七年级数学上册 1.2.4 绝对值(第1课时)教案2 新人教版
- 格式:doc
- 大小:371.00 KB
- 文档页数:4
人教版数学七年级上册1.2.4《绝对值》教案一. 教材分析《绝对值》是人教版数学七年级上册第1章第2节的内容,本节课主要让学生理解绝对值的概念,掌握绝对值的性质,并能运用绝对值解决一些实际问题。
绝对值是数学中的一个基本概念,它在日常生活和工农业生产中有着广泛的应用。
二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,他们对数学概念的理解和运用已经有了一定的基础。
但同时,学生对新的数学概念的接受和理解还需要一定的引导和培养。
他们对绝对值的概念和性质可能还存在一些模糊的认识,需要通过实例和练习来加深理解。
三. 教学目标1.让学生理解绝对值的概念,掌握绝对值的性质。
2.培养学生运用绝对值解决实际问题的能力。
3.培养学生的抽象思维能力和逻辑思维能力。
四. 教学重难点1.绝对值的概念和性质。
2.运用绝对值解决实际问题。
五. 教学方法采用问题驱动法、实例教学法和小组合作学习法,引导学生通过观察、思考、讨论、操作等活动,掌握绝对值的概念和性质,提高学生的动手操作能力和解决问题的能力。
六. 教学准备1.PPT课件。
2.相关例题和练习题。
3.学生分组合作学习资料。
七. 教学过程1.导入(5分钟)利用PPT展示一些实际问题,如温度、距离等,引导学生思考这些问题的共同特点,从而引出绝对值的概念。
2.呈现(10分钟)介绍绝对值的定义,用PPT展示绝对值的图形表示,让学生直观地理解绝对值的概念。
同时,给出绝对值的性质,让学生通过观察和思考来理解这些性质。
3.操练(10分钟)让学生分组合作,运用绝对值的性质解决一些实际问题,如求距离、计算温度等。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)出示一些练习题,让学生独立完成,检验学生对绝对值概念和性质的掌握程度。
教师选取部分题目进行讲解,分析解题思路。
5.拓展(10分钟)让学生思考绝对值在实际生活中的应用,如地图上的距离、股票的涨跌等。
引导学生运用绝对值的知识解决这些问题,提高学生的应用能力。
人教版七年级数学上册:1.2.4《绝对值》教学设计2一. 教材分析《绝对值》是人教版七年级数学上册第一章第二节第四个小节的内容,主要让学生理解绝对值的概念,掌握绝对值的性质,并能运用绝对值解决一些简单的问题。
绝对值是数学中的一个重要概念,它在日常生活和工农业生产中有着广泛的应用。
二. 学情分析学生在学习《绝对值》之前,已经学习了有理数的概念,对正数、负数、零有所了解。
但是,他们对绝对值的概念和性质可能还比较陌生,需要通过实例和练习来逐步理解和掌握。
同时,学生可能对绝对值的应用场景有所疑惑,需要通过生活中的实例来帮助他们理解。
三. 教学目标1.理解绝对值的概念,掌握绝对值的性质。
2.能够运用绝对值解决一些简单的问题。
3.理解绝对值在日常生活和工农业生产中的应用。
四. 教学重难点1.绝对值的概念和性质。
2.绝对值的应用。
五. 教学方法采用讲授法、实例分析法、练习法、小组合作学习法等,结合多媒体教学手段,让学生在理解绝对值的概念和性质的基础上,能够运用绝对值解决实际问题。
六. 教学准备1.PPT课件。
2.练习题。
3.生活中的实例。
七. 教学过程1.导入(5分钟)通过一个生活中的实例,引出绝对值的概念。
例如,一个人在地图上从原点出发,走了10公里向东,又走了10公里向西,问他现在离原点有多远?引出绝对值的概念,即离原点的距离是10公里。
2.呈现(10分钟)通过PPT课件,呈现绝对值的性质,如:–绝对值是非负数。
–互为相反数的两个数的绝对值相等。
–绝对值大的数比绝对值小的数大。
同时,给出相应的例子,让学生理解和掌握这些性质。
3.操练(10分钟)让学生独立完成一些练习题,巩固对绝对值概念和性质的理解。
例如:–计算下列各数的绝对值:-5, 3, -2, 0, 4。
–如果两个数互为相反数,它们的绝对值是否相等?4.巩固(10分钟)让学生分组合作,找出生活中的其他实例,运用绝对值的概念和性质解决问题。
例如,计算两个人之间的距离,或者计算物体的位移等。
教学设计一、创造情境,引入新课为了锻炼身体,小明和爸爸在暑假里制定了每天跑2km的运动计划,在一条东西走向的绿道上,小明从起点O向东跑2km到达A处,小明爸爸从起点O向西跑2km到达B 处,小明和爸爸都完成运动计划了吗?思考:1.若记向东为正方向,则A处记做_______,B处记做________.这两个数相同吗?2.在数轴上,A,B两点到原点的距离相同吗?二、新知探究定义:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,用|a |表示.(这里的数a 可以是正数、负数和0)例如:|−5|=5,|0|=0,|5|=5.|a |的几何意义是数轴上表示数a 的点到原点的距离. 三、例题解析例1:求下列各数的绝对值:6,8,3.9,52,8,0.解析:|6|=6,|−8|=8,|3.9|=3.9,|52|=52,|8|=8,|0|=0.1.问题:一个数的绝对值的大小,和表示它的点与远点的距离有什么关系? 