胜利. 3.在一面平面镜中看到一辆汽车的车牌是 ,则该汽车的车牌号码是. 4.99名学生去划船,大船每只可乘坐12人,小船每只可乘坐5人,如果这些学生把租来的船都坐满,那么大船和小船应分别租 只.5.在一次“自主探索”活动课上,张老师把一个正方体的六个面分别涂上六种不同颜色,并画上朵数不等的花,各面上的颜色与花朵数情况列表如下:现张老师将上述大小相同,颜色花朵分布完全一样的四个正方体拼成一个水平放置的长方体,如图1所示,那么长方体的下底面共有 朵花.6.在密码学中,称直接可以看到的内容为明码,对明码进行处理后得到的内容为密码.对于英文,人们将26个字母按顺序分别对应整数0到25,现有4个字母构成的密码单词,记4个字母分别为x 1,x 2,x 3,x 4,已知整数x 1+2 x 2,3 x 2,x 3+2 x 4,3 x 4除以26的余数分别为9,16,23,12,则密码单词是 .7.如图2,是一块玻璃纸的一部分,它由11个边长为们各自有一条边依次在同一条直线上,而且沿着这条直线,每个三角形底边的中点恰为下一个三角形的顶点,则由这11个三角形所盖住的玻璃(平面的)区域的面积是图1(答案可带根号).8.某公司规定一个退休职工每年可获得一份退休金,金额与他工作的年数的算术平方根成正比.如果他多工作a 年,他的退休金比原有的多p 元;如果他多工作b 年(b ≠a ),他的退休金比原有的多q 元.则此退休工人每年的退休金为 元(用a 、b 、p 、q 表示).二、选择题(每小题5分,共50分)9.校园里有一块三角形土地ABC ,D 、E 、F 分别是AB 、BC 、AC 的中点,G 、H 分别是线段BD 和AD 的中点,现计划在这块三角形土地上栽种四种花草,要求将这块土地分成面积相等的四块,下面有四种分法(如图3),其中正确的有 ( ).(A )4种(B )3种(C )2种(D )1种10.公司职员小王和小陈在同一办事处工作,某天下午2点整要参加公司总部的西部大开发研讨会.下午小陈1点整从办事处出发,乘出租车于1点50分提前到达公司总部;小王因忙于搜集资料,1点25分才出发,为了赶时间,他让出租车从小路走,虽然路程比小陈走的路程缩短了10千米,但由于路况问题,出租车的平均速度比小陈乘坐的出租车的平均速度每小时慢6千米,所以小王还是迟到了5分钟.设小陈乘坐的出租车的平均速度为x 千米/时,从办事处到公司总部的距离为y 千米,那么 ( ). (A )x =30,y =36(B )x =3,y =36(C )x =36,y =30(D )x =3.6,y =3011.下列各图是纸箱厂剩下的废纸片,全是由全等正方形组成的图形,为了充分利用这些废纸片,不用剪割,能围成正方体盒子的图形是 ( ).ABC D E FABC D E FAB C DG FA BCD G H图3 (1)2391011图212.用计算机打一份稿子,甲打30分后由乙继续打25分可以完成;如果乙先打,打30分后由甲继续打24分就可以完成.则甲、乙二人单独打完这份稿子各需的时间为 ( ).(A )50分,60分(B )60分,50分 (C )60分,45分 (D )62分,50分 13.如图4所示,有一直立标杆AB ,它的上部被风从M 处吹折,杆顶B 着地,落在距杆脚A 2米的B 1处,修好后,又被风吹折,因新折断N 比前一次折断处M 低0.5米,故这次杆顶B 着地处B 2比前一次着地处B 1远1米,则原标杆AB 的高为 ( ). (A ) 4米 (B )4.5米(C )5米(D )6.5米14.如图5所示,正△ABC 为某一住宅区的所占区域,其周长为800m ,为了美化环境,计划将住宅区边缘5m 内(虚线以内,△ABC 之外)作为绿化带,则绿化面积约为 ( ).(A )4130m 2(B )4150m 2(C )4170m 2 (D )4200m 215.批发部经营某种商品,批发价(销售价)每只500元,毛利率为4%,该库存商品资金有80%向银行借贷,月利率为4.2‰,商品的保管经营费每只每天0.30元,则不发生亏本时商品的平均储存期最多为 ( ). (A )53天(B )54天(C )55天(D )56天16.某专卖店根据市场信息,对店中现有的两款不同品牌的手机进行调价销售,其中一款手机调价后售出可获利10%(相对于进价),另一款手机调价后则要亏本10%(相对于进价),而这两款手机调价后的售价恰好相同,那么专卖店把这两款调价手机各售出一部后( ).(A )既不获利也不亏本 (B )可获利1%(C )要亏本2% (D )要亏本1%ABM NB 2B 1 图4图5 (A )(B )(C )(D )17.某企业为了适应市场经济的需要,决定进行人员结构调整,该企业现有生产性行业人员100人,平均每人全年可创造产值a元.现欲从中分流出x人去从事服务性行业,假设分流后,继续从事生产性行业的人员平均每人全年创造产值可增加20%,而分流从事服务行业的人员平均每人全年可创造产值3.5a元.如果要保证分流后,该厂生产性行业的全年总产值不少于分流前生产性行业的全年总产值,而服务性行业的全年总产值不少于分流前生产性行业的全年总产值的一半,则分流后从事服务性行业的人数为().(A)13或14(B)14或15(C)15或16(D)16或1718.现有名片若干张,已知名片的长边为9cm,规定不能用尺子量,而且不能折叠或切断名片,你能否算出名片的短边的长度().(A)能(B)不能三、解答题(每小题20分,共40分)19.在边防沙漠地带,边防军巡逻车每天行驶200千米,每辆巡逻车可装载供行驶14天的汽油.现有5辆巡逻车同时从驻地A出发,完成任务后再沿原路返回驻地,为了使其中3辆尽可能到更远的地方巡逻,然后一起返回,另外两车行至途中B处后,仅留足自己返回驻地所必需的汽油,将多余的汽油留给另外3辆使用,问其他3辆车可行进的最远距离是多少千米?20.某班同学出去野营,其中n个人围成一圈,其余的人做观众.这几个人按顺时针方向依次编为1至n号,从1号开始表演节目,以后每隔1个人表演,某人表演完后就退出圈子作观众,当n为下列各值时,求最后一个表演节目的人是几号?(1)n=32;(2)n=39.四、开放题(本大题20分)21.现有4个全等的直角三角形纸板,你能用它们来拼证勾股定理吗?若能,说明你的思路和方法,方法越多越好(至少要写出四种方法).。
第八届“学用杯”全国数学知识应用竞赛七年级初赛(B)卷试题一、填空题(每小题6分,共30分)1.在国外留学的叔叔送给聪聪一个新奇的玩具——智能小兔子.它的新奇之处在于若第一次向正南跳一下,第二次就掉头向正北跳两下,第三次又掉头向正南跳三下……而且它每跳一下的距离均为20厘米.如果小兔子第一次向正南跳,那么跳完第80次后,它在起跳点的________(填“正南”或“正北”),距离起跳点米.2.小张的三位朋友甲、乙、丙想破译他在电脑中设置的登录密码.但是他们只知道这个密码共有五位数字.他们根据小张平时开电脑时输入密码的手势,分别猜测密码是“51932”、“85778”或“74906”.实际上他们每个人都只猜对了密码中对应位置不相邻的两个数字.由此你知道小张设置的密码是.3.2008年北京奥运会已经圆满结束了,除了赛场上的奥运选手给我们留下了深刻的印象,还有让我们更难忘的是赛场内外提供“微笑”服务的人——志愿者.在志愿者选拔中,来自北大、清华、北师大的三位大学生李志、文文、刘兵都有幸当上了志愿者,但他们三人分工不同,他们中有赛会志愿者、城市志愿者、社会志愿者.告诉你以下情况:(1)李志不在北大;(2)文文不在清华;(3)在北大的不是赛会志愿者;(4)在清华的是城市志愿者;(5)文文不是社会志愿者.根据这些条件,请你判断:(1)李志是的学生,是志愿者;(2)文文是的学生,是志愿者;(3)刘兵是的学生,是志愿者.4.小明同学参加了学校组织的“互帮互助向明天”的活动,来指导新生如何更快地融入新的学习和生活中.小明在家制作了四份小礼品,准备送给与他“结对子”的新同学,四份小礼品分别装在形状完全一样的小长方体礼盒里,每个小长方体礼盒的长、宽、高分别是3分米,1分米,1分米.他想把它们拼成一个大长方体,外面用包装纸包好,以便带到学校,那么会有种不同的拼法,在这些拼法中包装纸最少用平方分米,最多用平方分米(包装纸重叠部分不计).5.为了响应“植树造林,绿化荒山”的号召,育才中学七年级(1)班的同学在老师的带领下去山坡上种树.种完树后,老师让同学们数数一共种了多少棵树,结果大家发现:2棵2棵的数还剩1棵,3棵3棵的数还剩2棵,4棵4棵的数还剩3棵,5棵5棵的数还剩4棵,6棵6棵的数还剩5棵,7棵7棵的数正好数完.那么他们至少种了棵树.二、选择题(每小题6分,共30分)6.堰塞湖是一种由地震或其他原因引起的山体滑坡、熔岩流、泥石流或其他物质堵塞河谷或河床后贮水而形成的湖泊.唐家山堰塞湖是2008年四川省“5·12汶川大地震”形成的最大最险的堰塞湖,垮塌山体约达2 037万立方米,假设这些山体物质平均每立方米重3.5吨,若这些山体垮塌物全由载重为19吨的汽车来运输,要想一次运完,则需要这种汽车(四舍五入保留3个有效数字)()(A)3.752×106辆(B)3.75×106辆(C)0.375×107辆(D)37.5×105辆7.某体检中心有编号为A、B、C、D、E的五台体重计,由于长时间使用,有的称重已经不太准确.已知称同一个人的体重时,它们的差别为:C比B轻0.3千克;D比C轻0.1千克;E比A轻0.1千克;C比E轻0.1千克.巧合的是,五台体重计称量的平均数是准确的体重数.现在知道只有一台体重计称重准确,请你想一想,称重准确的体重计是()(A)A (B)B (C)D (D)E8.王老师在教学过程中善于把数学知识与实际生活联系在一起.在课堂上,他把全班同学分成五组,编号分别是A、B、C、D、E,每组的人数分别是10、7、9、8、6.游戏规则:当他数完1后,人数最少的那一组学生不动,其他各组各出一个人去人数最少的那组;当他数完2后,此时人数最少的那一组学生不动,其他各组再各出一个人去人数最少的那组……如此进行下去,那么当王老师数完2 008后,A、B、C、D、E五个组中的人数依次是()(A)9、6、8、7、10 (B)7、9、6、10、8(C)6、8、10、9、7 (D)8、10、7、6、99.你小时候玩过积木吗?有关专家指出,搭积木游戏可以促进孩子视觉智能的成长.当孩子刚开始搭积木时,首先会学习到的是线条的排列组合,接着则是思考如何运用空间的垂直性来搭建塔楼.下面就来测试一下你搭积木的水平吧.在下列四个积木块中,能与图1完全组合拼成一个4×4×4的正方体木块的是()10.QQ空间是一个展示自我和沟通交流的网络平台.它既是网络日记本,又可以上传图片、视频等.QQ空间等级是用户资料和身份的象征,按照空间积分划分不同的等级.当用户在10级以上,每个等级与对应的积分有一定的关系.现在知道第10级的积分是90,第11级的积分是160,第12级的积分是250,第13级的积分是360,第14级的积分是490……若某用户的空间积分达到1 000,则他的等级是()(A)15 (B)16 (C)17 (D)18三、解答题(每小题15分,共60分)11.截至到今天,离汶川大地震已有半年多的时间了,在这场中国近三十二年来最惨烈的地震灾害中,我们再一次感受到了举国上下高涨的爱国之心、同胞之情.在一次将地震伤员转移的任务中,待转移的重症伤员暂住在A、B、C、D、E五个临时救助点,其中A 处有6人,B处有4人,C处有8人,D处有7人,E处有10人.每个救助点之间的位置和距离如图2所示.现在考虑用担架将这些重症伤员转移到一个集中救助点,由救护车把他们送到邻省的医院治疗.为使运送伤员所走路程总和为最小,你认为救护车应在哪个救助点停靠?12.为保持水土、美化环境,某中学准备在校门口到操场的道路两侧栽一些垂柳,要求路两侧树的棵数和间距均相等,且首、尾两端均栽上树.现在学校已备好一批树苗,若每间隔3米栽一棵,则缺少18棵;若每间隔3.5米栽一棵,则缺少10棵.(1)如果每间隔4米栽一棵,则所备树苗是剩余还是不足?剩余或缺少多少棵?(2)如果想使备用树苗够用且刚好用完,应该每间隔多少米栽一棵树?(精确到0.1米)13.小胖是一个地地道道的金庸迷,在看完黄蓉轻而易举地填出瑛姑的方阵图后,喜欢上了这类填数字游戏.一般方阵图的填写对他来说简直就是小菜一碟,可是下面的这道题却难住了他.聪明的你快来帮帮小胖吧.如图3,在3×3方格中,已知填在三个格中的数字,做填数字游戏:要求填入数字后使各行、各列以及对角线上的三个方格中数字之和相等.请你试一试.14.现有一批用原木加工好的、统一规格的圆柱体木材.第一批20段,直径80厘米,圆柱体高为250厘米.第二批18段,直径为100厘米,圆柱体的高为170厘米.将这些圆柱体木材用专门设备采用逐层剥皮的方法加工成厚为0.1厘米的薄木片如图4.将这些薄木片按其木纹的纵纹——横纹——纵纹——横纹——纵纹的顺序一层一层地粘贴,粘成五层胶合板(贴每层一般都可以拼接,但接缝处不留空隙),贴完后用机器把胶合板压平压实,边缘按规格裁齐,所得整张胶合板的尺寸为91厘米×182厘米.问这些木材可以做成整张的五层胶合板多少张?(π取3.14,假如加工时材料的损耗率为5%)四、开放题(本题共30分)15.我们知道圆的周长公式为2πC r ,当半径r 越大,其周长也越大.请结合这个常识联系实际学习生活写一篇有教育意义的短文.。
全国数学知识应用竞赛八年级初赛试(校拟)题卷(注:(1)可使用计算器;)1.刘师傅是某精密仪器厂的一名检测员.某天,他用螺旋测微器测量了一个工件的长度,共测量10次,记下的测量结果如下(单位:cm ):1.991,1.995,1.996,1.993,1.999,1.995,1.997,1.994,1.995,1.930. 请问同学们这件工件的可靠长度应是 .(注:螺旋测微器是一种测量准确可达到0.001cm 的精密仪器.)2.新世纪中学八年级共有四个班,每班各选5名同学组成一个代表队,这四支代表队(分别用A ,B ,C ,D 表示)进行数学知识应用竞赛,前三名将参加“学用杯”全国数学知识应用竞赛.甲,乙,丙三位同学预测的结果分别为: 甲:C 得亚军;D 得季军; 乙:D 得殿军,A 得亚军; 丙:C 得冠军,B 得亚军.已知每人的预测都是半句正确,半句错误,则冠,亚,季,殿军分别为 . 3.八年级三班同学参加学校趣味数学竞赛,试题共有50道.评分标准是:答对一道给3分,不答给1分,答错倒扣1分.班长小明在计算全班总分时,第一次计算结果是5734分;第二次计算结果是5735分.这两次中有一次是正确的,那么正确的结果是 分. 4.前进中学校园内有一块如图1所示的三角形空地,学校准备在它上面铺上草皮,已知15A ∠=,90C ∠=,20AB=米,请你计算一下学校要购买米2的草皮才能正好铺满空地.5.某高楼装潢需要50米长的铝材,现有3米,6米,9米,12米,15米,19米,21米,30米几种型号的可供选择.如果你是采购员,若使购买的铝材总长恰好为50米,则应采用的购买方案是 .6.如图2,在正方形上连接等腰直角三角形,不断反复同一个过程,假设第一个正方形的边长为单位1.第一个正方形与第一个等腰三角形的面积和记作1S ;第二个正方形与第二个等腰直角三角形的面积和记作2S ;;那么第n 个正方形与第n 个等腰直角三角形的面积和n S 用含n 的代数式表示为.图17.为响应政府的号召:为每位职工办理应该享受的福利待遇.“天鹰”公司规定一个退休职工每年可获得一份退休金,金额与他工作的年数的算术平方根成正比例(比例系数为k ,)如果他多工作a 年,他的退休金比原有的多p 元,如果他多工作b 年()b a ≠,它的退休金比原来的多q 元,那么他每年的退休金是(以a ,b ,p ,q 表示)元.8.建设节约型社会就是使每一位公民养成节约意识,形成人人节约的良好习惯.节约与否不仅是个生活习惯、生活小节问题,更是个思想道德境界的问题.我们拥有的一切物质财富,无一不是劳动的结晶,每一滴水,每一度电,每一张纸,都凝结着劳动者的心血与汗水,所以,我们应该节约.假如你送给好朋友们的一个棱长为1的正方体礼物,需要用一条张正方形彩纸包装,若不把纸撕开,那么所需纸的最小边长为 .二、选择题(每小题5分,共30分)9.如图3,将一块边长为4cm 的正方形纸片ABCD ,叠放在一块足够大的直角三角板上(并使直角顶点落在A 点,)设三角板的两直角边分别与CD 交于点F ,与CB 延长线交于点E ,那么四边形AECF 的面积为( ) A.212cmB.214cmC.216cmD.218cm10.座钟的摆摆动一个来回所需的时间称为一个周期,其计算公式为2T =其中T 表示周期(单位:秒),l 表示摆长(单位:米),9.8g =米/秒2.假如一台座钟的摆长为0.5米,它每摆动一个来回发一次滴答声,那么在一分钟内,该座钟大约发出滴答声的次数为 ( ) A.60 B.48 C.46 D.42 11.“十一”黄金周期间,各商场纷纷开展促销活动,如图4是“福满多”超市中甲、乙两种化妆品的价格标签,一位理货员理货时发现标签上有的地方不清楚了:甲化妆品的原价和现价看不清楚,乙化妆品的打折数和现价看不清楚了,但是收银员知道刚卖过2件甲化妆品和3件乙化妆品的款数为108元,3件甲化妆品和2件乙化妆品的款数为120元,据此理货员可以算出甲化妆品的原价和乙化妆品的打折数分别为 ( ) A.36元 8折B.24元 8折C.36元 7折 D.26元 7折图212.将正方形纸片由下向上对折,再由左向右对折,称为完成一次操作(见图5).按上述规则完成五次操作以后,剪去所得小正方形的左下角.那么,当展开这张正方形纸片后,所有小孔的个数为 ( ) A.48 B.128 C.256 D.304 13.“诺亚”集团计划下一年生产一种新型高清晰数字平板电视,下面是各部门提供的数据信息:人事部:明年生产工人不多于8000人,每人每年按2400工时计算; 技术部:生产一台平板电视,平均要用10个工时,每台平板电视需要10个某种主要部件; 供应部:今年年终库存某种主要部件4000000个,明年能采购到的这种主要部件为16000000个;市场部:预测明年销售量至少1800000台.请根据上述信息判断,明年该公司的生产量x 可能是 ( ) A.1800000x 2000000≤≤ B.1920000x 2000000≤≤ C.18000001900000x ≤≤ D.18000001920000x ≤≤14.如图6所示为长方形台球桌ABCD ,一个球从AB 边上某处P 点被击出,分别撞击球桌的边BC ,CD ,DA 各1次后,又回到出发点P 处,球每次撞击桌边时,撞击前后的路线与桌边所成的角相等(例如图中αβ∠=∠).若3AB =,4BC =,则此球所经过路线的总长度(不计球的大小)为()A.不确定 B.12 C.11D.10甲 乙图4 图5 P A RQ图6三、解答题(每小题分,共分)15.远大商贸有限公司,现有业务员100名,平均每人每年可创业绩收入a 元.为适应市场发展的需要,又在某市开设一家分公司,需派部分业务精英去开拓市场.公司研究发现,人员调整后,留在总部的业务员的业绩年收入可增长20%,而派到分公司的业务员,平均每人的业绩年收入可达3.5a 元.为了维护公司的长远利益,要保证人员调整后,总部的全年总收入不少于调整前,而分公司的总收入也不少于调整前总公司年收入的一半,请你帮公司领导决策,需要往分公司派多少名业务精英.16.如图7,边长为a 的正方形ABCD 的四边贴着直线l 向右无滑动“滚动”,当正方形“滚动”一周时,该正方形的中心O 经过的路程是多少?顶点A 经过的路程又是多少?四、开放题(每小题分,共分)17.曹冲称象的故事中,聪明的曹冲知道大象的体重不能直接去称,就把称大象的重量转化为称石头的重量:他先把大象赶到船上,得到船吃水的深度;再把大象赶下船,往船上装一块块的石头,达到相同的吃水深度,于是,称出石头的重量即可得到大象的重量. 曹冲的思维方法就是转化的思想方法,该思想方法在数学中有着广泛而重要的应用,特别是在解决一些实际问题时,应用就更为广泛了. 请你根据自己所学的数学知识,联系生活实际,编写一道用转化的思想方法解决实际问题的题目,并说明理由.18.为庆祝抗日战争胜利六十周年,请你借助平移,旋转或轴对称等知识设计一个图案,以表达你热爱和平,反对侵略的美好愿望(要求:画出图案,并简要说明图案的含义).参考答案A 图7 l一、填空题(每小题5分,共40分)1.1.995米 2.C,A,D,B3.57344.505.19米铝材2根,12米铝材1根;或19米铝材2根6.152n +7.222()aq bp bp aq -=-8.二、选择题(每小题5分,共30分)9.C 10.D 11.C 12.C 13.D 14.D三、解答题(每小题20分,共40分)15.设需派往分公司x 名业务精英,依题意可得(100)(120%)1003.5100.x a a a x a -+⎧⎪⎨1⨯⎪⎩2,≥≥ ················································································································· (10分)解之得1005073x ≤≤. ········································································ (15分) 由于x 为正整数,则x 可取15或16人.故可派往分公司的业务精英为15人或16人. ······································· (20分)16.