结论:一个数的绝对值越大,表示它的点在数轴上离原点越远.2.思考:观察以上6个等式(1)从结果看,一个数的绝对值有什么特点? (2)一个数的绝对值与原数有什么关系?(3)互为相反数的两个数,它们的绝对值有什么关系? 3.小结:(1)任何数的绝对值都大于或等于0.(即绝对值具有非负性)(2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0; 即:如果a >0,那么|a |=a ;如果a <0,那么|a |=−a ; 如果a =0,那么|a |=0;(3)互为相反数的两个数的绝对值相等. 四、课堂练习1.求下列各数的绝对值:(1)125 ;(2)23;(3)3.5.2.判断下列说法是否正确:(1)符号相反的数互为相反数.(2)一个数的绝对值越大,表示它的点在数轴上越靠右.(3)一个数的绝对值越大,表示它的点在数轴上离原点越远.(4)当a≠0时,|a|总是大于0.3.(1)求绝对值等于4的数是.(2)绝对值小于2的整数是.(3)若|x3|=2,则x= .五、课堂小结备注:教学设计应至少含教学目标、教学内容、教学过程等三个部分,如有其它内容,可自行补充增加。
1.2.4 绝对值第1课时绝对值【教学目标】(一)知识技能1.使学生掌握有理数的绝对值概念及表示方法。
2.使学生熟练掌握有理数绝对值的求法和有关计算问题。
(二)过程方法1.在绝对值概念形成的过程中,渗透数形结合等思想方法,并注意培养学生的概括能力。
2.能根据一个数的绝对值表示“距离”,初步理解绝对值的概念。
3.给出一个数,能求它的绝对值。
(三)情感态度从上节课学的相反数到本节的绝对值,使学生感知数学知识具有普遍的联系性。
教学重点给出一个数会求它的绝对值。
教学难点绝对值的几何意义,代数定义的导出;负数的绝对值是它的相反数。
【情景引入】问题:两辆汽车,第一辆沿公路向东行驶了5千米,第二辆向西行驶了4千米.为了表示行驶的方向(规定向东为正)和所在位置,分别记作+5千米和-4千米.这样,利用有理数就可以明确表示每辆汽车在公路上的位置了.我们知道,出租汽车是计程收费的,这时我们只需要考虑汽车行驶的距离,不需要考虑方向.当不考虑方向时,两辆汽车行驶的距离就可以记为5千米和4千米(在图上标出距离).这里的5叫做+5的绝对值,4叫做-4的绝对值.【教学过程】1.绝对值的定义:我们把在数轴上表示数a的点与原点的距离叫做数a的绝对值)。
记作|a|。
例如,在数轴上表示数―6与表示数6的点与原点的距离都是6,所以―6和6的绝对值都是6,记作|―6|=|6|=6。
同样可知|―4|=4,|+1.7|=1.7。
2.试一试:你能从中发现什么规律? 由绝对值的意义,我们可以知道:1= ,|+8.2|= ;(2)|0|= ;(1)|+2|= ,5(3)|―3|= ,|―0.2|= ,|―8.2|= 。
概括:通过对具体数的绝对值的讨论,并注意观察在原点右边的点表示的数(正数)的绝对值有什么特点?在原点左边的点表示的数(负数)的绝对值又有什么特点?由学生分类讨论,归纳出数a的绝对值的一般规律:(1)一个正数的绝对值是它本身;(2)0的绝对值是0;(3)一个负数的绝对值是它的相反数。
人教版数学七年级上册1.2.4《绝对值(第1课时)》教学设计1一. 教材分析《人教版数学七年级上册》第1.2.4节“绝对值(第1课时)”是学生在初中阶段首次接触绝对值概念。
绝对值是数学中的一个基本概念,它表示一个数在数轴上所对应的点与原点的距离。
本节课的内容对于学生理解数的大小关系、解方程、不等式等方面具有重要意义。
二. 学情分析七年级的学生已经具备了一定的数学基础,如实数、有理数等概念。
但他们对绝对值的概念可能还比较陌生,需要通过具体的情境和实例来理解和掌握。
同时,学生可能对数轴有一定的了解,但将绝对值与数轴联系起来可能还需要一些引导。
三. 教学目标1.让学生理解绝对值的概念,掌握绝对值的性质。
2.培养学生运用绝对值来描述和解决问题的能力。
3.引导学生通过数轴来理解绝对值,培养学生的数形结合思想。
四. 教学重难点1.重点:绝对值的概念和性质。
2.难点:绝对值在实际问题中的应用。
五. 教学方法1.情境教学法:通过具体情境引入绝对值的概念,让学生在实际情境中感受绝对值的意义。
2.数形结合法:利用数轴帮助学生理解绝对值,引导学生将绝对值与数轴相结合。
3.实例分析法:通过多个实例让学生掌握绝对值的性质,培养学生的运用能力。
六. 教学准备1.教学课件:制作课件,内容包括绝对值的概念、性质和应用实例等。
2.数轴教具:准备数轴教具,用于引导学生直观地理解绝对值。
3.练习题:准备一些有关绝对值的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用数轴教具,引导学生回顾数轴上的点与原点的关系。
例如,点A 在数轴上表示2,点B在数轴上表示-2,让学生观察点A和点B与原点的关系。
2.呈现(10分钟)介绍绝对值的概念:数轴上表示一个数的点到原点的距离叫做这个数的绝对值。
并用课件展示绝对值的定义和性质。
3.操练(10分钟)让学生在数轴上找出一些数的绝对值,并说明理由。
例如,找出-3、0、5的绝对值,并解释为什么它们的绝对值分别是3、0、5。