解:(1)如图1,正方形ABCD “滚动”一周时,中心O 所经过的路程为:1244L ⎛⎫=⨯π⨯ ⎪ ⎪2⎝⎭中 ················································································ (8分)a =. ······································································································ (10分) (2)如图2,正方形ABCD “滚动”一周时,顶点A 所经过的路程为:A()D B ()A C ()B D ()C A ()D ()C ()B ()A ()D C B图2l图1l1224L a 1=⨯)+2⨯⨯π4顶 ·································································· (18分)1122244a a a =⨯π+⨯⨯π. ················································· (20分) 四、开放题(每小题20分,共40分) 17.答案不惟一.例如:要测量河两岸相对两点A ,B 的距离(如图3所示),可先在AB 的垂线AF 上取两点C ,D ,使AC CD =,再过D 作AD 的垂线DE ,使B ,C ,E 三点在一条直线上,这时DE 的长就是AB 的长.解:由题意可知:AB AD ⊥,DE AD ⊥.所以90BAC EDC ∠=∠=. 因为在BAC △和EDC △中, BAC EDC ∠=∠, AC CD =(已知),ACB DCE ∠=∠(对顶角),所以(ASA)BAC EDC △≌△.故DE AB =.即DE 的长就是AB 的长. ··········································································· (18分) 此题中,我们运用了转化的思想方法,把不能直接测量的AB 的长转化为可直接测量的DE 的长. ····································································································· (20分) 说明:本题可仿照上例给分. 18.答案不惟一说明:1.正确运用平移,旋转或轴对称等知识等设计出图案; ················ (10分) 2.正确表达题目要求的含义; ····································································· (18分) 3.创意新颖,含义深刻. ············································································· (20分)图3。
第七届全国中小学生数学公开赛初二试题一、填空(每题3分,共60分):1、20012002(2)(2)-+-的值为________.2、3、《学习报》(初二版)的国内统一刊号为CN14-0708/(F),邮发代号为21-96,取以上四个数14,708,21,96中的任意三个为边长,可以构成的不同三角形的个数为_____.4、若a是同类二次根式,则a b=________.5、12aa+=,则200220021aa+=_________.6、如图1,△ABC中,AB=BC,BD=DE=EC,AC=DC,则∠A=______.7、若113m n-=,则353m mn nm mn n----=_______.8、若m2+m-1=0,则m2002+m2001-m2000+m1999+m1998-m1997+......+m1984+m1983-m1982=_______.9、如图2,△ABC中,∠C=90°,∠B=75°,BC=8cm,DE垂直平分AB,与AB,AC 分别交于D,E两点,则AC=________.10、比较大小:2002100120022001,2002200120023001A B++==++,则A____B.11、若a+b+c=1,111a b c++=,则a2+b2+c2=_________.12、自然数m,m+10,m+14均为质数,则m=_____.13、如图3,四边形ABCD中,∠B=30°,∠C=60°,BC=8,CD=1,四边形ABCD的面积为AB=_______.14、甲、乙二人分别从A 、B 两地同时相向而行,相遇后,甲再走40分钟到B 地,乙再走90分钟到A 地,那么,甲、乙二人相遇前走了______分钟. 15、△ABC 内有150个点,它们与三个顶点共153个点中,任意三点都不在同一条直线上,那么这153个点将△ABC 分割成_____个互不重叠的小三角形. 16、等边三角形ABC 的内部有一点P,连结PA ,PB ,PC ,已知∠APC=110°,∠BPC=130°,则以PA,PB,PC 的长为边长的三角形中,最大内角的度数为___________. 17、++ 18、如图4,一条河的两岸m//n ,河宽为d ,A 、B 两村被河隔开,计划在河上修一座桥,使A 、B 两村间的路途最近,在图中画出桥的位置(要求:用尺规作图画出线段CD 表示桥,保留作图痕迹,标出必要的字母或符号,不写作法). 19、如图5,一个矩形由6个小正方形组成,其中,最小的正方形面积为1,则这个矩形的面积为__________.20、如图6,菱形ABCD 中,E 、F 分别为BC 、DC 上的点,∠B=∠EAF=∠60°,∠BAE=20°,则∠CEF=_________. 二、选择(每题2分,共50分):)(A)±4; (B)±2; (C)4; (D)2.22、340280x y z x y z --=⎧⎨+-=⎩,且xyz ≠0,则2222x y z xy yz xz ++++的值为( )(A)-1; (B)1; (C)0.5; (D)无法确定. 23、x 2003+x 2002+x 2001+......+x 2+x+1必有因式( ) (A)x-1; (B)x+1; (C)x+2; (D)x-2.24、如图7,△ABC 中,∠B 与∠C 的平分线相交于点D ,过点D 作EF//BC,分别交AB,AC 于点E,F,AB=14, BC=20, AC=16,那么,△AEF 的周长为( )(A)34; (B)38; (C)30; (D)25.25、以下几个命题:(1)直角三角形的两边长为3,4,那么,它的第三边长为5;(2)一个直角三角形的三边长不可能是71,51,23;(3)等腰三角形的两边长分别为4,9,它的周长是17或22;(4)正五角星是轴对称图形但不是中心对称图形;(5)顺次连结某个四边形的各边中点得到矩形,这个四边形一定是菱形;(6)若正数a,b,c,d满足a2+b2+c2+d2=ab+bc+cd+da,则以a,b,c,d为边长的四边形一定是菱形.其中,假命题的个数为()(A)1; (B)2; (C)3; (D)4.26、因式分解6x2-5xy-6y2+9x-7y+3的结果为()(A)(2x-3y+1)(3x+2y+3); (B)(2x-3y-1)(3x+2y-3);(C)(2x+3y+1)(3x-2y+3); (D)(2x+3y+1)(3x-2y+3).27.若x5-3x4+7x3-6x2+2x+9=(x-a)(x-b)(x-c)(x-d)(x-e),则ab+bc+cd+de+ea=()(A)-3; (B)7; (C)-6; (D)2.28、图8中,∠A+∠B+∠C+∠D+∠E+∠F+∠G的度数是()(A)1080o; (B)720o; (C)540o; (D)450o.29、已知x y==)30、计算20022001112003200220022003⎛⎫⎛⎫---⎪ ⎪⎝⎭⎝⎭,结果为()(A)0; (B)1; (C)-1; (D)1 2002.31、化简,结果为( ) (A)32; (B)43; (C)53; (D)2.32并且(a-x)(a-y)(x-y)≠0,那么,代数式22223x xy y x xy y +--+的值为( )(A)3; (B)13; (C)53; (D)23.33、若a<-1<b<0<c<1<d,且|a+1|=|b+1|,|c-1|=|d-1|,则a+b+c+d 的值为( ) (A)0; (B)1; (C)-1; (D)-2 34、《学习报》从1996年主办第一届全国中小学生数学公开赛以来,至今已是第七届了.以下几何题与1996、7两数有关:一个等腰三角形的底边的长与高都是7,作出该三角形的1996个内接矩形,并且使所有这些矩形都有一边在该三角形的底边上,分别记这些内接矩形的周长为C 1,C 2,C 3,…, C 1996,那么)(A)7; (B)1996; (C)14; (D)2002.35、一个边长为4的正六边形的一个顶点,恰是另一个边长为1的正六边形的中心,则两个正六边形重叠部分的面积为( )(A)2. 36、△ABC 中,BC=1,若D 1,E 1分别是AB,AC 的中点,D 2,E 2分别是D 1B,E 1C 的中点,D 3,E 3分别是D 2B,E 2C 的中点,… ,D 2002,E 2002分别是D 2001B,E 2001C 的中点,,D 2002E 2002的长为( )(A)200212⎛⎫ ⎪⎝⎭; (B)20013142⎛⎫⨯ ⎪⎝⎭; (C)20022002212-; (D)22001122001+.37、凸六边形ABCDEF 的所有内角都是120o ,且AB=1,DE=2,AF+EF=6,则它的周长为( )(A)13; (B)14; (C)15; (D)16.38、若a 2-3a+1=0, 则a 4+a -4的末位数字为( ) (A)3; (B)5; (C)7; (D)9.39、D 是△ABC 中BC 边上的一点,∠B ≠∠C ,AD 分△ABC 所得的两个小三角形的各内角对应相等,则△ABC 一定是( ) (A)等腰三角形; (B)等边三角形; (C)直角三角形; (D)等腰直角三角形.40、若关于x 的方程2221x m m mxx x x x --=+--无解,则m 的值为( ) (A)12; (B)23; (C)1; (D)12,23或1.41、四个正多边形的边数分别为m,n,p,q ,在这四个正多边形中,各取一个内角相加之和为540o ,则1111m n p q+++的值为( ) (A)12; (B)23; (C)1; (D)32.42、《学习报》(初二版)每月出版四期,其期数依次为a,b,c,d,则化简2b 得( )(A)a; (B)b; (C)c; (D)d.43、若a 2+b 2=1,x 2+y 2=1,ax+by=0,则ab+xy 等于( ) (A)2; (B)1; (C)-1; (D)0.44、若m 为自然数,n 为两位自然数,则能使m 4+n 是合数的n 的值为( ) (A)16; (B)61; (C)81; (D)64. 45、Rt △ABC 中,∠ACB=90°,角平分线AE 与高线CD 相交于点G,过点G 作GF//AB 交BC 于点F. 若AC=12,AE=13, 则BF 的长为( ) (A)4; (B)5; (C)6; (D)7.三、解答题(每题10分,共30分):46、化简47、已知:a,b,c,A,B,C都是正数,且a+A=b+B=c+C=m.求证:aB+bC+cA<m2.48、采用如图10所示的方法,可以把梯形ABCD折叠成一个矩形EFNM(图中EF,FN,EM为折痕),使得点A与B、C与D分别重合于一点.请问,线段EF的位置如何确定;通过这种图形变化,你能看出哪些定理或公式(至少三个)?证明你的所有结论.49、已知:如图11,△ABC中,∠ACB=90°,四边形ACDE与四边形CBFG是在△ABC外的正方形,△ABC的高CH所在的直线交DG于点M.(1)求证:DM=GM;(2)若△ABC不是直角三角形,其它条件不变,“DM=GM”的结论还成立吗?如果成立,请给出至少三种不同的证明方法;如果不成立,请举出至少三个不同的反例并加以说明.要求:不同的证法(或反例)所用的数学知识尽量不同.50、2002年的元旦是星期二,再过22002天是星期几?由此进一步探索,你能得到哪些结论?尽量去证明你的结论。
全国数学知识应用竞赛八年级初赛试题(一)(本卷满分150分,考试时间120分钟)题号一二三总分得分得分评卷人一、填空题(每小题5分,共40分)1.仓库里的钢管是逐层堆放的,堆放时上一层比下一层吨一根.有一堆钢管,最下面的一层有m根,最上面一层有n根,那么这堆钢管共有层.2.一个长,宽,高分别为28为厘米,19厘米,16厘米的长方体,先从此长方体中尽可能大地切下一个正方体,然后再从剩余的部分尽可能大地切下一个正方体,那么剩下部分的体积是立方厘米.3.小强骑自行车上学,从家至学校,双脚一共踩了1500次(假设他作无障碍无滑动运行).已知小强骑的自行车的车轮直径是26英寸(1英寸≈0.0254米),踏板处的牙盘有48个齿,后轮轴侧的飞轮有16个齿,则小强家到学校的距离为米(π取3.14,结果精确到个位).4.西郊动物的“激流勇进”有两种型号,一种承载7人,票价65元;一种承载5人,票价50元.现在一个73人的旅游团,打算全部乘坐“激流勇进”,则他们至少需要元买票.5.小刚所在的八年级1班组建了一支业余足球队,小刚的好朋友小明问小刚的号码,小刚说:“若设我的号是x,那么把我们队所有人的号码加起来,再减去我的号码,恰好等于100,而我们队员的号码是从1开始,既没有跳号,也没有重复.”请你算一下,小刚的号码是,他们队共有人.6.小王所在的学校举行了一次考试,考了若干科课程,后来加试了一科,小王考了98分,这时小王的平均成绩比最初提高了1分;后来又加试了一科,小王考得70分,这时小王的平均成绩比最初的平均成绩下降了1分,则小王共考了(含加试的两科)科课程,最后的平均成绩为.7.在古代的算书中,经常以诗歌的形式来把一些实际生活背景的题目写出来.下面就有这样一道题:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”那么这个客栈有间房,一共来了名客人.8.请在一个长为13厘米的无刻度的尺子上添加4个刻度,使之可以度量113之间的任何整厘米长的尺寸(注:度量指一次量出,如5可以由刻度5直接量出或由刻度6和11间接量出,而不能由2和3量出,另外,0和13是原有的刻度,不必添加).如1,2,6,10就是符合要求的一种刻法,请你再找出一种符合要求的刻法.得分评卷人二、选择题(每小题5分,共40分)9.把8个相同的小正方体按如图1的方式堆放,它的外表会有若干个小正方形,如果将图中标有字母P 的一个小正方体搬去,这时外表含有的小正方形的个数与搬动前相比 ( ) A.不增不减B.减少1个C.减少2个D.减少3个10.张阿姨,李阿姨到农贸市场买大米,第一次,张阿姨买了100千克大米,李阿姨买了100元的大米;第二次,张阿姨还是买了100千克大米,李阿姨还是买了100元的大米.下列说法正确的是 ()A.如果米价下降张阿姨买的合算B.如果米价上涨张阿姨买的合算 C.无论米价怎样变化李阿姨买的合算D.无法判断谁买的合算11.你玩过这种游戏吗?如图所示的螺线图,一个小朋友从外往里跑,跑到最里面后,又从里往外跑,在此过程中,圈外的小朋友往他身上丢沙包,如果打中了,里面跑的小朋友就输了,如果在这个过程中没有打中,里面的小朋友就赢了,现在假设两相邻的平行线之间的距离都是1米,那么螺线(实线)的总长度是 ()A.55B.63C.60D.57图1P图212.质检员小李对本厂生产的一批电话机进行了检测,发现前50部中有49部是公有优质品,以后的每8部中有7部是优质品,且这批电话机的优质率不低于90%,则这批电话机最多有()A.180部B.200部C.210部D.225部13.某武警大队进行大练兵比赛,1中队和2中队都派了几名代表参加,已知1中队的代表平均每人得70分,2中队的代表平均每人得60分,而且这两个中队代表的总分为740分,那么1中队和2中队参赛代表的人数分别为()A.3,8或10,2B.2,5或4,7 C.8,3或2,10D.5,2或7,414.在一次数学兴趣活动中,同学们做了一个找朋友的游戏,游戏规定:所持算式表示的数相同的两个人是朋友.有五个同学明明,亮亮,华华,冰冰,强强分别藏在五张椅子后面,他们所藏在椅子上按顺序分别放着写有五个算法的牌子:37ab,37cd,37⨯,(1)(1)a d --,(1)(1)b c --.这时主持人小英宣布明明,亮亮,华华两两是朋友.那么请大家猜一猜冰冰和强强是否是朋友?()A.是B.不是C.条件不足,不能确定15.为了增强体质,小芳和小芬一起到市中心的“艺术广场”去跑步锻炼身体.她们从圆形跑道上的某一雕塑处出发,按相反方向跑步,小芳的速度是每秒2米,小芬的速度是每秒3秒,如果她们同时出发并当她们在出发的雕塑处第一次再相遇的时候结束,那么她们从出发到结束之间的相遇的次数是 ( )A.4 B.5 C.9D.无法判断16.如图所示,在大圆内画一个最大的正方形,正方形内画一个最大的圆,圆内又画一个最大的正方形,如此画下去,共画了4个圆,则最大的圆与最小的圆的面积之比为()A.2:1B.4:1C.8:1D.16:1图3得分 评卷人三、解答题(每小题20分,共40分)17.为迎接外国使节来访,仪仗队某小组进行队列造型设计,首先组长让全体队员排成一个方阵(即行与列的人数一样多的队形),人数正好够,然后组长又继续组织了几个队形的变化,最后一个造型需要5人一组,手拿鲜花变换队形.在讨论分组方案时,一组员说现在的队员人数按“5人一组”分将多出3人.同学们,你们说一说这可能吗?为什么?18.六个篮子分别装有6n ,61n +,62n +,63n +,64n +,65n +(n 为正整数)个小球,晓红和杨霞两个同学做游戏,从某个篮子中轮流取球,每人每次可以取一个或两个,但是不可以不取,并规定谁取走了最后一个小球谁败,抽签决定由晓红先取,但由杨霞决定从哪个篮子取.你认为谁能获胜,请你设计一个必胜的方案. 得分评卷人四、开放题(本题30分)19.请你用总数不超过5个的圆,三角形的长方形等,为自己的班级或学校设计一个标志,要求这个标志是轴对称图形,能够体现你们在班风建设方面的特色(如团结,文明等等),你还要在这个标志旁边注上你想要表达的特色以及它的含义.怎么样?试试看吧!参考答案一、1.1m m -+2.26883.46654.6855.5,146.10,88 7.8,638.1,4,5,11或2,4,7,12二、9.A 10.C 11.B12.C13.C14.A15.A16.C三、17.队型设计题答案 解:不可能因为全体队员可排成一个方阵,所以总人数是一个完全平方数,设每行m 人,则总人数为2m人,根据变化队形时按5人分组,可考虑m 为5n ,51n +,52n +,53n +,54n +中的某种情形,这里n 为正整数,从而全体人数2m 可能是22(5)5(5)n n =⨯;222(51)251015(52)1n n n n n +=++=++; 222(52)252045(54)4n n n n n +=++=++; 222(53)253095(561)4n n n n n +=++=+++. 222(54)2540165(583)1n n n n n +=++=+++.由此可见,不论哪一种情形,总人数按每组5人分组所多出的人数只可能是1或4,不可能多3人. 18.杨霞能获胜选有61n +或64n +个球的篮子,并且在每一个回合中和晓红共取3个球. 19.评分标准:等级得分要求一级2530图案设计符合要求,做出的图案美观,新颖,主题明题,语言叙述能生动形象的描述主题.二级 2025图案设计符合要求,做出的图案主题明确,语言叙述能突出主题.三级1520图案设计符合要求,语言叙述清楚.四级015图案设计基本符合要求,语言叙述无误.全国数学知识应用竞赛八年级初赛试题(二)一、填空题(每小题5分,共40分)1.今年春季的禽流感,使鸡的产蛋量下降.再加上农产品价格的提高与饲料价格的提高,鸡蛋由原来5.6元/公斤上升到6.8元/公斤,为此一些小商贩趁机把熟鸡蛋的价格由每个0.50元,提高到每个0.80元,顾客觉得太贵了,承受不了.倘若小商贩要维持原来的利润率,熟鸡蛋的价格应定为每个元(设鸡蛋每十六个一公斤,结果精确到0.1).2.益友商场搞促销,买200400元商品赠150元A券(等同于现金),小冰的妈妈买了一件标价226元的上衣,得到A券150元,她用这150元A券买一件衬衣(可打8折),她正好用完券,则她买的两件衣服总共算下来打了折(结果精确到0.1).3.“十一黄金周”某超市为了方便人们出门旅游,推出“旅游方便套餐”进行销售,甲种套餐:火腿肠2根,面包4个;乙种套餐:火腿肠3根,面包6个,果汁1瓶;丙种套餐:火腿肠2根,面包6个,果汁1瓶.已知火腿肠每根2元,面包每个1.2元,果汁每瓶10元,10月2号该商店销售这三种套餐共得441.2元,其中火腿肠的销售额为116元,则果汁的销售额为元.4.王师傅买了一辆新型轿车,油箱的容积为50升,“十一”期间王师傅载着全家人到距北京1300公里的某旅游景点去旅游,出发前加满油,汽车每行驶100公里耗油8升,且为了保险起见,油箱里至少应存油6升,则在途中至少需加油次.5.陈浩去超市买羽毛球拍,羽毛球和羽毛球网.超市里有6种羽毛球拍,5种羽毛球和3种羽毛球网,那么陈浩买一套羽毛球用具有种不同的选择.6.水上乐园的团体门票票价如下:购票人数150********以上单价(元)13119今有甲乙两个旅游团,都超过40人,且甲团人数少于乙团人数,若两团分别购票,总计应付门票1314元;若全在一起作为一个团购票,总计应支出门票费1008元,则甲团有人,乙团有人.7.剪纸是我国最普及的民间传统装饰艺术之一.现在请你试一试:用一张纸制作一个由8个“丰”字横排而成的带状图案,需将这张纸对折4次,折好的纸块上画形状的图案,再用剪刀剪好后拉开.8.有两位同学参加了四次测验,他们的平均分数不同,但都是低于90分的整数.他们又参加了第五次测验,测验后他们的平均成绩都提高到了90分.则第五次测验时,两位学生的得分分别是,(五次测验的满分都是100分).二、选择题(每小题5分,共40分)9.环境对人体的影响很大,环保与健康息息相关.目前,家具市场对板材进行了环保认证,其中甲醛含量是一个重要的指标.国家规定每100g 板材含甲醛低于40mg 且不小于10mg 的为合格品,含甲醛低于10mg 的则为A 级产品.某人订做了kg a A 级板材家具,请你帮他确定家具中所含甲醛(mg)y 的范围应为( )A.0100y a ≤≤ B.0100y a <≤ C.0100y a << D.0100y a <≤ 10.小康村一养鱼专业户,想知道他们家一个鱼塘中大约有多少条鱼.上月他从鱼塘里随机捕捞了60条鱼,在鱼身上做了标记,然后又放回去.本月他又从鱼塘里捞出70条鱼,发现其中有3条是做过标记的.假定上月鱼塘中的25%到本月已经不在鱼塘中(由于死亡或捕捞),这个月鱼塘中的40%上月并不在鱼塘中(由于出生和放养),那么上个月这个鱼塘中大约有多少条鱼( )A.630条B.820条C.840条D.1050条11.周末,王雪带领小朋友玩摸球游戏:在不透明塑料袋里装有1个白色和2个黄色的乒乓球,摸出两个球都是黄色的获胜.小明一次从袋里摸出两个球;小刚左手从袋里摸出一个球,然后右手摸出一个球;小华则先从袋里摸出一个球看一下颜色,又放回袋里,再从袋里摸出一个球.这时,小明急了,说:小刚,小华占了便宜,不公平.你认为如何( )A.不公平,小刚,小华占便宜了 B.公平C.不公平,小华吃亏了D.不公平,小华占便宜了 12.在小正方体的各面上分别写有16六个数字,将其投掷两次,第一次投掷后,侧面上的四个数字和是12;第二次投掷后这个和是15.试问写有数字“3”的面相对的面上的数字是( )A.2B.4C.5D.613.某大型音乐会在艺术中心举行.观众在门口等候检票进入大厅,且排队的观众按照一定的速度增加,检票速度一定,当开放一个大门时,需用半小时待检观众全部进入大厅,同时开放两个大门,只需十分钟,现在想提前开演,必须在5分钟内全部检完票,则音乐厅应同时开放的大门数是( )A.3个B.4个C.5个D.6个14.某房地产开发公司用100万元购得一块土地,该土地可以建造每层为1000平方米的楼房,楼房的总建筑面积(即各层面积之和)的每平方米平均建筑费用与建楼高度有关,楼房多建一层,整幢楼房每平方米建筑费用平均提高5%,已知建5层楼房时,每平方米的建筑费用为400元.为了使该楼每平方米的平均综合费用最省(综合费用是建筑费用与购地费用之和),公司应该把该楼建成( )A.4层B.6层C.7层D.8层 15.某住宅小区的圆形花坛如图1所示,圆中阴影部分种了两种不同的花,1O ,2O ,3O ,4O 分别是小圆的圆心,且小圆的直径等于大圆的的半径.设小圆的交叉部分所种花的面积和为1S .在小圆外,大圆内所种花的面积和为2S ,则1S 和2S 的大小关系是 ( ) A.12S S >B.12S S <C.12S S =D.无法确定16.五子连珠棋和象棋、围棋一样,深受广大棋迷的喜爱.其规则是:在1515⨯的正方2O1O4O3O 图1形棋盘中,由黑方先行,轮流弈子,在任意方向连成五子者为胜.如图2,是五子棋爱好者王博和电脑的对弈图的一部分:(王博执黑子先行,电脑执白子后走).观察棋盘,思考:若A 点的位置记作(85),,王博必须在哪个位置上落子,才不会让电脑在最短时间内获胜( )A.(18),或(49), B.(18),或(54),C.(05),或(54),D.(05),或49(),三、解答题(每小题20分,共40分)17.游戏推理:星期天,小明和叔叔一起玩扑克牌,叔叔想考考小明,便拿出两副牌,一边说一边做:取两副牌,每副牌的排列顺序按头两张是大王、小王,然后是黑桃、红桃、方块、梅花四种花色排列,每种花色又按1,2,3,,J ,Q ,K 顺序排列,然后把两幅扑克牌叠放在一起,把第一张丢掉,把第二张放在最底层,再把第三张丢掉,把第四张放在最底层如此下去,猜想最后一张是哪张牌.小明想了想,又算了算,得出了正确答案,你知道是哪张牌吗?说出理由.18.操作说理:我们很容易通过折叠把正方形纸片的某条边2等分或4等分,在一次折纸时晓亮同学对一个正方形纸片进行了如下操作,完成以后,发现G 点正好是AB 的三等分点,但是他说不出其中的道理,请你帮他说明(提示:直角三角形中,斜边的平方等于两直角边的平方和).A图20 1 2 3 4 5 6 7 8 998 7 6 5 4 3 2 1A BC D A BCDE DA GDA①②四、开放题(本题30分)19.实践应用:在裕华中学进行的学生会换届选举中,文涛和张森两位同学分别负责七、八两个年级选票的发放和统计工作,选票制成32开的卡片.选举结束后,他们把选票收了上来.文涛在整理选票时发现,有不少选票放反了(反面向上),也有一些放倒了(上下颠倒),花了不少时间才整理好.张森在发选票之前,把选票的右上角统一裁去了一小块,选票收上来后,放错的较少,有一些放错的也很快整理好了.请你用数学知识解释为什么文涛同学的选票不好整理,而张森同学的选票比较好整理?就在这次选举中张森同学把选票右上角裁去一小块的做法,谈谈你的看法.五、附加题(本题50分)20.动手实践作品展示.1.作品形式:小发明、小创造、小模型、小程序、小课件、研究报告以及小论文等(凡属于运用数学知识、方法、思想、,并通过动手、动脑具体操作或借助计算机技术来完成的原创作品均可);2.作品要求:附相关实物、图形、文字说明以及相关报道、评价等.参考答案一、1.0.62.5.53.1504.25.906.41,717. 8.88,89二、9.B 10.C 11.D 12.D 13.B 14.C 15.C 16.B三、17.先给每张牌标上牌号1,2,3,4……从简单情况入手,不难得到下表:游戏 牌数 留下牌号 规律游戏牌数 留下牌号 规律2 2 1211 6 3(112)2-⨯ 3 2 1(32)2-⨯12 8 3(122)2-⨯ 4 4 2213 10 3(132)2-⨯ 5 2 2(52)2-⨯ 14 12 3(142)2-⨯ 6 4 2(62)2-⨯ 15 14 3(152)2-⨯7 6 2(72)2-⨯16 16 428 8 3217 2 3(172)2-⨯ 9 2 2(93)2-⨯1843(182)2-⨯1042(102)2-⨯ …… …………剩下的牌号=(参加牌数2kn -)2⨯(2k为最靠近n 且小于n 的数).运用规律得出答案:两副牌共有542108⨯=(张),留下的牌号为6(1082)288-⨯=(号).又因为每副牌有大、小王各1张,黑桃、红桃、方块、梅花各13张,8854232--= (张),321326÷=…….最后剩下的应是方块6.18.设正方形的边长为a AG ,的长度为x ,则在Rt BGE △中,222BG BE EG +=.即222()22a a a x x ⎛⎫⎛⎫-+=+ ⎪ ⎪⎝⎭⎝⎭.解这个方程,得3a x =. 四、19.(1)32开的卡片是矩形,它既是轴对称图形,又是中心对称图形,所以容易放反、放倒.(2)截去一角后就不再有对称性,所以不容易放错.全国数学知识应用竞赛 八年级初赛试题(三)(本卷满分150分,考试时间120分钟)题号 一 二 三 四 总分 得分温馨提示:亲爱的同学们,这份试卷将记录你的自信、沉着与智慧,愿你能够放松心情,认真审题,缜密思考,细心演算,交一份满意的答卷。
第七届“学用杯”全国数学知识应用竞赛七年级初赛试题(A )卷题号 -一--二二三四总分得分温馨提示:亲爱的同学们,这份试卷将记录你的自信、沉着与智慧,愿你能够放松心情, 认真审题,缜密思考,细心演算,交一份满意的答卷。
一、填空题(每小题 5分,共30分)1•七年级(1)班的生物小组在同一枝条上收集到三枚叶片做植物标本,测得叶片①的最大宽度是8厘米,最大长度是16厘米;叶片②的最大宽度是 7厘米,最大长度是14厘米;叶片③的最大宽度是 6.5厘米,最大长度是13厘米.叶片①、②分别记为(8 , -16)、(+7, -14 ),仿照上述记法,则叶片③应记为 _______________ .2 •美国是世界上最大的纸张生产和消费国•美国人买礼品讲究纸包装,购物喜欢用纸袋,餐桌喜欢用纸台布,吃饭、喝水更是离不开纸巾纸杯•另外,报刊、广告、商品目录在美国多如牛毛,许多免费刊物人们随看随丢.政府部门办公用纸的用量更是令人咋舌, 平均每 小时工作用纸1 000万张•以美国国防部为例,一年约用纸 210万箱,每箱5 000张,则美 国国防部一年约用纸 张(用科学记数法表示)•3 .某校七年级有三个班,(1)班有40人,(2)班有36人,(3)班有44人,现三个班都按相同的比例派同学参加第七届“学用杯”数学知识应用竞赛,已知全年级共有30人未参加, 则该校七年级(1 )班参加竞赛的有 ______________________________ 人.4 •保险公司赔偿损失的计算公式为:保险赔偿 =参保财产价值X 损失程度,损失程度=保险财产受损价值X 100% •若某人参加保险的财产价值为100 000元,受损保险财产受损当时市场完好价值时,按当时市场价计算总值为 80 000元,受损后残值为20 000元,则该投保人能获得 _____________ 元 保险赔偿.5.假设图1为特快火车软座车厢的座位图,若小明坐在第6车、第八列、第三排,则他的6 •小明家最近买了一套二手楼房,小明的爸爸准备将厨房、卫生间原来的地砖换成一种既防滑,又不易结污的新型正方形地砖(如图2,阴影部分表示地砖上的略凸起的部分,有防滑效果)•利用4块这样的地砖,你能拼出 _____________ 种不同的正方形图案.第——为码 号 票第二排第四排号1 3 走495 769 1 11210 1315道IG14—第一列 第二列 第三列二、选择题(每小题5分,共30分)7 •有一个外观为圆柱形的物体,它的内部构造从外部看不到•当分别用一组平面沿水平方的是我国古代的“河图”,它是由3X 3的方格构成,每个方格内均有数目不同的点图,每一 行、每一列以及每一条对角线上的三个点图的点数之和均相等.图 6给出了“河图”的部分点图,请你推算出 P 处所对应的点图是().向(自上而下)和竖直方向(自左而右)截这个物体时,得到了如图 组形状不同的截面,则这个物体的内部构造是().3所示的(1 )、(2)两图弓A .空心圆柱&有一条围粮的席子, 第一种围法:围成周长 第二种围法:围成周长 下列说法正确的是(B .空心圆锥C .空心球D .空心半球5米,宽2.5米,把它围成一个筒状的粮食囤.围法有两种: 2.5米,高5米的粮囤;5米,高2.5米的粮囤.)•A .第一种围法的容积大,盛粮多B .第二种围法的容积大,盛粮多C .因是同一条席子围成的粮囤,所以两种围法围成的粮囤盛的粮一样多D .无法判断哪种围法围成的粮囤盛的粮多9.把一根绳子对折成线段AB ,如图4,从P 处把绳子剪断,已知AP = 1 PB ,若剪断后2的各段绳子中最长的一段为40厘米,则绳子的原长为().A . 30厘米B . 60厘米C . 120厘米D . 60厘米或120厘米56()米22007年6月底,全县已有的农村修建3了公路.现准备将一条新修成的公路(如图5) 一旁等距离地竖立电线杆,要求在两端及转 弯的地方都分别竖立一根电线杆,则至少要竖立电线杆(A . 20 根B . 19 根C . 18 根D . 17 根11.我国著名的数学家华罗庚教授,在他生前写的文章中这样说: 到了一个星球上,那儿也有如我们人类一样高级的生物存在. 的媒介呢?带幅画去吧,那边风景特殊,不了解.带一段录音去吧, 带两个图形去,一个‘数’,一个‘数形关系’(勾股定理)…10 •某省积极响应“村村通公路”政策号召,截至)•“……如果我们宇宙航船 我们用什么东西作为我们之间 也不能沟通.我看最好 •”他在这里谈的到“数”指12 •有一拉面师傅首先把一个面团搓成 1.6米长的圆柱形面棍,对折,再拉长到 1.6米;再对折,再拉长到1.6米;……这样对折10次,再拉长到1.6米,就做成了拉面•此时,若将 手中的面条伸展开,把面条看作粗细均匀的圆柱形,它的粗细(直径)是原来面棍粗细 (直径)的()•1111A •B • 'C •D • ■163264128三、解答题(每小题 15分,共60分)13 •小惠和小红在学校操场的旗杆前玩“石头、剪刀、布”的游戏,规则如下:在每一个回合中,若某一方赢了对方,便可向右走 2米,而输的一方则向右走-3米,和的话就原地不动,最先向右走18米的便是胜方•假设游戏开始时,两人均在旗杆处•(1 )若小惠在前四个回合中都输了,则她会站在什么位置? (2) 若小红在前三个回合中赢了两次输了一次,则她会站在什么位置?(3)假设经过五个回合后,小红仍然站在旗杆处,且没有猜和(即五个回合中没有出现和 的情况).问小惠此时会站在什么位置?14 •某儿童商场暑期进行大促销活动,并在购物大厅的一角设置了一个名为“智力快乐站” 的参与游戏,每位在儿童商场购物的家长都可以带孩子参加这个游戏, 每位家长与孩子一起抽取问题并进行解答,若能答对的话,会有精美礼品赠送• 其中一位家长和孩子抽到的题目是:如图8,是由图7的六种图形拼成的,请你在图 8中标出一种拼法•15 •某市积极响应政府提出的“加快旧城改造,建设新型绿色城市”的号召,将位于居民区 较集中的一处破旧厂房进行规划,建成了一个供附近居民休闲散步的公园•在公园的中心建(门 ⑹m图6I .5. 圈7了一个正方形的音乐喷泉(图9)•现计划将喷泉四周用花隔开.如有16盆花,要放在喷泉四周,要使每一条边上所放盆花同样多,该怎么放呢?有几种放法?每边放几盆花?试画图说明.喷泉图916. 为了备战北京奥运会,国家田径队的运动员在专门设置的新型三环形跑道上,夜以继日抓紧训练•每条环形跑道的长度都是200米并相交于同一个点A (如图10所示).有一天,李刚与其他两名队员从三条跑道的共同交点A同时出发,各取一条跑道练习长跑. (按图中箭头所示方向开始跑)•甲每小时跑5千米,乙每小时跑7千米,李刚每小时跑9千米. 请问他们三人第五次在A点相遇时,跑了多长时间?17. 古时候有个做油炸馓子的小贩,一日正挑着货担行走,与一村民相撞,将所有的馓子都撞落在地,那村民答应赔他50枚馓子的钱,小贩偏说他的馓子有300枚,两人争执不下.这时,有一位刘大人正好路过此地,问明情况后,刘大人让人拿来一枚馓子,称了它的重量,然后让人从地上扫起所有馓子的碎末,再称出总质量来,把这两个数字一折算,便得小贩的馓子的确实数目了,谁是谁非一目了然.读完上面的故事,请你想一想:(1)现有一大捆粗细均匀的电线,要确定其长度总值,怎样做比较简捷可行....?(使用的工具不限)(2)针对上面问题的讨论,你有哪些感想?第七届“学用杯”全国数学知识应用竞赛七年级初赛试题(A)卷参考答案一、填空题(每小题5分,共30 分)1 . ( 6.5,-13)评分注意:只要给出其中的一种正确拼法即可得分.15. 4种放法, ..................................... (3分)评分注意:①答对“ 4种放法”得3分,再每画对一种放法得“ 3分”;②若“ 4种放法”没 答对,无论放法画的正确与否,均不能得分.200 116.甲跑一圈用 (小时),5000 25 200 1乙跑一圈用(小时),7000 35200 1李刚跑一圈用二00 -(小时),9 000 452. 1.05 103.30475 00056二、 选择题(每小题7. C 8. B 9. D三、 解答题(每小题 5分,共30分) 10. C 11. D 12. B 15分,共60分)13.( 1 )小惠站在旗杆左 12米处;(2) 小红站在旗杆右1米处;•• (3)小惠站在旗杆左 5米(5分):10 分) :15 分)■>« * «*4!» ■■ 4 « « *4 ■* •■■*«*■* *■(1)每边放5盆花 ()每边放盆花学习好资料欢迎下载101故他们三人第一次相遇用了-小时(此时他们三人分别跑了5、7、9圈),所以他们第五次5在A点相遇时恰好跑了1小时. 评分注意:要求有详细的解题步骤才能得满分,只给出最后结果不能得分.四、开放题(本题30分)17. (1)设这捆电线总长度为L,称出这捆电线的总质量为M,拿剪刀剪下一段,量出其长度为I,称出其质量为a,则这捆电线的长度为L =也........................... ....................... (15分)a(2)提示:不惟一,如:遇到不易解决的问题要学会转化. ................. (15分)。
全国数学知识应用竞赛八年级初赛试题(一)(本卷满分150分,考试时间120分钟)题号一二三总分得分得分评卷人一、填空题(每小题5分,共40分)1.仓库里的钢管是逐层堆放的,堆放时上一层比下一层吨一根.有一堆钢管,最下面的一层有m根,最上面一层有n根,那么这堆钢管共有层.2.一个长,宽,高分别为28为厘米,19厘米,16厘米的长方体,先从此长方体中尽可能大地切下一个正方体,然后再从剩余的部分尽可能大地切下一个正方体,那么剩下部分的体积是立方厘米.3.小强骑自行车上学,从家至学校,双脚一共踩了1500次(假设他作无障碍无滑动运行).已知小强骑的自行车的车轮直径是26英寸(1英寸≈0.0254米),踏板处的牙盘有48个齿,后轮轴侧的飞轮有16个齿,则小强家到学校的距离为米(π取3.14,结果精确到个位).4.西郊动物的“激流勇进”有两种型号,一种承载7人,票价65元;一种承载5人,票价50元.现在一个73人的旅游团,打算全部乘坐“激流勇进”,则他们至少需要元买票.5.小刚所在的八年级1班组建了一支业余足球队,小刚的好朋友小明问小刚的号码,小刚说:“若设我的号是x,那么把我们队所有人的号码加起来,再减去我的号码,恰好等于100,而我们队员的号码是从1开始,既没有跳号,也没有重复.”请你算一下,小刚的号码是,他们队共有人.6.小王所在的学校举行了一次考试,考了若干科课程,后来加试了一科,小王考了98分,这时小王的平均成绩比最初提高了1分;后来又加试了一科,小王考得70分,这时小王的平均成绩比最初的平均成绩下降了1分,则小王共考了(含加试的两科)科课程,最后的平均成绩为.7.在古代的算书中,经常以诗歌的形式来把一些实际生活背景的题目写出来.下面就有这样一道题:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”那么这个客栈有间房,一共来了名客人.8.请在一个长为13厘米的无刻度的尺子上添加4个刻度,使之可以度量113之间的任何整厘米长的尺寸(注:度量指一次量出,如5可以由刻度5直接量出或由刻度6和11间接量出,而不能由2和3量出,另外,0和13是原有的刻度,不必添加).如1,2,6,10就是符合要求的一种刻法,请你再找出一种符合要求的刻法.得分评卷人二、选择题(每小题5分,共40分)9.把8个相同的小正方体按如图1的方式堆放,它的外表会有若干个小正方形,如果将图中标有字母P 的一个小正方体搬去,这时外表含有的小正方形的个数与搬动前相比 ( ) A.不增不减B.减少1个C.减少2个D.减少3个10.张阿姨,李阿姨到农贸市场买大米,第一次,张阿姨买了100千克大米,李阿姨买了100元的大米;第二次,张阿姨还是买了100千克大米,李阿姨还是买了100元的大米.下列说法正确的是 ()A.如果米价下降张阿姨买的合算B.如果米价上涨张阿姨买的合算 C.无论米价怎样变化李阿姨买的合算D.无法判断谁买的合算11.你玩过这种游戏吗?如图所示的螺线图,一个小朋友从外往里跑,跑到最里面后,又从里往外跑,在此过程中,圈外的小朋友往他身上丢沙包,如果打中了,里面跑的小朋友就输了,如果在这个过程中没有打中,里面的小朋友就赢了,现在假设两相邻的平行线之间的距离都是1米,那么螺线(实线)的总长度是 ()A.55B.63C.60D.57图1P图212.质检员小李对本厂生产的一批电话机进行了检测,发现前50部中有49部是公有优质品,以后的每8部中有7部是优质品,且这批电话机的优质率不低于90%,则这批电话机最多有()A.180部B.200部C.210部D.225部13.某武警大队进行大练兵比赛,1中队和2中队都派了几名代表参加,已知1中队的代表平均每人得70分,2中队的代表平均每人得60分,而且这两个中队代表的总分为740分,那么1中队和2中队参赛代表的人数分别为()A.3,8或10,2B.2,5或4,7 C.8,3或2,10D.5,2或7,414.在一次数学兴趣活动中,同学们做了一个找朋友的游戏,游戏规定:所持算式表示的数相同的两个人是朋友.有五个同学明明,亮亮,华华,冰冰,强强分别藏在五张椅子后面,他们所藏在椅子上按顺序分别放着写有五个算法的牌子:37ab,37cd,37⨯,(1)(1)a d --,(1)(1)b c --.这时主持人小英宣布明明,亮亮,华华两两是朋友.那么请大家猜一猜冰冰和强强是否是朋友?()A.是B.不是C.条件不足,不能确定15.为了增强体质,小芳和小芬一起到市中心的“艺术广场”去跑步锻炼身体.她们从圆形跑道上的某一雕塑处出发,按相反方向跑步,小芳的速度是每秒2米,小芬的速度是每秒3秒,如果她们同时出发并当她们在出发的雕塑处第一次再相遇的时候结束,那么她们从出发到结束之间的相遇的次数是 ( )A.4 B.5 C.9D.无法判断16.如图所示,在大圆内画一个最大的正方形,正方形内画一个最大的圆,圆内又画一个最大的正方形,如此画下去,共画了4个圆,则最大的圆与最小的圆的面积之比为()A.2:1B.4:1C.8:1D.16:1图3得分 评卷人三、解答题(每小题20分,共40分)17.为迎接外国使节来访,仪仗队某小组进行队列造型设计,首先组长让全体队员排成一个方阵(即行与列的人数一样多的队形),人数正好够,然后组长又继续组织了几个队形的变化,最后一个造型需要5人一组,手拿鲜花变换队形.在讨论分组方案时,一组员说现在的队员人数按“5人一组”分将多出3人.同学们,你们说一说这可能吗?为什么?18.六个篮子分别装有6n ,61n +,62n +,63n +,64n +,65n +(n 为正整数)个小球,晓红和杨霞两个同学做游戏,从某个篮子中轮流取球,每人每次可以取一个或两个,但是不可以不取,并规定谁取走了最后一个小球谁败,抽签决定由晓红先取,但由杨霞决定从哪个篮子取.你认为谁能获胜,请你设计一个必胜的方案. 得分评卷人四、开放题(本题30分)19.请你用总数不超过5个的圆,三角形的长方形等,为自己的班级或学校设计一个标志,要求这个标志是轴对称图形,能够体现你们在班风建设方面的特色(如团结,文明等等),你还要在这个标志旁边注上你想要表达的特色以及它的含义.怎么样?试试看吧!参考答案一、1.1m m -+2.26883.46654.6855.5,146.10,88 7.8,638.1,4,5,11或2,4,7,12二、9.A 10.C 11.B12.C13.C14.A15.A16.C三、17.队型设计题答案 解:不可能因为全体队员可排成一个方阵,所以总人数是一个完全平方数,设每行m 人,则总人数为2m人,根据变化队形时按5人分组,可考虑m 为5n ,51n +,52n +,53n +,54n +中的某种情形,这里n 为正整数,从而全体人数2m 可能是22(5)5(5)n n =⨯;222(51)251015(52)1n n n n n +=++=++; 222(52)252045(54)4n n n n n +=++=++; 222(53)253095(561)4n n n n n +=++=+++. 222(54)2540165(583)1n n n n n +=++=+++.由此可见,不论哪一种情形,总人数按每组5人分组所多出的人数只可能是1或4,不可能多3人. 18.杨霞能获胜选有61n +或64n +个球的篮子,并且在每一个回合中和晓红共取3个球. 19.评分标准:等级得分要求一级2530图案设计符合要求,做出的图案美观,新颖,主题明题,语言叙述能生动形象的描述主题.二级 2025图案设计符合要求,做出的图案主题明确,语言叙述能突出主题.三级1520图案设计符合要求,语言叙述清楚.四级015图案设计基本符合要求,语言叙述无误.全国数学知识应用竞赛八年级初赛试题(二)一、填空题(每小题5分,共40分)1.今年春季的禽流感,使鸡的产蛋量下降.再加上农产品价格的提高与饲料价格的提高,鸡蛋由原来5.6元/公斤上升到6.8元/公斤,为此一些小商贩趁机把熟鸡蛋的价格由每个0.50元,提高到每个0.80元,顾客觉得太贵了,承受不了.倘若小商贩要维持原来的利润率,熟鸡蛋的价格应定为每个元(设鸡蛋每十六个一公斤,结果精确到0.1).2.益友商场搞促销,买200400元商品赠150元A券(等同于现金),小冰的妈妈买了一件标价226元的上衣,得到A券150元,她用这150元A券买一件衬衣(可打8折),她正好用完券,则她买的两件衣服总共算下来打了折(结果精确到0.1).3.“十一黄金周”某超市为了方便人们出门旅游,推出“旅游方便套餐”进行销售,甲种套餐:火腿肠2根,面包4个;乙种套餐:火腿肠3根,面包6个,果汁1瓶;丙种套餐:火腿肠2根,面包6个,果汁1瓶.已知火腿肠每根2元,面包每个1.2元,果汁每瓶10元,10月2号该商店销售这三种套餐共得441.2元,其中火腿肠的销售额为116元,则果汁的销售额为元.4.王师傅买了一辆新型轿车,油箱的容积为50升,“十一”期间王师傅载着全家人到距北京1300公里的某旅游景点去旅游,出发前加满油,汽车每行驶100公里耗油8升,且为了保险起见,油箱里至少应存油6升,则在途中至少需加油次.5.陈浩去超市买羽毛球拍,羽毛球和羽毛球网.超市里有6种羽毛球拍,5种羽毛球和3种羽毛球网,那么陈浩买一套羽毛球用具有种不同的选择.6.水上乐园的团体门票票价如下:购票人数150********以上单价(元)13119今有甲乙两个旅游团,都超过40人,且甲团人数少于乙团人数,若两团分别购票,总计应付门票1314元;若全在一起作为一个团购票,总计应支出门票费1008元,则甲团有人,乙团有人.7.剪纸是我国最普及的民间传统装饰艺术之一.现在请你试一试:用一张纸制作一个由8个“丰”字横排而成的带状图案,需将这张纸对折4次,折好的纸块上画形状的图案,再用剪刀剪好后拉开.8.有两位同学参加了四次测验,他们的平均分数不同,但都是低于90分的整数.他们又参加了第五次测验,测验后他们的平均成绩都提高到了90分.则第五次测验时,两位学生的得分分别是,(五次测验的满分都是100分).二、选择题(每小题5分,共40分)9.环境对人体的影响很大,环保与健康息息相关.目前,家具市场对板材进行了环保认证,其中甲醛含量是一个重要的指标.国家规定每100g 板材含甲醛低于40mg 且不小于10mg 的为合格品,含甲醛低于10mg 的则为A 级产品.某人订做了kg a A 级板材家具,请你帮他确定家具中所含甲醛(mg)y 的范围应为( )A.0100y a ≤≤ B.0100y a <≤ C.0100y a << D.0100y a <≤ 10.小康村一养鱼专业户,想知道他们家一个鱼塘中大约有多少条鱼.上月他从鱼塘里随机捕捞了60条鱼,在鱼身上做了标记,然后又放回去.本月他又从鱼塘里捞出70条鱼,发现其中有3条是做过标记的.假定上月鱼塘中的25%到本月已经不在鱼塘中(由于死亡或捕捞),这个月鱼塘中的40%上月并不在鱼塘中(由于出生和放养),那么上个月这个鱼塘中大约有多少条鱼( )A.630条B.820条C.840条D.1050条11.周末,王雪带领小朋友玩摸球游戏:在不透明塑料袋里装有1个白色和2个黄色的乒乓球,摸出两个球都是黄色的获胜.小明一次从袋里摸出两个球;小刚左手从袋里摸出一个球,然后右手摸出一个球;小华则先从袋里摸出一个球看一下颜色,又放回袋里,再从袋里摸出一个球.这时,小明急了,说:小刚,小华占了便宜,不公平.你认为如何( )A.不公平,小刚,小华占便宜了 B.公平C.不公平,小华吃亏了D.不公平,小华占便宜了 12.在小正方体的各面上分别写有16六个数字,将其投掷两次,第一次投掷后,侧面上的四个数字和是12;第二次投掷后这个和是15.试问写有数字“3”的面相对的面上的数字是( )A.2B.4C.5D.613.某大型音乐会在艺术中心举行.观众在门口等候检票进入大厅,且排队的观众按照一定的速度增加,检票速度一定,当开放一个大门时,需用半小时待检观众全部进入大厅,同时开放两个大门,只需十分钟,现在想提前开演,必须在5分钟内全部检完票,则音乐厅应同时开放的大门数是( )A.3个B.4个C.5个D.6个14.某房地产开发公司用100万元购得一块土地,该土地可以建造每层为1000平方米的楼房,楼房的总建筑面积(即各层面积之和)的每平方米平均建筑费用与建楼高度有关,楼房多建一层,整幢楼房每平方米建筑费用平均提高5%,已知建5层楼房时,每平方米的建筑费用为400元.为了使该楼每平方米的平均综合费用最省(综合费用是建筑费用与购地费用之和),公司应该把该楼建成( )A.4层B.6层C.7层D.8层 15.某住宅小区的圆形花坛如图1所示,圆中阴影部分种了两种不同的花,1O ,2O ,3O ,4O 分别是小圆的圆心,且小圆的直径等于大圆的的半径.设小圆的交叉部分所种花的面积和为1S .在小圆外,大圆内所种花的面积和为2S ,则1S 和2S 的大小关系是 ( ) A.12S S >B.12S S <C.12S S =D.无法确定16.五子连珠棋和象棋、围棋一样,深受广大棋迷的喜爱.其规则是:在1515⨯的正方2O1O4O3O 图1形棋盘中,由黑方先行,轮流弈子,在任意方向连成五子者为胜.如图2,是五子棋爱好者王博和电脑的对弈图的一部分:(王博执黑子先行,电脑执白子后走).观察棋盘,思考:若A 点的位置记作(85),,王博必须在哪个位置上落子,才不会让电脑在最短时间内获胜( )A.(18),或(49), B.(18),或(54),C.(05),或(54),D.(05),或49(),三、解答题(每小题20分,共40分)17.游戏推理:星期天,小明和叔叔一起玩扑克牌,叔叔想考考小明,便拿出两副牌,一边说一边做:取两副牌,每副牌的排列顺序按头两张是大王、小王,然后是黑桃、红桃、方块、梅花四种花色排列,每种花色又按1,2,3,,J ,Q ,K 顺序排列,然后把两幅扑克牌叠放在一起,把第一张丢掉,把第二张放在最底层,再把第三张丢掉,把第四张放在最底层如此下去,猜想最后一张是哪张牌.小明想了想,又算了算,得出了正确答案,你知道是哪张牌吗?说出理由.18.操作说理:我们很容易通过折叠把正方形纸片的某条边2等分或4等分,在一次折纸时晓亮同学对一个正方形纸片进行了如下操作,完成以后,发现G 点正好是AB 的三等分点,但是他说不出其中的道理,请你帮他说明(提示:直角三角形中,斜边的平方等于两直角边的平方和).A图20 1 2 3 4 5 6 7 8 998 7 6 5 4 3 2 1A BC D A BCDE DA GDA①②四、开放题(本题30分)19.实践应用:在裕华中学进行的学生会换届选举中,文涛和张森两位同学分别负责七、八两个年级选票的发放和统计工作,选票制成32开的卡片.选举结束后,他们把选票收了上来.文涛在整理选票时发现,有不少选票放反了(反面向上),也有一些放倒了(上下颠倒),花了不少时间才整理好.张森在发选票之前,把选票的右上角统一裁去了一小块,选票收上来后,放错的较少,有一些放错的也很快整理好了.请你用数学知识解释为什么文涛同学的选票不好整理,而张森同学的选票比较好整理?就在这次选举中张森同学把选票右上角裁去一小块的做法,谈谈你的看法.五、附加题(本题50分)20.动手实践作品展示.1.作品形式:小发明、小创造、小模型、小程序、小课件、研究报告以及小论文等(凡属于运用数学知识、方法、思想、,并通过动手、动脑具体操作或借助计算机技术来完成的原创作品均可);2.作品要求:附相关实物、图形、文字说明以及相关报道、评价等.参考答案一、1.0.62.5.53.1504.25.906.41,717. 8.88,89二、9.B 10.C 11.D 12.D 13.B 14.C 15.C 16.B三、17.先给每张牌标上牌号1,2,3,4……从简单情况入手,不难得到下表:游戏 牌数 留下牌号 规律游戏牌数 留下牌号 规律2 2 1211 6 3(112)2-⨯ 3 2 1(32)2-⨯12 8 3(122)2-⨯ 4 4 2213 10 3(132)2-⨯ 5 2 2(52)2-⨯ 14 12 3(142)2-⨯ 6 4 2(62)2-⨯ 15 14 3(152)2-⨯7 6 2(72)2-⨯16 16 428 8 3217 2 3(172)2-⨯ 9 2 2(93)2-⨯1843(182)2-⨯1042(102)2-⨯ …… …………剩下的牌号=(参加牌数2kn -)2⨯(2k为最靠近n 且小于n 的数).运用规律得出答案:两副牌共有542108⨯=(张),留下的牌号为6(1082)288-⨯=(号).又因为每副牌有大、小王各1张,黑桃、红桃、方块、梅花各13张,8854232--= (张),321326÷=…….最后剩下的应是方块6.18.设正方形的边长为a AG ,的长度为x ,则在Rt BGE △中,222BG BE EG +=.即222()22a a a x x ⎛⎫⎛⎫-+=+ ⎪ ⎪⎝⎭⎝⎭.解这个方程,得3a x =. 四、19.(1)32开的卡片是矩形,它既是轴对称图形,又是中心对称图形,所以容易放反、放倒.(2)截去一角后就不再有对称性,所以不容易放错.全国数学知识应用竞赛 八年级初赛试题(三)(本卷满分150分,考试时间120分钟)题号 一 二 三 四 总分 得分温馨提示:亲爱的同学们,这份试卷将记录你的自信、沉着与智慧,愿你能够放松心情,认真审题,缜密思考,细心演算,交一份满意的答卷。
第七届“学用杯”全国数学知识应用竞赛八年级初赛B.卷试题一、选择题(每小题6分,共30分)1.图1是石家庄市中华大街与二环路交叉口的转盘示意图.在周日某时段车流高峰期,单 位时间内进出路口A ,B ,C ,D 的机动车数量如图1所示,请你计算该高峰期单位时间内通过路段AB BC CD DA ,,,(假设单位时间内,在上述路段中,同一路口驶入与驶出的车辆数固定)车辆最多的是( )A.AB B.BC C.CD D.DA2.手工课上,小明用螺栓将两端打有孔的5根长度相等的木条,首尾连接制作了一个五角星,他发现五角星的形状不稳定,稍微一动五角星就变形了.于是他想在木条交叉点处再加上若干个螺栓,使其稳定不再变形,他至少需要添加的螺栓数为 ( )A.1个 B.2个 C.3个 D.4个3.骑电动自行车出行是很多人的选择,电动自行车比脚踏自行车省力,比摩托车环保, 可谓好处多多,当然价格居高不下也是因为这些好处.受市场影响,某品牌同种价位的电动车在三个商场都进行了两次提价(第二次提价的百分比是以第一次提价后的价格为基础的),A 商场第一次提价的百分比为x ,第二次提价的百分比为y ;B 商场两次提价的百分比都是2x y +;C 商场第一次提价的百分比为y ,第二次提价的百分比为x ,如果0x y >>,则提价最多的商场是 ( )A.A 商场 B.B 商场 C.C 商场 D.无法确定4.小张和小李听说某商场在“十·一”期间举行特价优惠活动,两人约好前去购物,当他们到的时候,只剩两种商品还在搞特价,每件商品单价分别是8元和9元,于是他们各自选购了这两种商品数件,已知两人购买商品的件数相同,且两人购买商品一共花了172元,请问两人共购买了几件商品 ( )A.18件 B.19件 C.20件 D.21件5.师范大学学生张丽、王云、李玲三人一起去银行柜员机取钱,张丽取款一次,王云取款两次,李玲取款三次,假设每取款一次所用时间相同,请问她们三人按什么样的顺序取款,才能使三人所花总时间最少(包括等待时间)( )A.张丽,王云,李玲 B.李玲,张丽,王云C.张丽,李玲,王云 D.王云,李玲,张丽二、填空题(每小题6分,共30分)6.如图3,有一楼梯每一阶的长度、宽度与增加的高度都一样.有一工人在此楼梯的一侧贴上大小相同的正方形磁砖,第一阶贴了4块,第二阶贴了8块,……,依此规律共贴了144块磁砖后,刚好贴完楼梯的一侧.则此楼梯共有 阶.7.华云中学在20周年校庆时,有100位老同学聚会,他们中有73人家住河北省内,有78人住在城市里,有68人购买了住房,95人有笔记本电脑,假设至少有x 人和不超过y 人住在河北省的城市里,且有自己的住房和笔记本电脑,则x = ,y = .8.小李家有一块四边形菜地ABCD ,这块菜地里有一口井O ,从O向四边的中点挖了四条水渠,分别是OE ,OF ,OG ,OH ,把四边形菜地分成四块(如图4所示),已知四边形AEOH 的面积等于302m ,四边形EOFB 的面积为402m ,四边形OFCG 的面积为502m ,那么请你算一算四边形DGOH 的面积是 2m .9.学校田径运动会快要举行了,小刚用自己平时积攒的零花钱买了一双运动鞋,他发现鞋码与脚的大小不是1:1的关系,爱动脑筋的他就想研究一下,到底鞋码与脚的大小是怎样一种关系,于是小刚回家量了量妈妈36码的鞋子,内长是23cm ,量了量爸爸42码的鞋子,内长是26cm ,又量了量自己刚买的鞋子内长是24.5cm ,他认真思考,觉得鞋子内长x 与鞋子号码y 之间隐约存在一种一次函数关系,你能帮助小刚求出这个一次函数关系式吗? ,并说出小刚刚买的鞋是 码.10.长期以来,地域偏远、交通不便一直是制约经济发展的重要因素,“要想富,先修路”,某地政府为实施辖区内偏远地区的开发,把一条原有铁路延伸了一段,并在沿途建立了一些新车站,因此铁路局要印制46种新车票,这段铁路线上新老车站加起来不超过20个.请问该地一共新建了 个车站,原有 个车站.三、解答题(每小题15分,共60分)11.如图5(1),某住宅小区有一三角形空地(三角形ABC ),周长为2 500m ,现规划成休闲广场且周围铺上宽为3m 的草坪,求草坪面积.(精确到12m )m,而3个扇形由题意知,四边形AEFB,BGHC,CMNA是3个矩形,其面积为2 500×32EAN,FBG,HCM的面积和为π×322m,于是可求出草坪的面积为7 500+9π≈7528(2m).(1)若空地呈四边形ABCD,如图5(2),其他条件不变,你能求草坪面积吗?若能,请你求出来;若不能,请说明理由;(2)若空地呈五边形ABCDE,如图5(3),其他条件不变,还能求出草坪面积吗?若能,请你求出来;若不能,请说明理由;n n≥边形,其他条件不变,这时你还能求出草坪面积吗?若能,请(3)若空地呈(3)你求出来.12.集体供暖有燃料的利用率高、供暖效果好和环保等明显特点,被越来越多的人们所接受,2007年11月,市统计部门随机抽查100户家庭供暖方式,以及集体供暖用户对供热的认可情况.制成统计图如图6(1),图6(2),试回答下列问题.(1)在被抽查的100户中,采用其他供暖方式的用户有户.(2)补充完整条形统计图.(3)如果该城市大约有12万户,请你估计大约有多少集体供暖用户对供热认可为基本满意或满意.(4)请你对市政府或热力公司提出一条合理化建议.13.2007年8月22日,中国人民银行再次上调存款基准利率,这是央行本年内第4次加息,根据决定,一年期存款基准利率上调0.27个百分点,由现行的3.33%提高到3.60%,活期存款不变,仍是以前上调后的基准,利率为0.81%.(1)李红现有5000元,若在8月22日存入银行,按活期存入,一年后本息共多少?按一年期存入,一年后本息又是多少元?(2)王明曾在2007年5月29日调息时存入20000元一年期定期存款,为获得更大的利息收益,在8月22日,是否有必要转存为调整后的一年期定期存款?(提示:2007年8月15日之前利息税率为20%,8月15日利息税率改为5%,若转存,转存前的天数的利息按活期利率计算,且一年存款按365天计算).14.奥威汽车俱乐部举行沙漠拉力训练,每组两辆车,两辆车从同一地点出发,沿同一个方向直线行驶,每车最多只能携带30桶汽油,每桶汽油可以使一辆汽车行进80km,两车都必须返回出发点,但可以先后返回,且两车可以相互赠用双方的汽油,为了使其中一辆车尽可能的远离出发点,请问另一辆车应在离出发点多远处返回?远行的那辆车往返最多能行驶多少千米?四、开放题(本题30分)15.著名数学家华罗庚先生说:“数形结合百般好,隔离分家万事休”.事实上,有些代数问题,通过构造图形来解,常使人茅塞顿开,突破常规思维,进入新的境界;还有三国时期数学家赵爽创制了一幅“勾股圆方图”,用数形结合的方法,给出了勾股定理的详细证明——他用几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,由此可见,“数形结合思想”在解决数学问题中占有重要地位,请你根据所学的数学知识自己编写一道用数形结合思想解决的实际问题,说明解题思路,给出解答过程.同学们展开你的想象力,试试吧!第七届“学用杯”全国数学知识应用竞赛八年级初赛(B )卷试题参考答案一、1.C .(理由:假设该高峰期AB 路段上行驶的车辆数为x .则BC 上行驶的车辆数为x -20+30=x +10.CD 上行驶的车辆数为x +10-45+60=x +25.DA 上行驶的车辆数为x +25-35+30=x +20.据此判断可得此时CD 上行驶的车辆数最多.)2.A3.B (取特殊值代入验证即可得出答案)4.C (设每人购买了n 件商品,两人共购买了单价为8元的商品x 件,单价为9元的商品y 件.则289172x y n x y +=⎧⎨+=⎩,.解得1817217216x n y n =-⎧⎨=-⎩,. 因为x ≥0,y ≥0,所以597≤n ≤3104,n 取整数,故n =10,所以共购买了20件.) 5.A二、6.8.7.14,68.(提示:根据已知解得,有27人不住在河北省,22人不住在城市,32人没有自己的住房,5人没有笔记本电脑,这个总数是86.他们在四项中至少缺一项,所以至少有14人具有四项中的每一项.因为仅有68人拥有自己的住房,而拥有其他项的人数都大于68,所以具有四项条件的人数最多为68人.)8.409.y =2x -10,39.10.2,11(提示:设原有车站x 个,新车站有y 个.则每个新车站需要印制的车票有(x +y -1)种,y 个新车站要印(x +y -1)y 种,对于x 个老车站,要印xy 种.根据题意,有(x +y -1)y +xy =46,即y (2x +y -1)=46.由于46=1×46=2×23,因为x ,y 必须取正整数,加之新车站合起来不超过20个,则有21232x y y +-==⎧⎨⎩,.符合题意,解得112x y =⎧⎨=⎩,.即新建2个,原有11个.) 三、11.解:(1)如图5(2),空地呈四边形ABCD 时,其草坪面积为:S 草=S 矩形ABFE +S 矩形BGHC +S 矩形CMND +S 矩形DPQA +4个小扇形的面积的和.∵4 个小扇形可以组成一个圆.∴S 草地=2 500×3+9π≈7 528(m 2).(2)∵空地呈五边形时,5个小扇形可以组成一个圆.∴S 草地=2 500×3+9π≈7 528(m 2).(3)∵空地呈n 边形时,n 个小扇形也可以组成一个圆.∴S 草地=2 500×3+9π≈7 528(m 2).答:不论空地呈三角形、四边形还是五边形,…,还是n (n ≥3)边形,其面积都是 7 528m 2.12.解:(1)15;(2)略;(3)9.69万户;(4)不惟一,示例:对市政府可以是继续进行热力改造,扩大集体供暖用户的数量;对热力公司改进服务质量,提高老百姓的认可率.13.解:(1)按活期存入,一年后的本息和为:5 000×(1+0.81%×95%)=5 038.475(元);按一年期存入,一年后的本息和为:5 000×(1+3.60%×95%)=5 171(元).(2)王明若从5月29日起存入20 000元,一年期定期存款不转存,则可以得到利息为: 20 000×3.33%×78365×0.8+20 000×3.33%×287365×0.95≈611.35(元). 若在8月22日转存,王明从5月29日起一年后获得的利息为:20 000×78365×0.81%×0.8+20 000×7365×0.81%×0.95+20 000×36585365-×3.60%×0.95≈555.36(元).由于611.35>555.36,所以王明没有必要转存自己于5月29日的存款.14.解:设两车中,甲车应在离出发点x km 处即返回,乙车最远能离出发点y km ,因而甲车能赠给乙车的汽油为(30-280x )桶,由题意可得 230303080802230308080x x y x ⎧⎛⎫⎛⎫-+- ⎪ ⎪⎪⎪⎝⎭⎝⎭⎨⎛⎫⎪=+- ⎪⎪⎝⎭⎩≤, ①, ② 解不等式①,得800x ≥.由方程②,得(2 400)y x =-.要使y 最大,则需x 取最小值.故当x =800时,1600y =最大.因而往返全程最多为22 1 600 3 200(km)y =⨯=.即甲车行驶至800km 处应返回,乙车往返最多可行驶3 200km .四、15.答案不惟一.略.。